SINGLE SCHMITT-TRIGGER INVERTER Check for Samples: SN74LVC1G14 #### **FEATURES** - Available in the Texas Instruments NanoStar™ and NanoFree™ Packages - Supports 5-V V_{CC} Operation - Inputs Accept Voltages to 5.5 V - Max t_{pd} of 4.6 ns at 3.3 V - Low Power Consumption, 10-µA Max I_{CC} - ±24-mA Output Drive at 3.3 V - Ioff Supports Live Insertion, Partial Power Down Mode, and Back Drive Protection - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - **ESD Protection Exceeds JESD 22** - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) #### DESCRIPTION/ORDERING INFORMATION This single Schmitt-trigger inverter is designed for 1.65-V to 5.5-V V_{CC} operation. The SN74LVC1G14 device contains one inverter and performs the Boolean function $Y = \overline{A}$. The device functions as an independent inverter, but because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals. NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package. This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoStar, NanoFree are trademarks of Texas Instruments. #### ORDERING INFORMATION | TAO | PACKAGE ⁽¹⁾ | | ORDERABLE PART NUMBER | TOP-SIDE MARKING (2) | |---------------|--|--------------|-----------------------|----------------------| | ON COM | NanoFree™ – WCSP (DSBGA)
0.23-mm Large Bump – YZP (Pb-free) | Reel of 3000 | SN74LVC1G14YZPR | CF_ | | | NanoFree™ - WCSP (DSBGA)
0.23-mm Large Bump - YZV (Pb-free) | Reel of 3000 | SN74LVC1G14YZVR | CF | | | COT (COT 22) PDV | Reel of 3000 | SN74LVC1G14DBVR | 014 | | -40°C to 85°C | SOT (SOT-23) – DBV | Reel of 250 | SN74LVC1G14DBVT | C14_ | | W.1000 | COT (CC 70) DCK | Reel of 3000 | SN74LVC1G14DCKR | CF TW | | | SOT (SC-70) – DCK | Reel of 250 | SN74LVC1G14DCKT | CF_ | | | SOT (SOT-553) – DRL | Reel of 4000 | SN74LVC1G14DRLR | CF_ | | | μQFN – DSF | Reel of 5000 | SN74LVC1G14DSFR | CF | | | QFN – DRY | Reel of 5000 | SN74LVC1G14DRYR | CF CO | | | QIN-DIT | Reel of 3000 | SINTALVOTOTABINTIN | CI | Package drawings, standard packing quantities, thermal data, symbolization, and PCB design quidelines are available at (1) www.ti.com/sc/package. DBV/DCK/DRL/DRY: The actual top-side marking has one additional character that designates the assembly/test site. YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free). YZV: The actual top-side marking is on two lines. Line 1 has four characters to denote year, month, day, and assembly/test site. Line 2 has two characters which show the family and function code. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free). #### **FUNCTION TABLE** | INPUT
A | OUTPUT
Y | |------------|--------------| | Н | F COM | | L | N.100 H. CON | WWW.100Y.COM.TW WWW.100Y.COM.TV LOGIC DIAGRAM (POSITIVE LOGIC) (DBV, DCK, DRL, DSF, DRY, and YZP Package) **LOGIC DIAGRAM (POSITIVE LOGIC)** (YZV Package) 特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw ## Absolute Maximum Ratings(1) over operating free-air temperature range (unless otherwise noted) | 00 | COM. | COMPANIAN | MIN MAX | UNIT | |------------------|---|--|----------------------------|--------------| | V _{CC} | Supply voltage range | TOO T. COM'T. | -0.5 6.5 | V | | VI | Input voltage range (2) | 100Y.COM.TW WY 10 | -0.5 6.5 | V | | Vo | Voltage range applied to any output in the | e high-impedance or power-off state ⁽²⁾ | -0.5 6.5 | V | | Vo | Voltage range applied to any output in the | e high or low state ⁽²⁾ (3) | -0.5 V _{CC} + 0.5 | V | | I _{IK} | Input clamp current | V ₁ < 0 | –50 | mA | | lok | Output clamp current | V ₀ < 0 | -50 | mA | | lo | Continuous output current | MM. TAN MMY | ±50 | mA | | -XX | Continuous current through V _{CC} or GND | MAN TOO COMP. | ±100 | mA | | N. | Continuous current through VCC or GND | DBV package | 206 | - - T | | | | DCK package | 252 | | | | | DRL package | 142 | | | θ_{JA} | Package thermal impedance (4) | DRY package | 234 | °C/W | | | | DSF package | 300 | | | | | YZP package | 132 | | | | MMN.In COM. | YZV package | 123 | TV | | T _{stg} | Storage temperature range | WW.Inc. COM. | - 65 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. (3) The value of V_{CC} is provided in the recommended operating conditions table. ### Recommended Operating Conditions⁽¹⁾ | | MMM. JOH. CO. T. T. M. | DY.Co TITY | MIN M | AX | UNIT | |-----------------|--|--------------------------|-------|-------------|-------| | 1/ | Supply valence TWW. How COM | Operating | 1.65 | 5.5 | oov.C | | V_{CC} | Supply voltage | Data retention only | 1.5 | $M_{\rm P}$ | U V | | VI | Input voltage | 1001. OM.TW | 0 | 5.5 | 10V | | Vo | Output voltage | 100Y.CO.T.TW | 0 \ | cc / | V | | | | V _{CC} = 1.65 V | V | -4 | | | | High-level output current | $V_{CC} = 2.3 \text{ V}$ | -8 | | | | I _{OH} | | V1-2V | 7 | -16 | mA | | | | $V_{CC} = 3 V$ | - | -24 | | | | TWW.Ing. COM. | $V_{CC} = 4.5 \text{ V}$ | - N | -32 | MM. | | | | V _{CC} = 1.65 V | 3. | 4 | | | | | V _{CC} = 2.3 V | In | 8 | | | I_{OL} | Low-level output current | V - 2 V | WT | 16 | mA | | | | $V_{CC} = 3 V$ | | 24 | | | | W. 1001. COM. TW | V _{CC} = 4.5 V | | 32 | | | T _A | Operating free-air temperature | M. M. | -40 | 85 | °C | ⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7. #### **Electrical Characteristics** over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | V _{CC} | MIN TYP ⁽¹⁾ MAX | UNIT | |--------------------------------|---|-----------------|----------------------------|------------------------| | 100 X. OM | M. Ton COW. | 1.65 V | 0.79 1.16 | 3 | | V_{T+} | TW WW. TOOY. COM. TW | 2.3 V | 1.11 1.56 | 3 | | Positive-going input threshold | TW WWW. COME TW | 3 V | 1.5 1.87 | ' V | | voltage | M.1. COM. | 4.5 V | 2.16 2.74 | l l | | | MITH WILLIAMS COMITY | 5.5 V | 2.61 3.33 | 3 | | A CONT.C | TH WILLIAM | 1.65 V | 0.39 0.62 | 2 | | V_{T-} | OM. TANN. TONY. COM. | 2.3 V | 0.58 0.87 | • | | Negative-going input threshold | COM: | 3 V | 0.84 1.14 | V V | | voltage | M.TH WILLIAM | 4.5 V | 1.41 1.79 |) | | | CONTRACTOR WWW. 100Y.CO. | 5.5 V | 1.87 2.29 | | | TINN TOO | A COMP. | 1.65 V | 0.37 0.62 | | | ΔV_{T} | COM: TO COM | 2.3 V | 0.48 0.77 | TIN | | Hysteresis | JOY. OM.TH WY 100X. | 3 V | 0.56 0.87 | V | | $(V_{T+} - V_{T-})$ | ON CONTRACTOR WIN WILLIAM CO | 4.5 V | 0.71 1.04 | TIM | | | TOO COM. | 5.5 V | 0.71 1.11 | TV | | MMA | $I_{OL} = -100 \mu A$ | 1.65 V to 4.5 V | V _{CC} - 0.1 | OM. | | | $I_{OL} = -4 \text{ mA}$ | 1.65 V | 1.2 | $^{\circ}OM_{\cdot,I}$ | | WW | $I_{OL} = -8 \text{ mA}$ | 2.3 V | 1.9 | · Mar | | V _{OH} | $I_{OL} = -16 \text{ mA}$ | COMPANY | 2.4 | CCA | | | $I_{OL} = -24 \text{ mA}$ | 3 V | 2.3 | 1 COM | | | $I_{OL} = -32 \text{ mA}$ | 4.5 V | 3.8 | | | | I _{OL} = 100 μA | 1.65 V to 4.5 V | 0.1 | 107.00 | | | I _{OL} = 4 mA | 1.65 V | 0.45 | MY.CC | | | I _{OL} = 8 mA | 2.3 V | 0.3 | 3 V C | | V_{OL} | I _{OL} = 16 mA | 1007. | 0.4 | 100V. | | | I _{OL} = 24 mA | 3 V | 0.55 | 1007. | | | I _{OL} = 32 mA | 4.5 V | 0.55 | W. P | | I _I A input | V _I = 5.5 V or GND | 0 to 5.5 V | ±5 | μΑ | | l _{off} | V_I or $V_O = 5.5 \text{ V}$ | 0 | ±10 | μΑ | | I _{CC} | $V_1 = 5.5 \text{ V or GND}, \qquad I_0 = 0$ | 1.65 V to 5.5 V | 10 | μΑ | | ΔI _{CC} | One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND | 3 V to 5.5 V | 500 | μΑ | | C _i | $V_1 = V_{CC}$ or GND | 3.3 V | 4.5 | pF | ⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. ### **Switching Characteristics** over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = ± 0. | | V _{CC} = ± 0. | 2.5 V
2 V | V _{CC} = ± 0. | 3.3 V
3 V | V _{CC} :
± 0. | | UNIT | |-----------------|-----------------|----------------|------------------------|-----|------------------------|--------------|------------------------|--------------|---------------------------|-----|------| | | (INFOT) | (OUIFUI) | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{pd} | A | Y | 2.8 | 9.9 | 1.6 | 5.5 | 1.5 | 4.6 | 0.9 | 4.4 | ns | ### **Switching Characteristics** over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 2) WW.100Y.COM.TW | PARAMETER FROM TO $\pm 0.15 \text{ V}$ $\pm 0.2 \text{ V}$ $\pm 0.3 \text{ V}$ $\pm 0.3 \text{ V}$ | = 5 V
.5 V | UNIT | |--|---------------|------| | (INPUT) (OUTPUT) MIN MAX MIN MAX MIN MAX MIN | MAX | • | | t _{pd} A Y 3.8 11 2 6.5 1.8 5.5 1.2 | 5 | ns | ### **Operating Characteristics** | A = 25°C | A CONTRACTOR OF THE | V _{CC} = 1.8 V | V _{CC} = 2.5 V | V _{CC} = 3.3 V | V _{CC} = 5 V | | |---|--|-------------------------|-------------------------|-------------------------|-----------------------|------| | PARAMETER | TEST CONDITIONS | TYP | TYP | TYP | TYP | UNIT | | C _{pd} Power dissipation capacitance | f = 10 MHz | 20 | 21 | 22 | 25 | pF | 特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw #### PARAMETER MEASUREMENT INFORMATION | TEST | S1 | |--------------------------------------|-------------------| | t _{PZL} (see Notes E and F) | V _{LOAD} | | t _{PLZ} (see Notes E and G) | V _{LOAD} | | t _{PHZ} /t _{PZH} | V _{LOAD} | | | | LOAD CIRCUIT | WILL | INPUTS | | Y | LTW | - 11 | - XV.1 | 00 1. | |-------------------|-----------------|---------|--------------------|---------------------|----------------|--------------|----------------| | V _{cc} | V | t,/t, | V _M | V _{LOAD} | C ^r | R_{L} | V _A | | 1.8 V ± 0.15 V | V _{cc} | ≤2 ns | V _{cc} /2 | 2 × V _{cc} | 15 pF | 1 ΜΩ | 0.15 V | | 2.5 V \pm 0.2 V | V _{cc} | ≤2 ns | V _{cc} /2 | 2 × V _{cc} | 15 pF | 1 ΜΩ | 0.15 V | | 3.3 V \pm 0.3 V | 3 V | ≤2.5 ns | 1.5 V | 6 V | 15 pF | 1 M Ω | 0.3 V | | 5 V \pm 0.5 V | V_{cc} | ≤2.5 ns | V _{cc} /2 | 2 × V _{cc} | 15 pF | 1 ΜΩ | 0.3 V | NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators have the following characteristics: PRR \leq 10 MHz, Z_o = 50 Ω . - D. The outputs are measured one at a time, with one transition per measurement. - E. Because this device has open-drain outputs, $t_{\tiny PLZ}$ and $t_{\tiny PZL}$ are the same as $t_{\tiny PD}$. - F. $t_{\tiny PZL}$ is measured at $V_{\tiny M}$. - G. t_{PLZ} is measured at $V_{OL} + V_{\Delta}$. - H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms #### PARAMETER MEASUREMENT INFORMATION | TEST | S1 | |------------------------------------|-------------------| | t _{PLH} /t _{PHL} | Open | | t _{PLZ} /t _{PZL} | V _{LOAD} | | t_{PHZ}/t_{PZH} | GND | | WIL | INPUTS | | 7.0 | T.T.A. | · volum | | -EW.1 | 00 7. | |-----------------------------------|------------------|--------------------------------|--------------------|---------------------|----------------|----------------|----------------|-------| | V _{cc} | V _i √ | t _r /t _r | V _M | V _{LOAD} | C ^r | R _L | V _A | | | 1.8 V ± 0.15 V | V _{cc} | ≤2 ns | V _{cc} /2 | 2 × V _{cc} | 30 pF | 1 kΩ | 0.15 V | | | $2.5 V \pm 0.2 V$ | V_{cc} | ≤2 ns | V _{cc} /2 | 2 × V _{cc} | 30 pF | 500 Ω | 0.15 V | | | $3.3 \text{ V} \pm 0.3 \text{ V}$ | 3 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | | | $5 V \pm 0.5 V$ | V_{cc} | ≤2.5 ns | V _{cc} /2 | 2 × V _{cc} | √50 pF | 500 Ω | 0.3 V | | NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{o} = 50 Ω . - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and \dot{t}_{PHZ} are the same as t_{dis} . - F. t_{PZL} and t_{PZH} are the same as t_{en} . - G. $t_{\text{\tiny PLH}}$ and $t_{\text{\tiny PHL}}$ are the same as $t_{\text{\tiny pd}}$. - H. All parameters and waveforms are not applicable to all devices. Figure 2. Load Circuit and Voltage Waveforms #### **MECHANICAL DATA** # DRY (R-PDSO-N6) PLASTIC SMALL OUTLINE 1,50 1,40 1,05 0,95 Pin 1 Index Area WWW.100Y.COM. 0,60 Seating Plane С 0,05 0,05 C 0,00 Seating Height 1,00 0,50 0,40 6X (0,05) 0,30 2 0,60 Pin 1 Identifier 0,10 X 45° 5 0,35 $5X \frac{0}{0,25}$ $6X\frac{0,2}{0,15}$ 0,10 M C A B 0,05 (M) C Bottom View 4207181/A 07/2005 NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Reference JEDEC MO-252. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw ## **PACKAGE OPTION ADDENDUM** 1-Jun-2012 ### PACKAGING INFORMATION | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |-------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | SN74LVC1G14DBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | OM. I. | | SN74LVC1G14DBVRE4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | CONTRA | | SN74LVC1G14DBVRG4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | LCOM.TW | | SN74LVC1G14DBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | X.COM.I | | SN74LVC1G14DBVTE4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | ON.COM.TW | | SN74LVC1G14DBVTG4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 100Y. COM.TW | | SN74LVC1G14DCKR | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 100 Y.COM.TY | | SN74LVC1G14DCKRE4 | ACTIVE | SC70 | DCK | 5-0 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | W.100Y.COWA | | SN74LVC1G14DCKRG4 | ACTIVE | SC70 | DCK | 5 C | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | WW.100Y. | | SN74LVC1G14DCKT | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | , | | SN74LVC1G14DCKTE4 | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN74LVC1G14DCKTG4 | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN74LVC1G14DRLR | ACTIVE | SOT | DRL | 5 | 4000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN74LVC1G14DRLRG4 | ACTIVE | SOT | DRL | 5 | 4000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN74LVC1G14DRYR | ACTIVE | SON | DRY | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN74LVC1G14DRYRG4 | ACTIVE | SON | DRY | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN74LVC1G14DSFR | ACTIVE | SON | DSF | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 1-.lun-2012 www.ti.com | Orderable Device | Status ⁽¹⁾ | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples (Requires Login) | |------------------|-----------------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|--------------------------| | SN74LVC1G14YZPR | ACTIVE | DSBGA | YZP | 5 | 3000 | Green (RoHS
& no Sb/Br) | SNAGCU | Level-1-260C-UNLIM | | | SN74LVC1G14YZVR | ACTIVE | DSBGA | YZV | 4 | 3000 | Green (RoHS
& no Sb/Br) | SNAGCU | Level-1-260C-UNLIM | WTM | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF SN74LVC1G14: Enhanced Product: SN74LVC1G14-EP NOTE: Qualified Version Definitions: Enhanced Product - Supports Defense, Aerospace and Medical Applications ### PACKAGE MATERIALS INFORMATION 6-Nov-2012 www.ti.com ### TAPE AND REEL INFORMATION ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw #### *All dimensions are nominal | imensions are nominal | | | | Pocket Q | | | | | | | | | |-----------------------|-----------------|--------------------|------|----------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | | N74LVC1G14DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 9.2 | 3.17 | 3.23 | 1.37 | 4.0 | 8.0 | Q3 | | N74LVC1G14DBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.2 | 3.3 | 3.2 | 1.55 | 4.0 | 8.0 | Q3 | | N74LVC1G14DBVT | SOT-23 | DBV | 5 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | N74LVC1G14DBVT | SOT-23 | DBV | 5 | 250 | 178.0 | 9.2 | 3.3 | 3.2 | 1.55 | 4.0 | 8.0 | Q3 | | N74LVC1G14DCKR | SC70 | DCK | 5 | 3000 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | N74LVC1G14DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | N74LVC1G14DCKR | SC70 | DCK | 5 | 3000 | 178.0 | 9.2 | 2.4 | 2.4 | 1.22 | 4.0 | 8.0 | Q3 | | N74LVC1G14DCKT | SC70 | DCK | 5 | 250 | 178.0 | 9.2 | 2.4 | 2.4 | 1.22 | 4.0 | 8.0 | Q3 | | N74LVC1G14DCKT | SC70 | DCK | 5 | 250 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | N74LVC1G14DCKT | SC70 | DCK | 5 | 250 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | N74LVC1G14DRLR | SOT | DRL | 5 | 4000 | 180.0 | 9.5 | 1.78 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | N74LVC1G14DRLR | SOT | DRL | 5 | 4000 | 180.0 | 8.4 | 1.98 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | N74LVC1G14DRYR | SON | DRY | 6 | 5000 | 180.0 | 9.5 | 1.15 | 1.6 | 0.75 | 4.0 | 8.0 | Q1 | | N74LVC1G14DRYR | SON | DRY | 6 | 5000 | 179.0 | 8.4 | 1.2 | 1.65 | 0.7 | 4.0 | 8.0 | Q1 | | N74LVC1G14DSFR | SON | DSF | 6 | 5000 | 180.0 | 9.5 | 1.16 | 1.16 | 0.5 | 4.0 | 8.0 | Q2 | | N74LVC1G14YZPR | DSBGA | YZP | 5 | 3000 | 178.0 | 9.2 | 1.02 | 1.52 | 0.63 | 4.0 | 8.0 | Q1 | | N74LVC1G14YZVR | DSBGA | YZV | 4 | 3000 | 178.0 | 9.2 | 1.0 | 1.0 | 0.63 | 4.0 | 8.0 | Q1 | WWW.100Y.COM.TW WW.100Y.COM.TW ay.com.TW www.ti.com 6-Nov-2012 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM. WW.100Y.COM.TW *All dimensions are nominal | dimensions are nominal | Inc. COMP. | | TIN. | 100 | OM | | 111.1 | |------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | SN74LVC1G14DBVR | SOT-23 | DBV | 5 | 3000 | 205.0 | 200.0 | 33.0 | | SN74LVC1G14DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC1G14DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G14DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G14DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC1G14DCKR | SC70 | DCK | 5 | 3000 | 205.0 | 200.0 | 33.0 | | SN74LVC1G14DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC1G14DCKT | SC70 | DCK | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G14DCKT | SC70 | DCK | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G14DCKT | SC70 | DCK | 5 | 250 | 205.0 | 200.0 | 33.0 | | SN74LVC1G14DRLR | SOT | DRL | 5 | 4000 | 180.0 | 180.0 | 30.0 | | SN74LVC1G14DRLR | SOT | DRL | 5 | 4000 | 202.0 | 201.0 | 28.0 | | SN74LVC1G14DRYR | SON | DRY | 6 | 5000 | 180.0 | 180.0 | 30.0 | | SN74LVC1G14DRYR | SON | DRY | 6 | 5000 | 203.0 | 203.0 | 35.0 | | SN74LVC1G14DSFR | SON | DSF | 6 | 5000 | 180.0 | 180.0 | 30.0 | | N74LVC1G14YZPR | DSBGA | YZP | 5 | 3000 | 220.0 | 220.0 | 35.0 | | N74LVC1G14YZVR | DSBGA | YZV | 4 | 3000 | 220.0 | 220.0 | 35.0 | # DBV (R-PDSO-G5) ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-178 Variation AA. Http://www.100y.com.tw DBV (R-PDSO-G5) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. Http://www.100y.com.tw 特力材料886-3-5753170 # DCK (R-PDSO-G5) ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-203 variation AA. ## DCK (R-PDSO-G5) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. # DRL (R-PDSO-N5) ## PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. B. This drawing is subject to change without notice. Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side. D. JEDEC package registration is pending. ## DRL (R-PDSO-N5) ### PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. SON (Small Outline No-Lead) package configuration. - /the exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs. - E. This package complies to JEDEC MO-287 variation UFAD. - $frac{f}{K}$ See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape. Http://www. 100y. com. tw DRY (S-PUSON-N6) ### PLASTIC SMALL OUTLINE NO-LEAD NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - В. This drawing is subject to change without notice. - SON (Small Outline No-Lead) package configuration. - This package complies to JEDEC MO-287 variation X2AAF. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw - NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask. - E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy. - H. Component placement force should be minimized to prevent excessive paste block deformation. YZP (R-XBGA-N5) DIE-SIZE BALL GRID ARRAY NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. NanoFree™ package configuration. The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative. E. This package is a Pb-free solder ball design. Refer to the 5 YEP package (drawing 4204725) for tin-lead (SnPb). NanoFree is a trademark of Texas Instruments. # YZV (S-XBGA-N4) ## DIE-SIZE BALL GRID ARRAY NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. NanoFree™ package configuration. - D. This package contains lead-free balls. Refer to the 4 YEV package (drawing 4206082) for tin-lead (SnPb) balls. NanoFree is a trademark of Texas Instruments. #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. | Products | Applications | |----------|--------------| | | | Audio www.ti.com/automotive www.ti.com/audio Automotive and Transportation Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u> RFID <u>www.ti-rfid.com</u> OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated