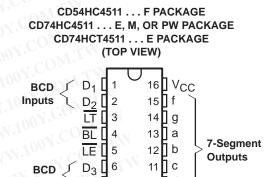
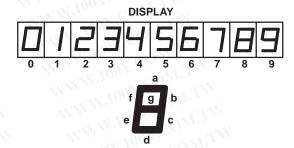
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


CD54HC4511, CD74HC4511, CD74HCT4511 BCD-TO-7 SEGMENT LATCH/DECODER/DRIVERS

SCHS279D - DECEMBER 1998 - REVISED OCTOBER 2003

10 d

9**∏** e


- 2-V to 6-V V_{CC} Operation ('HC4511)
- 4.5-V to 5.5-V V_{CC} Operation (CD74HCT4511)
- High-Output Sourcing Capability
 - 7.5 mA at 4.5 V (CD74HCT4511)
 - 10 mA at 6 V ('HC4511)
- Input Latches for BCD Code Storage
- Lamp Test and Blanking Capability
- Balanced Propagation Delays and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- 'HC4511
 - High Noise Immunity,
 N_{IL} or N_{IH} = 30% of V_{CC} at V_{CC} = 5 V
- CD74HCT4511
 - Direct LSTTL Input Logic Compatibility,
 V_{IL} = 0.8 V Maximum, V_{IH} = 2 V Minimum
 - CMOS Input Compatibility, I $_{I} \leq$ 1 μA at VOL, VOH

 D_0

GND

Inputs

description/ordering information

The CD54HC4511, CD74HC4511, and CD74HCT4511 are BCD-to-7 segment latch/decoder/drivers with four address inputs (D_0 – D_3), an active-low blanking (\overline{BL}) input, lamp-test (\overline{LT}) input, and a latch-enable (\overline{LE}) input that, when high, enables the latches to store the BCD inputs. When \overline{LE} is low, the latches are disabled, making the outputs transparent to the BCD inputs.

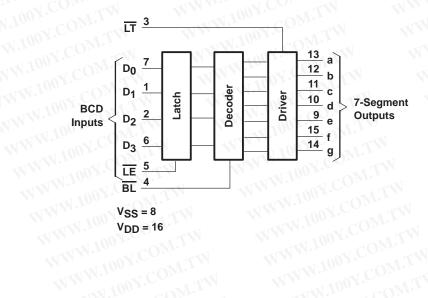
These devices have standard-size output transistors, but are capable of sourcing (at standard V_{OH} levels) up to 7.5 mA at 4.5 V. The HC types can supply up to 10 mA at 6 V.

ORDERING INFORMATION

TA	PACE	(AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
1100Y.	TW	10	CD74HC4511E	CD74HC4511E
M. T. OUX. COL	PDIP – E	Tube of 25	CD74HCT4511E	CD74HCT4511E
	NI.	Tube of 40	CD74HC4511M	M.M.
XXX.100 x	SOIC - M	Reel of 2500	CD74HC4511M96	HC4511M
-55°C to 125°C	OMITW	Reel of 250	CD74HC4511MT	
		Reel of 2000	CD74HC4511PWR	
	TSSOP - PW	Reel of 250	CD74HC4511PWT	HJ4511
	CDIP - F	Tube of 25	CD54HC4511F3A	CD54HC4511F3A

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

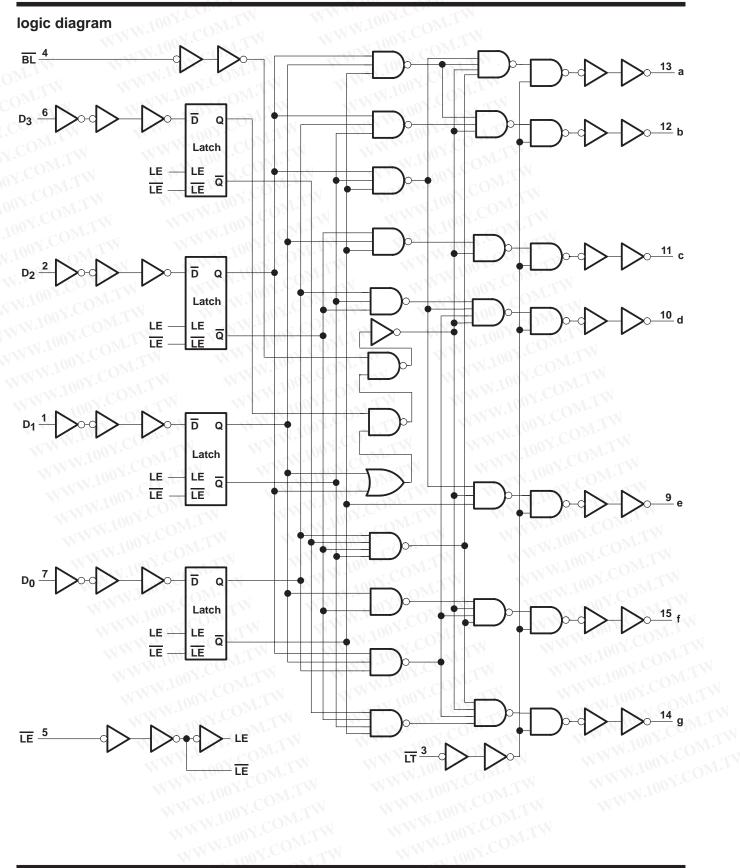
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


SCHS279D - DECEMBER 1998 - REVISED OCTOBER 2003

FUNCTION TABLE

LE	BL	ĹΤ	NPUT D ₃	D ₂	D ₁	D ₀	а	b	C	d	UTPU e	f	g	DISPLA
	X	N D	X	X	X	X	Н	Н	Н	H	Н	H	Н	8
X	N. L.	H1	X	X	X	X			L	orL1	10 J.	اران	MET	Blank
L	TH.	Н	04)	1.6	_L_(TLN	Н	H	H	Н	H	Н	L(\)	0
L	H.	Н	Lo	LC	OZ	H	L	Н	H	L	<u>, b</u> ()	Y C	L	TW1
L	Н	Н	L	L.	CH	L	зΗ	Н	LN	Н	Н	٦.(Н	2
L	Н	Н	VL1	ON T	н	Н	Н	Н	Н	н	N _T	L	H	3
L	Н	Н	L.	H	L	140	L	Н	Н	L	L.	Н	Н	4
L	Н	Н	L	H)(L	Н	Н	L	Н	Н	L	1 H	Н	5
L	Н	Н	L	Н	H.	CAL	L	NL	Н	Ħ	Н	Н	Н	6
L	Н	Н	L	Н	Н	H	Н	Н	Н	L	L	L	ook/.	7
L	п Н	Н	Н	L	IND	- E	Н	Н	Н	Н	Н	Н	Н	CO8
L	Н	Н	Н	L	700	Н	OH.	Н	Н	L	L	H	Н	9
LT	Н	Н	Н	L	HO	O.F.	L	L	L	L	L	L	1.100	Blank
L	H	Н	Н	L	Н	H.	F	LJ	L	L	L	L	L	Blank
L	Н	Н	Н	Н	L	L	\mathbb{C}_{C}	L	L	L	L	L	L	Blank
L	Н	Н	Н	Н	LV	Н	JLC.	OL.	L	L	L	L	L	Blank
L	Н	Н	Н	Н	Н	1.LOV	L	L	1.1	L	L	L	L	Blank
L	Н	Н	Н	Н	Н	Н	OF.	L	LT	L	L	L	L	Blank
Н	Н	H	Х	X	X	X	ty	4	t.	1	†	†	1	100

X = Don't care


function diagram

WWW.100Y.COM.TW

OOY.COM.TW

[†] Depends on BCD code previously applied when $\overline{LE} = L$

OOY.COM.TW

SCHS279D - DECEMBER 1998 - REVISED OCTOBER 2003

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 7 V
Input diode current, I_{IK} ($V_I < -0.5 \text{ V}$ or	r V _I > V _{CC} + 0.5 V)) (see Note 1)	±20 mA
	$V \text{ or } V_O > V_{CC} + 0.5V) \text{ (see Note 1) } \dots$	
	ent per output, $I_O(V_O = 0 \text{ to } V_{CC})$	
	ND	
	e Note 2): E package	
COM.	M package	
	PW package	
Lead temperature (during soldering):	WW TIOOK COME	
At distance $1/16 \pm 1/32$ in (1.59 ± 0)	.79 mm) from case for 10 s maximum	√ 265°C
Unit inserted into a PC board (mini	mum thickness 1/16 in, 1.59 mm),	
with solder contacting lead tips of	only	300°C
Storage temperature, T _{stg}	, y CO	65 to 150°C
, 319		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions for 'HC4511 (see Note 3)

	W.IOOX.COM.TW WY	AM. TOOX. COM.	T _A =	T _A = 25°C		T _A = -55°C TO 125°C		T _A = -40°C TO 85°C		
		M 1 1007.00M	MIN	MAX	MIN	MAX	MIN	MAX		
VCC	Supply voltage	NAM ALL TOOK CO.	2	6	2	6	2	6	V	
	MM.In. COM.	V _{CC} = 2 V	1.5		1.5	144.	1.5	014	W	
V_{IH}	High-level input voltage	V _{CC} = 4.5 V	3.15	N.	3.15	$M_{M^{*}T}$	3.15	O_{Mr} .	V	
		VCC = 6 V	4.2	-1	4.2	Wir	4.2	COM		
	WW. 100Y.ComTW	V _{CC} = 2 V	J.Mo.	0.5	V	0.5	1.700 x	0.5	1.1.	
٧ _{IL}	Low-level input voltage	V _{CC} = 4.5 V	, O = 1	1.35	4	1.35	100	1.35	V	
		VCC = 6 V	CO_{2i}	1.8		1.8	14	1.8		
٧ _I	Input voltage	M. Ing	0	VCC	0	VCC	0	VCC	V	
٧o	Output voltage	W 100	0	VCC	0	VCC	0	VCC	V	
	WWW.100Y.Co.T.TW	V _{CC} = 2 V	N.C.	1000	N	1000	-TAN	1000	Mon	
t _t	Input transition (rise and fall) time	V _{CC} = 4.5 V	ov.C	500	W	500	Mi	500	ns	
	COM.	VCC = 6 V	. N.	400	σW	400	WWW	400	A'COE	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

WWW.100Y.COM.TV

SCHS279D - DECEMBER 1998 - REVISED OCTOBER 2003

recommended operating conditions for CD74HCT4511 (see Note 4)

- TW	M.M. 100 X. COM TAL MAN 100	T _A =	25°C	T _A = -	-55°C 25°C	T _A = -		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
VCC	Supply voltage	4.5	5.5	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2	COM	2		2		V
V _{IL}	Low-level input voltage	1003	0.8	LIW	0.8		0.8	V
VI	Input voltage	100	VCC	TTV	VCC		Vcc	V
Vo	Output voltage	W	VCC	T.	Vcc		VCC	V
tt	Input transition (rise and fall) time	Min	500	O_{Mr}	500		500	ns

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

'HC4511 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST C	Vcc	T _A = 25°C		T _A = -55°C TO 125°C		T _A = -40°C TO 85°C		UNIT	
	LA MA		IN GO	MIN	MAX	MIN	MAX	MIN	MAX	
CO.	TW WW	1007.00	2 V	1.9	MAA.	1.9		1.9		
	W W	I _{OH} = -20 μA	4.5 V	4.4	MW	4.4	Y.Co	4.4		
VOH	$V_I = V_{IH} \text{ or } V_{IL}$	M. M. Too COJ	6 V	5.9	WIN	5.9	N.C	5.9	W	V
	M.TW	$I_{OH} = -7.5 \text{ mA}$	4.5 V	3.98	-13	3.7	41 (3.84		al .
N VI 100 Y.C.	WIN	$I_{OH} = -10 \text{ mA}$	6 V	5.48		5.2	00 1.	5.34	LAL	
MM.100X.COM	WT	MANATOONE	2 V	N	0.1	-41	0.1		0.1	
	VI = VIH or VIL	I _{OL} = 20 μA	4.5 V	rW	0.1	MAL	0.1	I.Co.	0.1	
VOL			6 V	-111	0.1	WIN	0.1	V.CO	0.1	√ V
		I _{OL} = 4 mA	4.5 V	i.I.	0.26	- TAN	0.4	-1 CS	0.33	×XI
	NICONITY	$I_{OL} = 5.2 \text{ mA}$	6 V	LTM	0.26	M.	0.4	01.	0.33	
ALWW.	$V_I = V_{CC}$ or 0	WWW	6 V	TY	±0.1	W	±1	00 X.C	±1	μA
lcc N	$V_I = V_{CC}$ or 0,	IO = 0	6 V	Mr.	8	V	160	MON.	80	μΑ
Ci	Top COM.	I.WW.I	-10	O_{Mr} ,	10		10	Too	10	рF

WWW.100Y.COM.TW

SCHS279D - DECEMBER 1998 - REVISED OCTOBER 2003

CD74HCT4511

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST COI	v _{CC}	T _A = 25°C			T _A = -55°C TO 125°C		T _A = -40°C TO 85°C		UNIT	
	MM		MIN	TYP	MAX	MIN	MAX	MIN	MAX		
V.CO	N. J. JAW	I _{OH} = -20 μA	W.T.T.	4.4	N 1	00 X.	4.4	IM	4.4		
VOH	VI = VIH or VIL	$I_{OH} = -4 \text{ mA}$	4.5 V	3.98	M. As.	You.	3.7	WT	3.84		V
MOM.	Mark and	$I_{OL} = 20 \mu\text{A}$	OM.	<	WW	0.1	$^{\Gamma}CO_{M}$	0.1		0.1	
VOL	VI = VIH or VIL	$I_{OL} = 4 \text{ mA}$	4.5 V			0.26	-1 CO	0.4	s.T	0.33	>
1001	$V_I = V_{CC}$ to GND	MM. 1007.	5.5 V		M.	±0.1	1.0	±1		±1	μΑ
lcc.CU	$V_I = V_{CC}$ or 0,	I _O = 0	5.5 V		MV	8	OA.C.	160		80	μΑ
Δlcc†	One input at V _{CC} · Other inputs at 0 o		4.5 V to 5.5 V	V	100	360	00Y.C	490	TW	450	μΑ
Ci	MIN	WW - 10	DY.	AA		10	100 x	10	CLA	10	pF

[†]Additional quiescent supply current per input pin, TTL inputs high, 1 unit load. For dual-supply systems, theoretical worst-case 100X.CON $(V_I = 2.4 \text{ V}, V_{CC} = 5.5 \text{ V})$ specification is 1.8 mA. WWW.100Y.COM.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS‡
IT, LE	1.5
BL, Dn	0.3

[‡]Unit load is ΔI_{CC} limit specified in electrical characteristics table, e.g., 360 µA maximum at

'HC4511 timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

	WWW.100Y.COM.TW WWW.1	Vcc	T _A = 25°C		T _A = -55°C TO 125°C		T _A = -40°C TO 85°C		UNIT
		1000	MIN	MAX	MIN	MAX	MIN	MAX	W
	W. 1001. COM: IN	2 V	80	1.1	120		100	~ < 1 C	O_{MT} ,
N	Pulse duration, LE low	4.5 V	16	M.I.A.	24	14	20	00 1.	ns
		6 V	14	TI	20	1/1	17	100 X.	
	MAM. TO COMP.	2 V	60	J.V	90	1	75	1007	Co.
^t su	Setup time, BCD inputs before LE↑	4.5 V	12	OM.	18		15	1.10	ns
		6 V	10	COM	15		13	M. Ing	
	WW. TIOOX.COM.TW	2 V	3	401	3		3	. W.10	Ar.
h	Hold time, BCD inputs before LE↑	4.5 V	3	I.Co.	3		3	- 1	ns
		6 V	3	V.CC	3	N	3	MAIN	Your

WWW.100Y.COM.TW

100Y.COM.TW

'HC4511

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) MW.10 OA.COM.

PARAMETER	FROM	TO	LOAD	VCC	Т,	4 = 25°C	COM	T _A = -	.55°C 25°C	T _A = -	40°C 5°C	UNI	
)Mr.	(INPUT)	(OUTPUT)	CAPACITANCE		MIN	TYP	MAX	MIN	MAX	MIN	MAX		
OM.	-11	W.Io	COMP	2 V	WWW	. 00	300	TV	450		375		
COMITY		WW.100,	C _L = 50 pF	4.5 V	-TIN'	W.Inc	60	Mi	90		75		
WI.IW	D _n	Output	T.M.TW	6 V	NA .	10^{10}	51	$o_{M'r}$	77		64		
CONTY	1	11/1/1	C _L = 15 pF	5 V	1/1/4	25	00 x.c	.ovi	LAA				
A'COMI.	N	MM M.	MY.CUP	2 V	W	M 41.	270	- 1/	405		340		
-1 COM.		WW.	C _L = 50 pF	4.5 V	1	WW	54	$C_{O_{Li}}$	81		68	1	
M. COM!	IE .	Output	Ton T. COM.	6 V		TINV	46	of CO	69	J	58		
101.CO	TW	M. M.	C _L = 15 pF	5 V		23	W.100	, c0	M_{II}				
t _{pd}	WW WILL	1100X.Co	2 V		MA	220	O.Y.	330	11	275	ns		
TOO S. COMULT	Output	C _L = 50 pF	4.5 V		W	44	nov.C	66	TV	55			
V.100 - CC	BL	Output	ALAN-TORS CO	6 V	N	τX.	37	anv.	56	TW	47		
W.100Y.	OM^{TW}	NV.	C _L = 15 pF	5 V	-×1	18	WW	Ino.	CO_{J}	-XX			
-1100 Y.C	MILIN	1//	1007.0	2 V	1.44		160	1.700.	240	V.I.	200	1	
M. TOOX			C _L = 50 pF	4.5 V	TW		32	1 100	48	W.TV	40		
MM.Ing	COLL	Output	WWW.ICOV	6 V	W		27	A4	41	- 1 T	34		
WW.100	COM	- 1	C _L = 15 pF	5 V	1.	13	10.7	Mir	0V.C	Oh.	CVI		
100	MOD	1.4	W.100	2 V	Mir		75	WW.	110	COM.	95		
t _t	OY.CO	Any	C _L = 50 pF	4.5 V	T.Mo		15	TAN.	22	MOD	19	ns	
MMM	WY.CON	W	MM	6 V	-17	IN	13	MAN.	19	.0	16		

WWW.100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

SCHS279D - DECEMBER 1998 - REVISED OCTOBER 2003

CD74HCT4511

timing requirements over recommended operating free-air temperature range V_{CC} = 4.5 V (unless otherwise noted) (see Figure 2)

LCON	TTW WWW.100Y.COM.TW	T _A =	T _A = 25°C		T _A = -55°C TO 125°C		-40°C 5°C	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t _W	Pulse duration, LE low	16	You.	24	WT	20		ns
t _{su}	Setup time, BCD inputs before LE↑	16	Too	24	T. CIN	20		ns
th	Hold time, BCD inputs before LE↑	5	N.100	5	M_{TL}	5		ns

CD74HCT4511

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

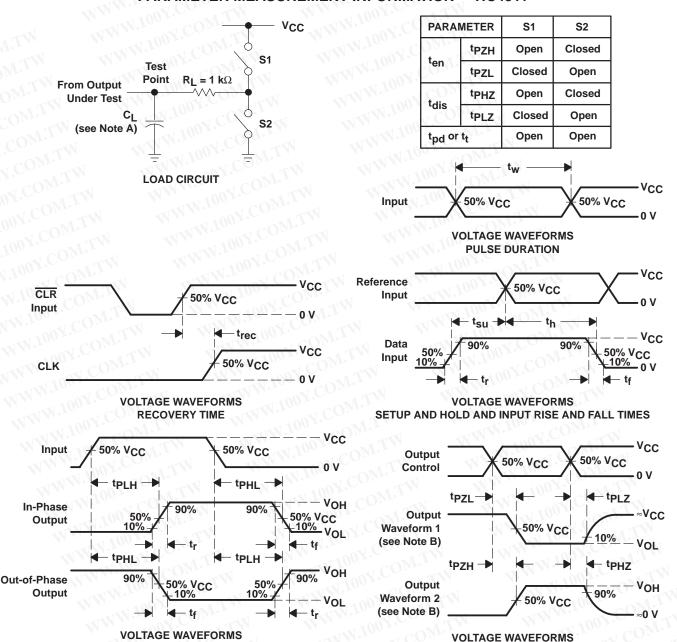
PARAMETER	FROM	TO	TO LOAD VCC TA = 25°C TO		= 25°C TO 125°C			T _A = -40°C TO 85°C		UNIT				
WW.100 '	(INPUT)	(OUTPUT)	CAPACITANCE	COD	MIN	TYP	MAX	MIN	MAX	MIN	MAX			
N 1 100	Mo	0	C _L = 50 pF	4.5 V	$M_{T,T}$	· T	60	\sqrt{N} . N	90	OM.	75			
WWW	D _n Output	Output	C _L = 15 pF	5 V	M.TV	25	M	-111	$I_{00.x}$	Mos	II			
	ONE CON	OAE ON	1007 EE	CTSV	C _L = 50 pF	4.5 V	TIL	N	54	MA.	81	.00	68	
LWW.	LECO	Output	C _L = 15 pF	5 V	Oh.	23		MMA	400	I.CU	TV			
t _{pd}	BL C	Wy.	C _L = 50 pF	4.5 V	CO_{Mr}	-111	44	WW	66	V.CO	55	ns		
MM	110BL	Output	C _L = 15 pF	5 V	COM	18		-737	M.10	-1 C	$0M_{i,r}$			
MM	N.IET	TIME	C _L = 50 pF	4.5 V		I.TV	33		50	001.	41			
WW	M. PEI	Output	C _L = 15 pF	5 V	Y.Co.	13	N	W	W 1	1001.		TW		
t _t	Milos	Any	C _L = 50 pF	4.5 V	NV.CC)IAT	15	V	22	YOU	19	ns		

operat	ting characteristics, V _{CC} = 5 V, T _A = 25°C	COM.TW WWW.100	Y.CO	M.TV
	PARAMETER	J. COM. I.	TYP	UNIT
o +	WWW. 100 FOO THE WAY TO	'HC4511	114	Mo
C _{pd} †	Power dissipation capacitance	CD74HCT4511	110	pF

 † C_{pd} is used to determine the dynamic power consumption, per package. P_D = C_{pd} V_{CC}² f_i + $^{\Sigma}$ C_L V_{CC}² f_o where: f_i = input frequency

f_O = output frequency

C_L = output load capacitance

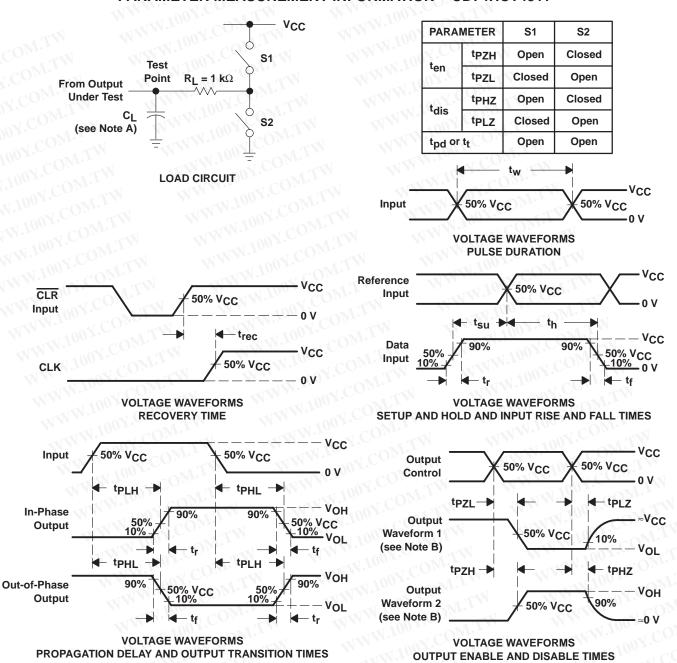

 V_{CC} = supply voltage

WWW.100X.COM.

OUTPUT ENABLE AND DISABLE TIMES

PARAMETER MEASUREMENT INFORMATION - 'HC4511

NOTES: A. C_I includes probe and test-fixture capacitance.


PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 6 ns.
- D. For clock inputs, f_{max} is measured with the input duty cycle at 50%.
- E. The outputs are measured one at a time with one input transition per measurement.
- F. tpLz and tpHz are the same as tdis.
- G. tpzL and tpzH are the same as ten.
- H. tpl H and tpHI are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION - CD74HCT4511

- NOTES: A. C_I includes probe and test-fixture capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f = 6 \text{ ns}$, $t_f = 6 \text{ ns}$.
 - For clock inputs, f_{max} is measured with the input duty cycle at 50%.
 - E. The outputs are measured one at a time with one input transition per measurement.
 - F. tpLz and tpHz are the same as tdis.
 - G. tpzL and tpzH are the same as ten.
 - H. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8773301EA	ACTIVE	CDIP	J	16	1.10°	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8773301EA CD54HC4511F3A	Samples
CD54HC4511F3A	ACTIVE	CDIP	J	16	1 N.1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8773301EA CD54HC4511F3A	Samples
CD74HC4511E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4511E	Samples
CD74HC4511EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4511E	Samples
CD74HC4511M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4511M	Samples
CD74HC4511M96	ACTIVE	SOIC	DIT	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4511M	Samples
CD74HC4511M96E4	ACTIVE	SOIC	CDM	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4511M	Samples
CD74HC4511ME4	ACTIVE	SOIC	Y.O)	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4511M	Samples
CD74HC4511MG4	ACTIVE	SOIC	ON D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4511M	Samples
CD74HC4511MT	ACTIVE	SOIC	D C	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4511M	Samples
CD74HC4511PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4511	Samples
CD74HC4511PWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4511	Samples
CD74HC4511PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4511	Samples
CD74HC4511PWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4511	Samples
CD74HC4511PWTE4	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4511	Samples
CD74HC4511PWTG4	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4511	Samples
CD74HCT4511E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4511E	Samples

PACKAGE OPTION ADDENDUM

10-Jun-2014

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD74HCT4511EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4511E	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54HC4511, CD74HC4511:

PACKAGE OPTION ADDENDUM

WWW.100Y.COM.TW

HOOY.COM.TW

WWW.100Y.COM.TW

WWW.100X.C

100Y.COM.TW

WWW.100Y.COM.T

WWW.100Y.COM.TW

WWW.1007.COM

100Y.COM.TW

TONY COM.TY

WWW.100Y.COM.TW

WWW.1007.CC

WWW.100Y.COM.TW

10-Jun-2014

Catalog: CD74HC4511

Military: CD54HC4511

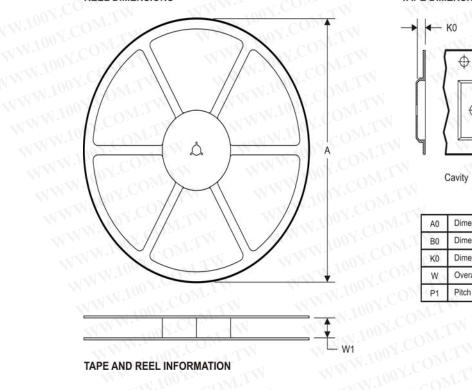
NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

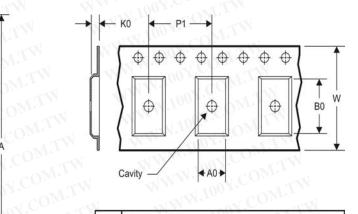
 Military - QML certified for Military and Defense Applications WWW.TOOX.COM

WWW.100Y.COM.TW

WWW.100Y.COM.TW


W.COM.TW

PACKAGE MATERIALS INFORMATION

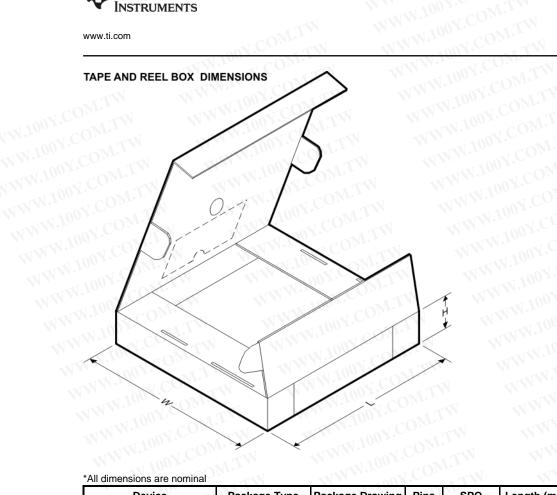

14-Jul-2012 www ti com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

Dimension designed to accommodate the component length
Dimension designed to accommodate the component thickness
Overall width of the carrier tape
Pitch between successive cavity centers
M. 1003 CONT.

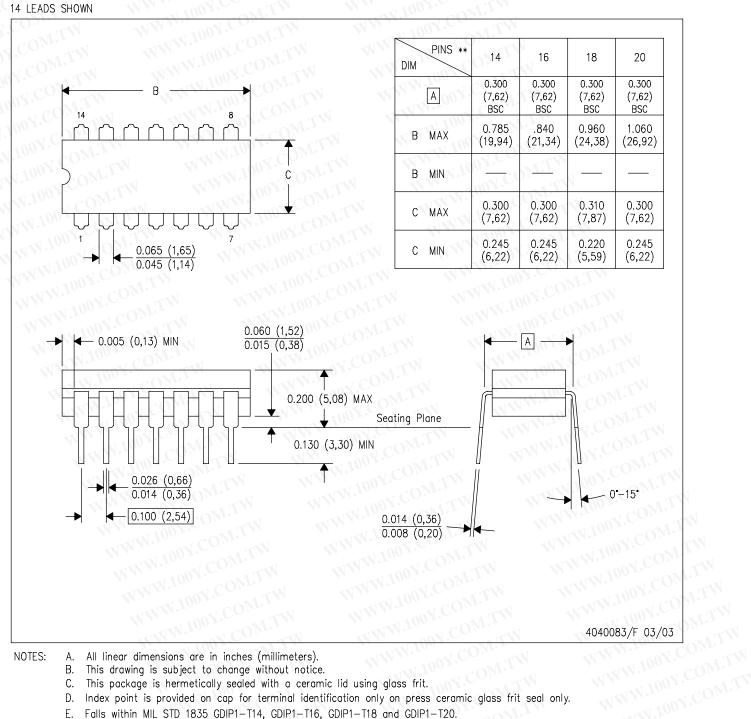

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC4511M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
D74HC4511PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
D74HC4511PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

WWW.100Y.C

my.com.tw 14-Jul-2012 www ti com

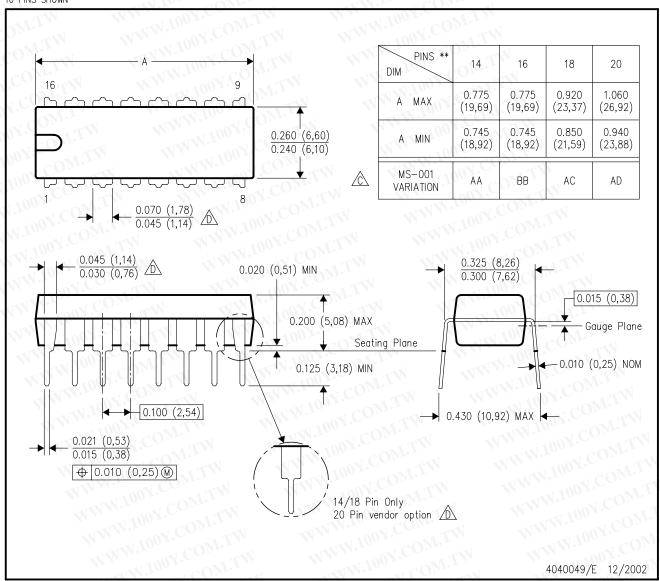

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm
CD74HC4511M96	SOIC	D 11.10	16	2500	333.2	345.9	28.6
CD74HC4511PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
CD74HC4511PWT	TSSOP	PW	16	250	367.0	367.0	35.0

WWW.100Y.COM.TW

WWW.1007.C

WWW.100Y.COM.TW

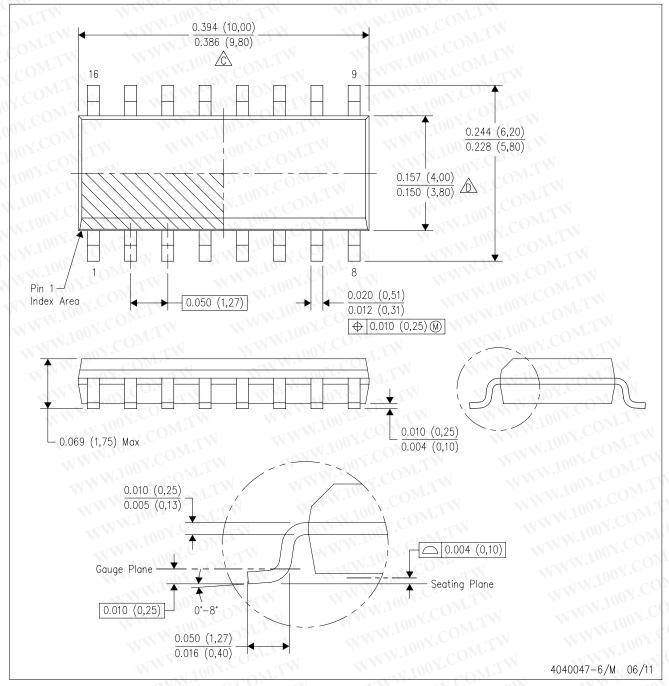


- All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- This package is hermetically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. WWW.100Y.COM.TW

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

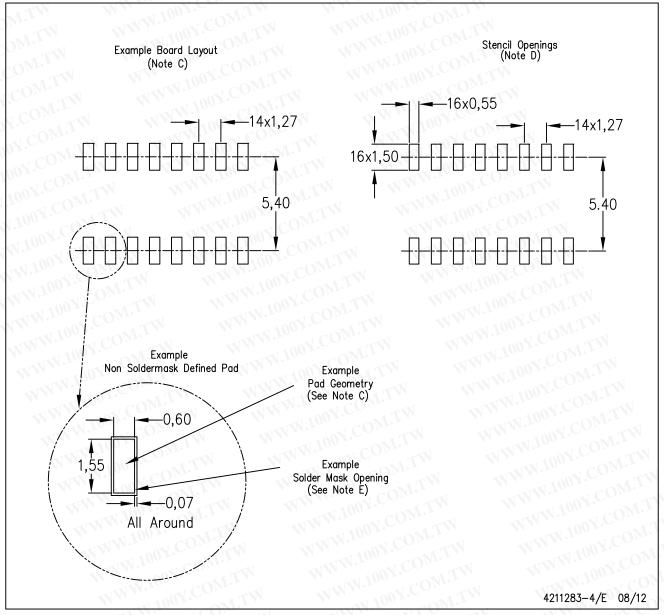


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

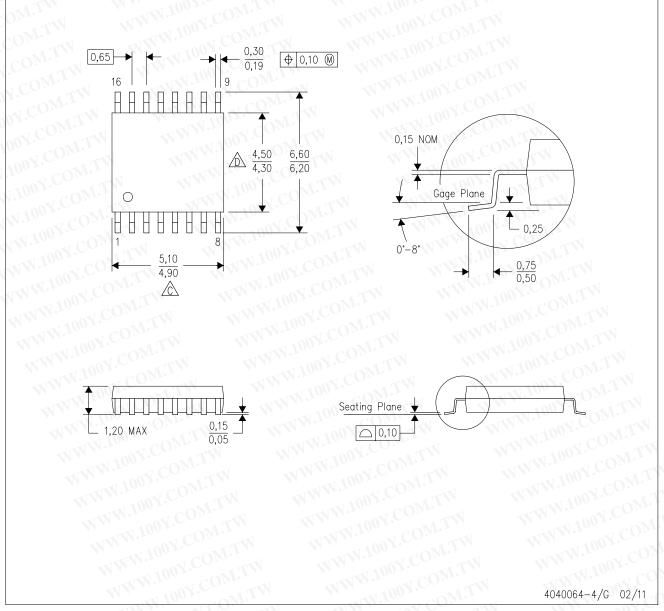
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.


 Body width does not include interlead flash. Interlead flash shall

 E. Reference IEDEC No. 672
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

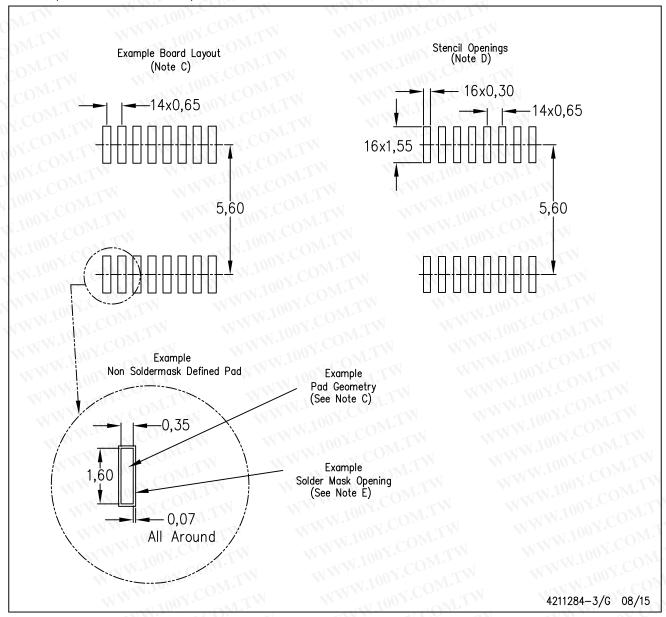
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- D Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

