DATA SHEE

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

74HC/HCT259 8-bit addressable latch

Product specification File under Integrated Circuits, IC06 December 1990

8-bit addressable latch

74HC/HCT259

FEATURES

- · Combines demultiplexer and 8-bit latch
- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- · Easily expandable
- Common reset input
- Useful as a 3-to-8 active HIGH decoder
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT259 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT259 are high-speed 8-bit addressable latches designed for general purpose storage applications in digital systems. The "259" are multifunctional devices

capable of storing single-line data in eight addressable latches, and also 3-to-8 decoder and demultiplexer, with active HIGH outputs (Q_0 to Q_7), functions are available.

The "259" also incorporates an active LOW common reset (\overline{MR}) for resetting all latches, as well as, an active LOW enable input (\overline{LE}) .

The "259" has four modes of operation as shown in the mode select table. In the addressable latch mode, data on the data line (D) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs.

In the 3-to-8 decoding or demultiplexing mode, the addressed output follows the state of the D input with all other outputs in the LOW state. In the reset mode all outputs are LOW and unaffected by the address (A₀ to A₂) and data (D) input. When operating the "259" as an addressable latch, changing more than one bit of address could impose a transient-wrong address. Therefore, this should only be done while in the memory mode. The mode select table summarizes the operations of the "259".

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

CVMDOI	N.1001.	CONDITIONS	T	PICAL	COM
SYMBOL	PARAMETER	CONDITIONS	НС	НСТ	UNIT
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	1	WW.1	ON CON
	D to Q _n	W.100Y. COM.TV	18	20	ns
	A_n , \overline{LE} to Q_n	TW TOOY. CON.T	17	20	ns
t _{PHL}	MR to Q _n	MAN 100 X . CO.	15	20	ns
Cı	input capacitance	MAMA	3.5	3.5	pF
C _{PD}	power dissipation capacitance per latch	notes 1 and 2	19	19	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

 f_i = input frequency in MHz

f_o = output frequency in MHz

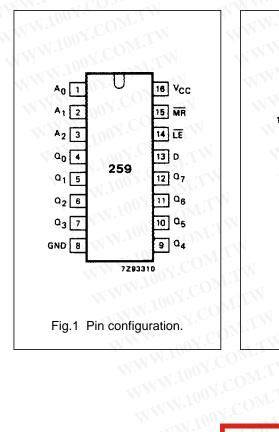
 $\sum (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

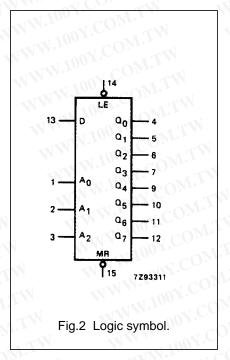
C_L = output load capacitance in pF

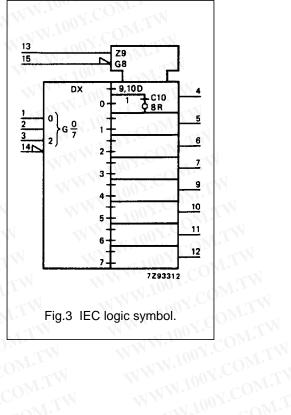
 V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM


8-bit addressable latch


74HC/HCT259

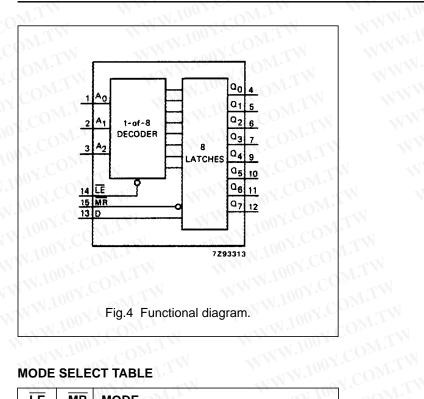

ORDERING INFORMATION

PIN DESCRIPTION

See "74HC/HCT/HCU/HC		Information".
PIN DESCRIPTION	M.M.100X.COJ	N.TW WWW.100Y.COM.TW
PIN NO.	SYMBOL	NAME AND FUNCTION
1, 2, 3	A ₀ to A ₂	address inputs
4, 5, 6, 7, 9 10, 11, 12	Q ₀ to Q ₇	latch outputs
8	GND	ground (0 V)
13	DVW 100Y	data input
14 (Y.CO)	LEN WYY	latch enable input (active LOW)
15 COM	MR	conditional reset input (active LOW)
16	V _{CC}	positive supply voltage

.100Y.COM.TW

WWW.100Y.COM.TW


特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

.100Y.COM.TW

WWW.100Y.COM.

8-bit addressable latch

74HC/HCT259

MODE SELECT TABLE

- 4 (3)
1.700
x1 10
11
JVI I

WWW.100Y

WWW.100Y.COM.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW Philips Semiconductors Product specification

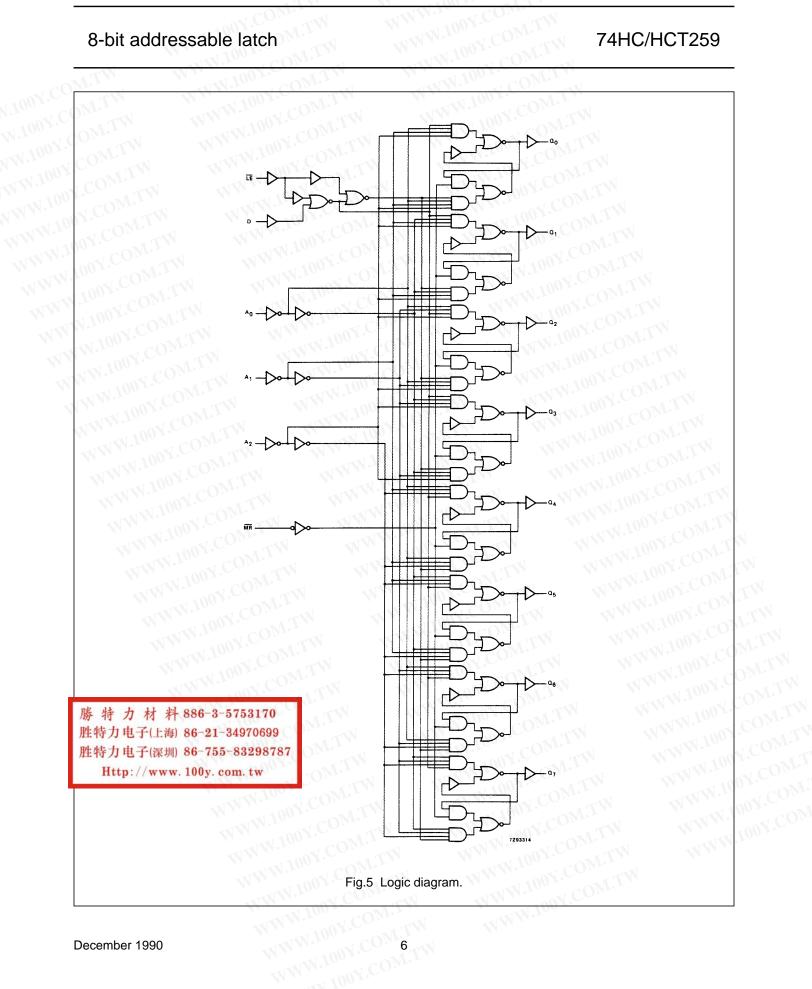
8-bit addressable latch

74HC/HCT259

FUNCTION TABLE

OPERATING	WW		INF	PUTS			OUTPUTS							
MODES	MR	LE	OD.	A ₀	A ₁	A ₂	Q_0	Q ₁	Q ₂	Q_3	Q_4	Q ₅	Q_6	Q ₇
master reset	LW	Н	X	Х	Х	Х	L N	L	1007	L	LTW	L	L	L
COM	L	T.	d	(LCO	L	L	Q=d	L	L.00	L	LT	NL	L	L
	L	L	d	H	JL.	L	L	Q=d	Free	F CC	L	d.	L	L
YOUTH	L	L	d 10) L	H	L	L	L	Q=d	J	-LVA	L	L	L
demultiplex (active HIGH)	L	LW	d	HY.	H	L'IV	L	LWW	L WW.1	Q=d	COM	EN	L	L
decoder	l _L	L	d	100,	60	Н	L	L	LIN	100	Q=d	L	L	L
(when D = H)	N L	LW	d	H00	L	HI	M.	L	1	F00)		Q=d	۱.	<u>-</u>
	d L	L	d	L	H.C	Н	rEN	L		11.00	LCO	L	Q=d	L
	L	L	d	H10	H,	H	L	L	L	$(\Gamma_{J,n})$	L C	JE	L	Q=d
store (do nothing)	H	Н	Х	X	Х	X	q_0	q ₁	q ₂	q_3	q ₄	q ₅	q ₆	q ₇
11007.00	H	L	d	L	FOA	L	Q=d	q ₁	q_2	q_3	q_4	q_5	q_6	q ₇
	H	L	d 📢	H	L	CO	q_0	Q=d	$q_2 \sqrt{}$	q_3	q ₄	q ₅	q_6	q ₇
	H	L	d	L	H	LCC	q_0	q_1	Q=d	q_3	q_4	q ₅	q_6	q ₇
	H	NL .	d	Н	H	L.	q_0	q_1	q_2	Q=d	q_4	q ₅	q_6	q ₇
addressable latch) []	N		WW	-11	OY.C	Or	W		MM	100	N.C.	MI	
	OH .	L	d	LVV	F.	H.	q_0	q_1	q_2	q_3	Q=d	q ₅	q_6	q ₇
	H	L	d	H.	LV.	Н	q_0	q ₁	q_2	q_3	q ₄	Q=d	q_6	q ₇
	H	L	d	L	H	H	q_0	q_1	q_2	q_3	q_4	q ₅	Q=d	q ₇
	H	L	d	H	H	Ĥ.	q_0	q ₁	q_2	q ₃ 🕥	q_4	q ₅	q ₆	Q=d

Notes


- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - $d = HIGH \text{ or LOW data one set-up time prior to the LOW-to-HIGH } \overline{LE}$ transition
 - q = lower case letters indicate the state of the referenced output established during the last cycle in which it was WWW.100Y.COM.TW addressed or cleared

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.CG

8-bit addressable latch

74HC/HCT259

WW.100Y.COM.TW Philips Semiconductors Product specification

8-bit addressable latch

74HC/HCT259

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

SYMBOL	LTW WW	1,100		MIN	T _{amb} (°	C)		1001.	COM	TES	T CONDITIONS
	DADAMETED	74HC							ann	TIM	(MAVEEODIA)
	PARAMETER	+25		-40 to +85		−40 t	o +125	UNIT	V _{CC} (V)	WAVEFORMS	
	OM.TW WY	min.	typ.	max.	min.	max.	min.	max.	7.00	OM.	N Total
_{PHL} / t _{PLH}	propagation delay D to Q _n	MMM	58 21 17	185 37 31	LTY M.TY	230 46 39	W	280 56 48	ns	2.0 4.5 6.0	Fig.7
PHL/ tPLH	propagation delay A _n to Q _n	MA	58 21 17	185 37 31	$O_{M',j}$	230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.8
PHL/ ^t PLH	propagation delay LE to Q _n	1	55 20 16	170 34 29	CON V.CO	215 43 37	N	255 51 43	ns	2.0 4.5 6.0	Fig.6
PHL	propagation delay MR to Q _n	1	50 18 14	155 31 26	oy.C	195 39 33	TW TW	235 47 40	ns	2.0 4.5 6.0	Fig.9
t _{THL} / t _{TLH}	output transition time	V V	19 7 6	75 15 13	1007	95 19 16	VT.N	119 22 19	ns	2.0 4.5 6.0	Figs 6 and 7
W	LE pulse width HIGH or LOW	70 14 12	17 6 5	MM	90 18 15	JOY.C	105 21 18		ns	2.0 4.5 6.0	Fig.6
W	MR pulse width LOW	70 14 12	17 6 5	N	90 18 15	100 X	105 21 18	TW	ns	2.0 4.5 6.0	Fig.9
su	set-up time D, A _n to LE	80 16 14	19 7 6		100 20 17	W.100	120 24 20	M.TY	ns	2.0 4.5 6.0	Figs 10 and 11
h	hold time D to LE	0 0 0	-19 -6 -5	N	0 0 0	WW.	0 0 0	COM:	ns	2.0 4.5 6.0	Fig.10
h	hold time A _n to LE	2 2 2	-11 -4 -3	IN	2 2 2	NWV	2 2 2	V.CO	ns	2.0 4.5 6.0	Fig.11

Product specification Philips Semiconductors

8-bit addressable latch

74HC/HCT259

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

WWW.100Y.C

INPUT	UNIT LOAD COEF	FICIENT
A _n	1.50	MAN
$\frac{A_n}{LE}$	1.50	TWW.II
D. 100%	1.20	M
MR	0.75	MM
MAIN	Z COMP.	WWW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

8-bit addressable latch

74HC/HCT259

AC CHARACTERISTICS FOR 74HCT

SYMBOL	WWW.1	T _{amb} (°C)								TEST CONDITIONS	
	DADAMETED	74HCT									WAVEFORMS
	PARAMETER	+25			-40 7	ГО +85	-40 TO +125		UNIT	V _{CC} (V)	VVAVEFORIVIS
	TW WWW.	min.	typ.	max.	min.	max.	min.	max.	Div	W.	
t _{PHL} / t _{PLH}	propagation delay D to Q _n	1.100	23	39	-6.7	49	WW.	59	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay A _n to Q _n	W.100	25	41	W	51	NWV	62	ns	4.5	Fig.8
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		22	38	TW	48	WW	57	ns	4.5	Fig.6
t _{PHL}	propagation delay MR to Q _n	WWW	23	39		49	W	59	ns	4.5	Fig.9
t _{THL} / t _{TLH}	output transition time	WW	7 10	15	OM.T	19	V	22	ns	4.5	Figs 6 and 7
tw	LE pulse width LOW	19	11	OOX.	24	LM	29	MM	ns	4.5	Fig.6
tw	MR pulse width LOW	18	10	100Y	23	M.TW	27	WW	ns	4.5	Fig.9
t _{su}	set-up time D to LE	17	10	W.100	21	MIT	26	1	ns	4.5	Fig.10
t _{su}	set-up time A _n to LE	17	10	W.P	21	COM	26		ns	4.5	Fig.11
t _h	hold time D to LE	0	-8	WW	0	.con	0		ns	4.5	Fig.10
t _h	hold time A _n to LE	0	-4	WWW	0	N.CO	0	N	ns	4.5	Fig.11

WWW.100Y.COM.TW 特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.TW

WWW.100X.COM

DOY.COM.TW

WWW.100Y.COM.TW

8-bit addressable latch

74HC/HCT259

AC WAVEFORMS

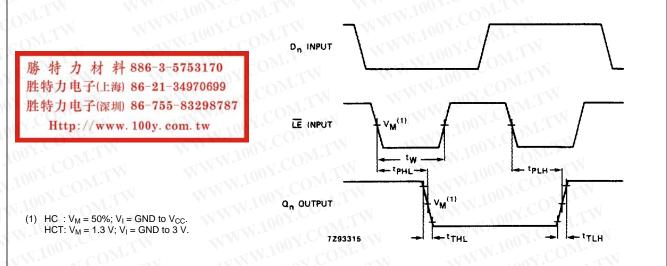


Fig.6 Waveforms showing the enable input (\overline{LE}) to output (Q_n) propagation delays, the enable input pulse width and the output transition times.

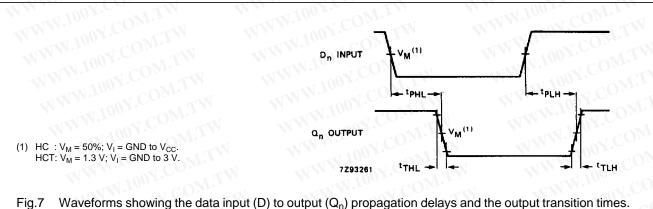
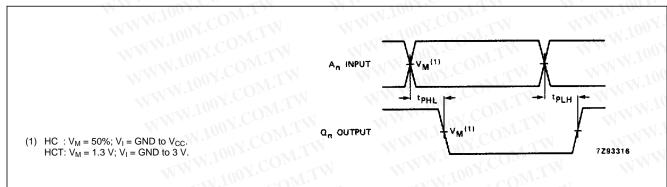
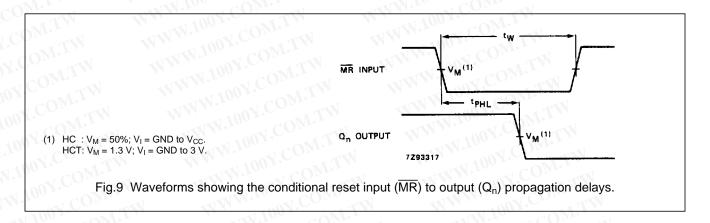
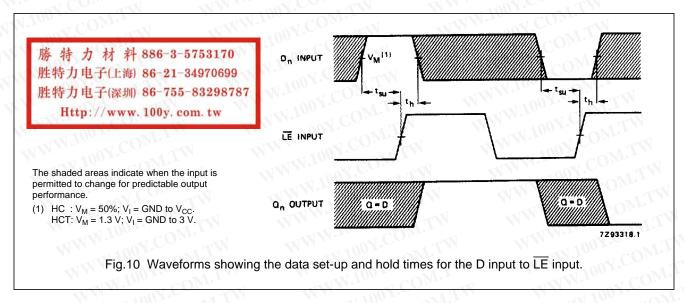
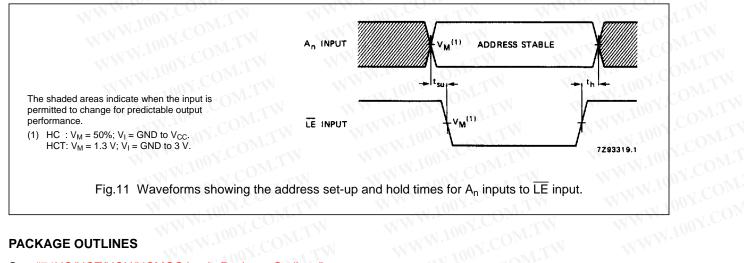


Fig. 7 Waveforms showing the data input (D) to output (Q_n) propagation delays and the output transition times.


Fig.8 Waveforms showing the address inputs (A_n) to outputs (Q_n) propagation delays and the output transition times.


Philips Semiconductors Product specification

8-bit addressable latch

74HC/HCT259

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".