SCLS325G - MARCH 1996 - REVISED JULY 2003

- Wide Operating Voltage Range of 2 V to 6 V
- Typical Switch Enable Time of 18 ns
- Low Power Consumption, 20-µA Max ICC
- Low Input Current of 1 µA Max
- **High Degree of Linearity**
- High On-Off Output-Voltage Ratio
- Low Crosstalk Between Switches
- Low On-State Impedance . . . 50- Ω TYP at V_{CC} = 6 V
- **Individual Switch Controls**

D, DB, N, NS, OR PW PACKAGE (TOP VIEW) 14 V_{CC} 1A 1B 🛛 2 13 1C 2B 🛛 3 12 4C 11 4A 2A 4 2C 5 10 4B 3C 6 9 3B GND 7 8 3A

description/ordering information

The SN74HC4066 is a silicon-gate CMOS quadruple analog switch designed to handle both analog and digital signals. Each switch permits signals with amplitudes of up to 6 V (peak) to be transmitted in either direction.

Each switch section has its own enable input control (C). A high-level voltage applied to C turns on the associated switch section.

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

ORDERING INFORMATION								
ТА	PACK	(AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING				
	PDIP – N	Tube of 25	SN74HC4066N	SN74HC4066N				
	N 1001.	Tube of 50	SN74HC4066D	COMIT				
	SOIC - D	Reel of 2500	SN74HC4066DR	HC4066				
	W.ICov.C	Reel of 250	SN74HC4066DT	N.COM				
-40°C to 85°C	SOP – NS	Reel of 2000	SN74HC4066NSR	HC4066				
	SSOP – DB	Reel of 2000	SN74HC4066DBR	HC4066				
	1003	Tube of 90	SN74HC4066PW	100X.				
	TSSOP - PW	Reel of 2000	SN74HC4066PWR	HC4066				
	WW.100	Reel of 250	SN74HC4066PWT	L.LON CON				

ODDEDING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design WW.100Y.COM.TW guidelines are available at www.ti.com/sc/package.

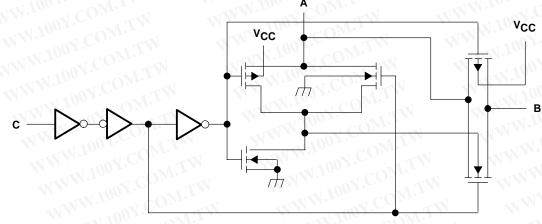
勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

FUNCTION TABLE (each switch)

A A	INPUT CONTROL (C)	SWITCH	N
	NN100 -	OFF	
N	Н100	ON	

WWW.100Y.COM N.100Y

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters

SCLS325G - MARCH 1996 - REVISED JULY 2003

logic diagram, each switch (positive logic)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

One of Four Switches

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)	5 V to 7 V
Control-input diode current, I_{I} (V_{I} < 0 or V_{I} > V_{CC})	
I/O port diode current, I _I (V _I < 0 or V _{I/O} > V _{CC})	
On-state switch current ($V_{I/O} = 0$ to V_{CC})	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ_{JA} (see Note 2): D package	86°C/W
DB package	96°C/W
N package	. 80°C/W
NS package	76°C/W
O PW package	113°C/W
Storage temperature range, T _{stg} 65°C	to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to ground unless otherwise specified.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS325G - MARCH 1996 - REVISED JULY 2003

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	CONTRA WY	2†	5	6	V	
VI/O	I/O port voltage	V.COM W	0	O.V.	Vcc	V	
VIH High-level input voltage, control input	W.100 CONT	V _{CC} = 2 V	1.5		Vcc		
	High-level input voltage, control inputs	V _{CC} = 4.5 V	3.15	.100 r.	VCC	V	
	WWW.LOW.COM WWWW.	V _{CC} = 6 V	4.2	11005	Vcc	TI	
	MW.LO. COMP.	$V_{CC} = 2 V$	0	1.2	0.3	D.V.T	
VIL	Low-level input voltage, control inputs	V _{CC} = 4.5 V	0	11.10.	0.9		
	WWW 100Y.COM.TW WW	V _{CC} = 6 V	0	.W.1	1.2	Mo	
	WWW. OOX.CO. TW WW.	V _{CC} = 2 V	N		1000		
$\Delta t/\Delta v$	Input transition rise/fall time	V _{CC} = 4.5 V	N	411.	500	- T	
		V _{CC} = 6 V		WW	400		
TA	Operating free-air temperature	1001. M.I.V.	-40		85	°C	

[†] With supply voltages at or near 2 V, the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages.

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		W.Ino	TEST CONDITIONS	TEST CONDITIONS		λ = 25°C			UNIT
PARAMETER			TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN MAX	
	NW II		NTW V	2 V	100%	150	V.T.V	N. I	
ron	On-state switch resist	tance	$I_T = -1 \text{ mA}, V_I = 0 \text{ to } V_{CC},$ $V_C = V_{IH} \text{ (see Figure 1)}$	4.5 V		50	85	106	Ω
				6 V	N.10	30	Nr.		
Mar .		N.	1002. 001.11.	2 V	W.10	320	OW.	-1	
ron(p)	Peak on-state resista	nce	$V_I = V_{CC}$ or GND, $V_C = V_{IH}$, $I_T = -1$ mA	4.5 V		70	170	215	Ω
	WW		ILIMACOME	6 V	N A.	50		WT	
Ιį	Control input current		$V_{C} = 0 \text{ or } V_{CC}$	6 V	NN.	±0.1	±100	±1000	nA
I _{soff}	Off-state switch leaka	age current	$V_I = V_{CC} \text{ or } 0, V_O = V_{CC} \text{ or } 0,$ $V_C = V_{IL} \text{ (see Figure 2)}$	6 V	NWW	100	±0.1	±5	μΑ
I _{son}	on On-state switch leakage current		$V_I = V_{CC} \text{ or } 0, V_C = V_{IH}$ (see Figure 3)	6 V	MM	N.10	±0.1	±5	μA
ICC	Supply current		$V_{I} = 0 \text{ or } V_{CC}, I_{O} = 0$	6 V	N.		2	20	μA
0	Input capacitance A or B C		NW. S COM	NEV	W	9	Yan	WT	
Ci			COM.1	5 V	-	3	10	10	pF
Cf	Feed-through capacitance	A to B	VI = 0	W		0.5	1.100	Y.COM.	pF
Co	Output capacitance	A or B	MW.LOW COM	5 V		9	N>	N.COm	pF

SCLS325G - MARCH 1996 - REVISED JULY 2003

switching characteristics over recommended operating free-air temperature range

DA	DAMETER	FROM TO		TEST		T _A = 25°C			MINI MANY	S INUT		
FA	RAMETER	(INPUT)	(OUTPUT)	CONDITIONS	Vcc	MIN TYP MA		MAX	MIN	MAX	UNIT	
	WW.Ioo	« CON. ,		D.V. WWW.	2 V		10	60	N 0	75	174-	
^t PLH, ^t PHL	Propagation delay time	A or B	B or A	$C_L = 50 \text{ pF}$ (see Figure 4)	4.5 V		4	12	N.I	15	ns	
ΥΠL	doldy time	OY.COM	T.W	(cooriguro i)	6 V		3	10	L.W.	13	Mon	
	WWW.	MY.COm	WT.	$R_{L} = 1 k\Omega,$	2 V	WT .	70	180		225		
^t PZH [,] ^t PZL	Switch turn-on time	CO	A or B	C _L = 50 pF	4.5 V		21	36	Z	45	Cns	
IPZL IUNIT	turn on time	1001.00	M.1.	(see Figure 5)	6 V	M	18	31		38	03 IS	
	AM.	1100Y.C	WT.IM	R _L = 1 kΩ,	2 V	M	50	200		250		
	Switch turn-off time	C C	A or B	$C_L = 50 \text{ pF}$	4.5 V		25	40	AN	50		ns
		W.IOC	ON.	(see Figure 5)	6 V	COm	22	34	N	43		
	Control	NW.100 1.	$C_{L} = 15 \text{ pF},$ $R_{L} = 1 k\Omega,$		2 V	I.CON	15		N.	WW.	Yoov	
fj	input		A or B	A or B	$V_{C} = V_{CC}$ or GND,	4.5 V	N.CO	30	N		NWW	MHz
	irequency		$V_O = V_{CC}/2$ (see Figure 6)	6 V	N.C	30	W		WWY	1.100		
	Control	WWW.IU	ON.COM	$C_L = 50 \text{ pF},$ $R_{in} = R_L = 600 \Omega,$	4.5 V	1007.0	15	NT.		A	mV	
	feed-through noise	C	A or B	$V_{C} = V_{CC}$ or GND, $f_{in} = 1 \text{ MHz}$ (see Figure 7)	6 V	1001	20	N.T.Y		5. 2	(rms)	

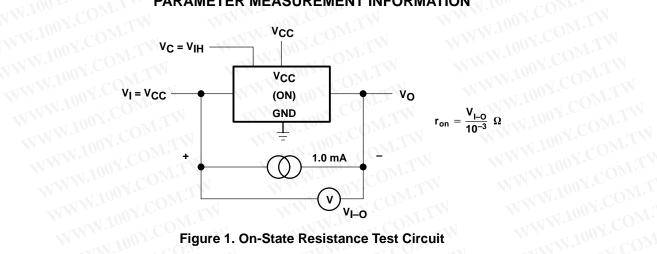
operating characteristics, $V_{CC} = 4.5 V$, $T_A = 25^{\circ}C$

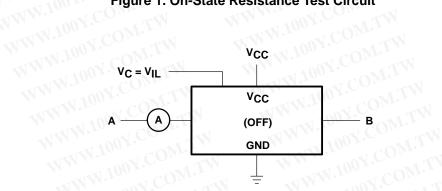
pera	ting characteristics, V _{CC} = 4.5 V, T _A = 25°C	TEST (CONDITIONS	Түр	UNIT
C _{pd}	Power dissipation capacitance per gate	$C_{L} = 50 \text{ pF},$	f = 1 MHz	45	pF
	Minimum through bandwidth, A to B or B to A^{\dagger} [20 log (V _O /V _I)] = -3 dB	$C_L = 50 \text{ pF},$ $V_C = V_{CC}$	RL = 600 Ω, (see Figure 8)	30	MHz
	Crosstalk between any switches‡	C _L = 10 pF, f _{in} = 1 MHz	$R_L = 50 \Omega$, (see Figure 9)	45	dB
	Feed through, switch off, A to B or B to A [‡]	C _L = 50 pF, f _{in} = 1 MHz	RL = 600 Ω, (see Figure 10)	42	dB
	Amplitude distortion rate, A to B or B to A	C _L = 50 pF, f _{in} = 1 kHz	$R_L = 10 k\Omega$, (see Figure 11)	0.05%	

[†] Adjust the input amplitude for output = 0 dBm at f = 1 MHz. Input signal must be a sine wave.

[‡] Adjust the input amplitude for input = 0 dBm at f = 1 MHz. Input signal must be a sine wave.

力材料 886-3-5753170 特 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw


WWW.100Y.COM.TW


SCLS325G - MARCH 1996 - REVISED JULY 2003

PARAMETER MEASUREMENT INFORMATION

WWW.100Y.C

 $V_S = V_A - V_B$ CONDITION 1: VA = 0, VB = VCC CONDITION 2: $V_A = V_{CC}$, $V_B = 0$

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.CON

SCLS325G - MARCH 1996 - REVISED JULY 2003

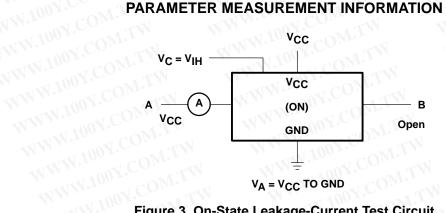
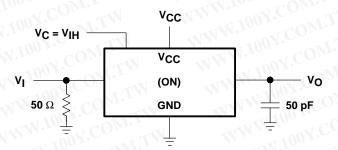
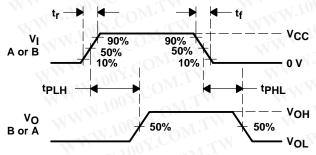
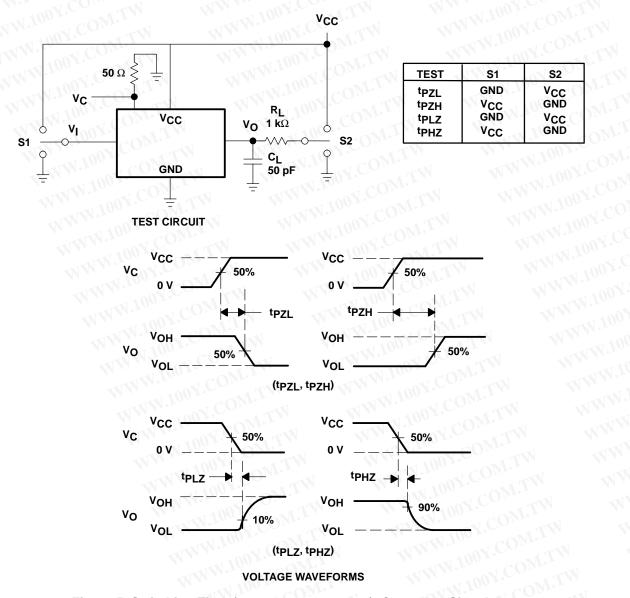




Figure 3. On-State Leakage-Current Test Circuit

TEST CIRCUIT

VOLTAGE WAVEFORMS



特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.C

SCLS325G - MARCH 1996 - REVISED JULY 2003

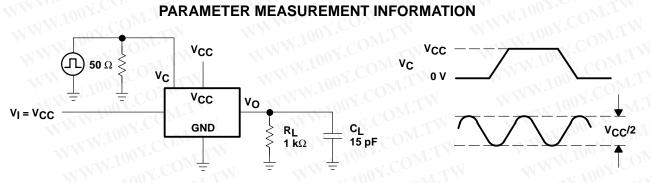
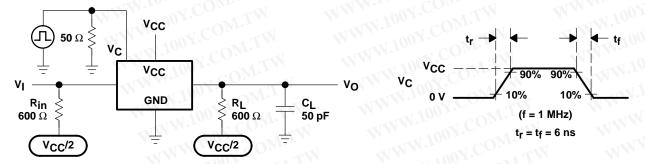

PARAMETER MEASUREMENT INFORMATION

Figure 5. Switching Time (t_{PZL}, t_{PLZ}, t_{PZH}, t_{PHZ}), Control to Signal Output



SCLS325G - MARCH 1996 - REVISED JULY 2003

Figure 7. Control Feed-Through Noise

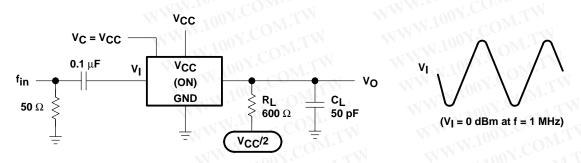
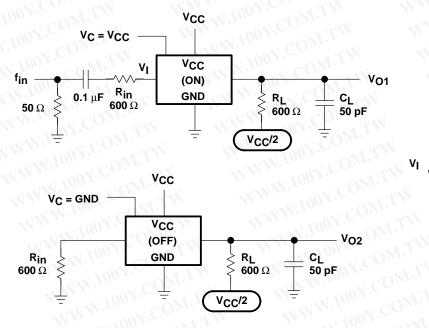
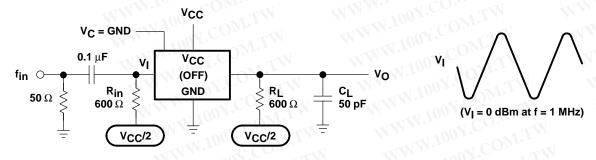


Figure 8. Minimum Through Bandwidth

勝特力材料 886-3-5753	170
胜特力电子(上海) 86-21-5415	1736
胜特力电子(深圳) 86-755-832	98787
Http://www.100y.com.t	w


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

SN74HC4066 QUADRUPLE BILATERAL ANALOG SWITCH


SCLS325G - MARCH 1996 - REVISED JULY 2003

(VI = 0 dBm at f = 1 MHz)

PARAMETER MEASUREMENT INFORMATION

Figure 9. Crosstalk Between Any Two Switches

Figure 10. Feed Through, Switch Off

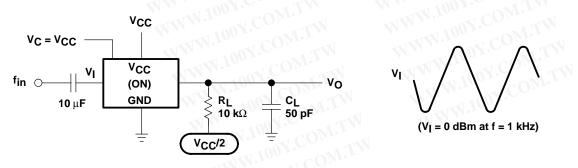


Figure 11. Amplitude-Distortion Rate

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

PACKAGE OPTION ADDENDUM

12-Jan-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74HC4066D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DBLE	OBSOLETE	SSOP	DB	14	COF	TBD	Call TI	Call TI
SN74HC4066DBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DT	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066DTE4	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74HC4066NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74HC4066NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWE4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWLE	OBSOLETE	TSSOP	PW	14	N	TBD	Call TI	Call TI
SN74HC4066PWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWRE4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWT	ACTIVE	TSSOP	PW	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC4066PWTE4	ACTIVE	TSSOP	PW	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

12-Jan-2006

TBD: The Pb-Free/Green conversion plan has not been defined.

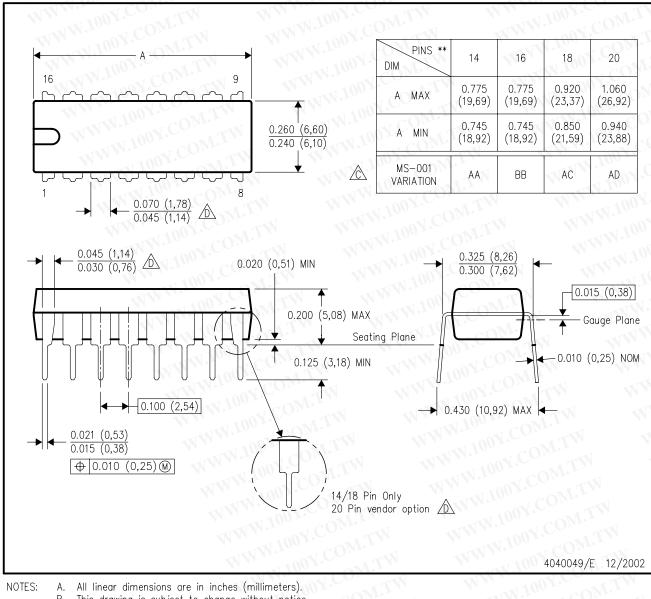
TEXAS TRUMENTS www.ti.com

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

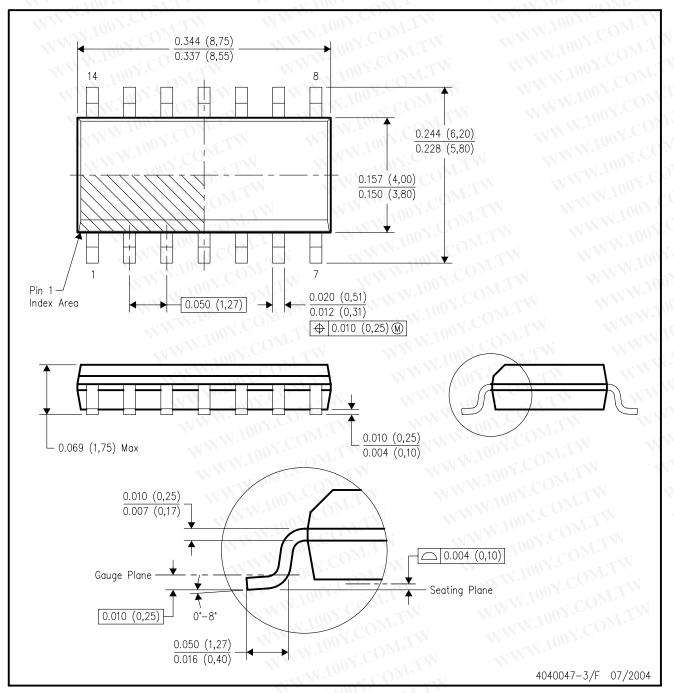
勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

N (R-PDIP-T**) 16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

B. This drawing is subject to change without notice.

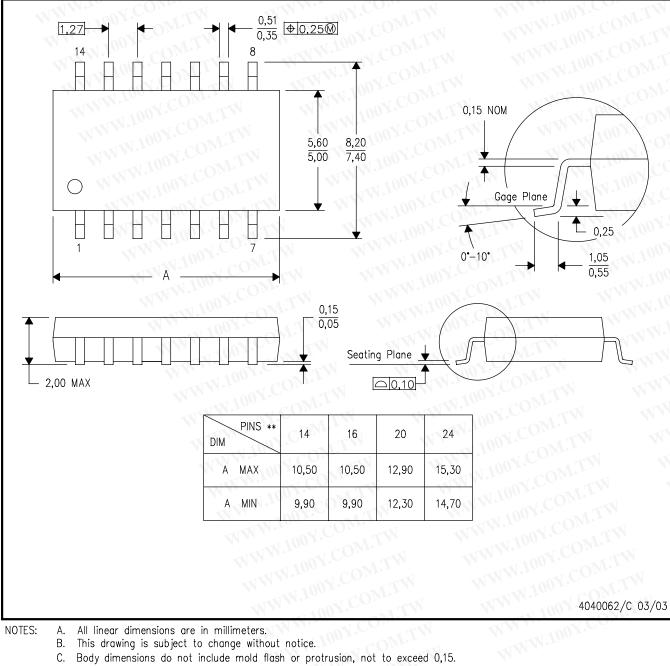
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- /b\ The 20 pin end lead shoulder width is a vendor option, either half or full width.


勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

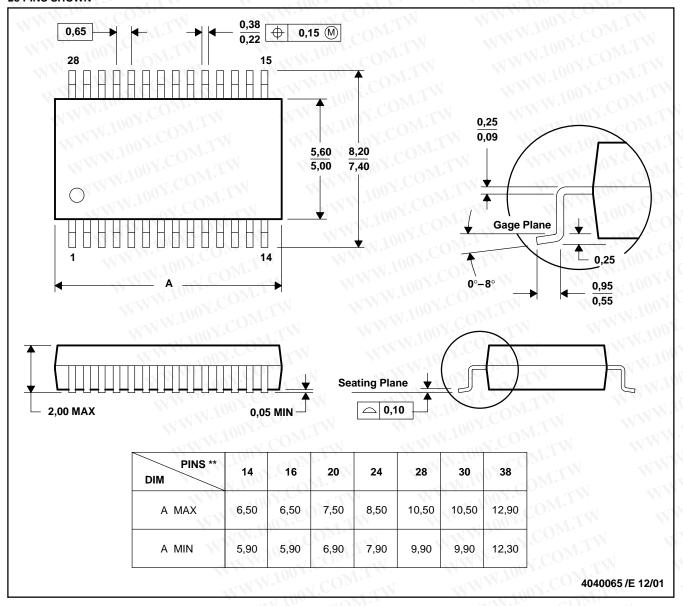
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

NS (R-PDSO-G**) **14-PINS SHOWN**

- This drawing is subject to change without notice. Β.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

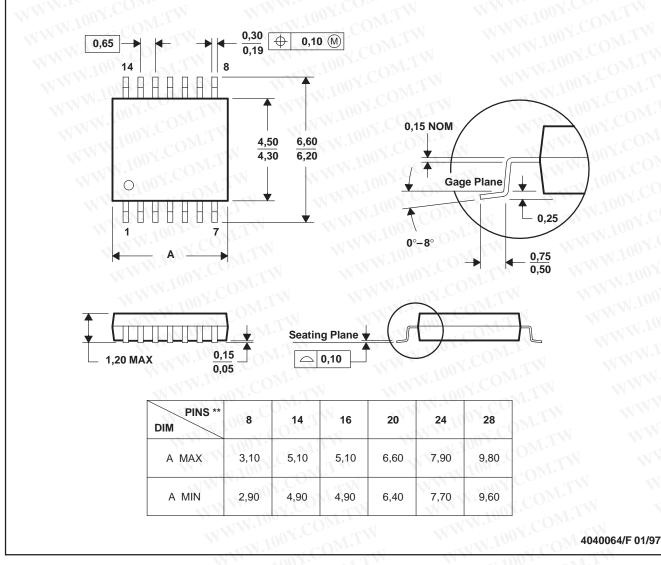
PLASTIC SMALL-OUTLINE

DB (R-PDSO-G**) 28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**) 14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated