
HM6148HLP Series

1024-word × 4-bit High Speed Static CMOS RAM

■ FEATURES

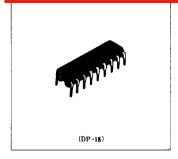
- Low Power Standby and Low Power Operation;
 Standby: 5μW (typ.), Operation: 175mW (typ.)
- Fast Access Time: 45/55ns (max)
- Capability of Battery Back Up Operation
- Single 5V Supply
- Completely Static RAM: No Clock or Timing Strobe Required
- No Peak Power-On Current
- No Change of tacs with Short Deselected Time
- Equal Access and Cycle Time
- Directly TTL Compatible: All Inputs and Outputs
- Three State Output
- Pin-Out Compatible with Intel 2148H

■ BLOCK DIAGRAM

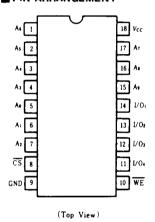
ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Ratings	Unit
Terminal Voltage *	V 7	-0.5 to +7.0	٧
Power Dissipation	Pτ	1.0	W
Operating Temperature	T.,.	0 to +70	·c
Storage Temperature	Tite	-55 to +125	·c
Storage Temperature **	T,	-10 to +85	.c

* with respect to GND. $V_{IL,n,n} = -3.5 \text{ V (Pulse width } \pm 20 \text{ ns.)}$


* * under bias.

TRUTH TABLE


C S	WE	Mode	Vcc Current	I/O Pin	Reference Cycle
Н	×	Not selected	Isa, Isa,	High Z	
L	н	Read	Icc	Dout	Read Cycle 1, 2
L	L	Write	Icc .	Din	Write Cycle 1, 2

勝 特 力 材 料 886-3-5773766 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

■ PIN ARRANGEMENT

■ RECOMMENDED DC OPERATING CONDITIONS (Ta-0 to +70°C)

Item	Symbol	min	typ	max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	v
	GND	0	0	0	v
Input Voltage	VIH	2.2	-	6.0	v
Input voitage	VIL	-0.5 *		0.8	v

^{+ -3.0} V (Pulse width 20ns)

TITLE 10.1 DC AND OPERATING CHARACTERISTICS (Ta=0 to +70°C, $Vcc=5V\pm10\%$, GND=0V)

Parameter	Symbol	Test Conditions	min	typ*	max	Unit
Input Leakage Current	I _{L1}	Vcc-max, VGND to Vcc	_	_	2.0	μA
Output Leakage Current	ILO	CS-VIN, VINO-GND to Vcc	_		2.0	μΑ
Operating Power Supply Current (1)	Icc	$\overline{CS} = V_{IL}, I_{I \times 0} = 0 \text{mA}$	<u> </u>	35	80	mA
Operating Power Supply Current (2)	Icci	min. cycle, CS - VIL, IIVO - 0mA	_	50	100	mA.
Standby Power Supply Current (1)	Is.	CS - VIN	T =	5	20	mA
Standby Power Supply Current(2)	Isat	$\overline{CS} \ge V_{CC} - 0.2V$, $V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$	_	1	50	μA
Output Low Voltage	Vol	Io1 - 8mA	T -	_	0.4	v
Output High Voltage	Von	Ion 4.0mA	2.4	_		v

^{*} Typical limits are at $V_{cc}=5.0$ V, Ta=+25°C and specified loading.

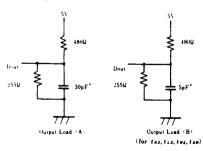
TAPACITANCE $(Ta=25 \, ^{\circ}\text{C}, f=1 \, \text{MHz})$

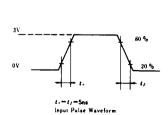
Item	Symbol	Test Conditions	typ	mex	Unit
Input Capacitance	C.,	V., -0V	-	5	pF
Input/Output Capacitance	C1.0	V1.0-0V	-	7	pF

Note). This parameter is sampled and not 100% tested.

\blacksquare AC CHARACTERISTICS ($V_{cc} = 5 \text{V} \pm 10\%$, Ta = 0 to +70 °C)

●RISE/FALL TIME

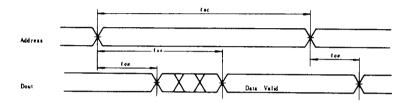

Item	Symbol	min	typ	max	Unit
Input Rise Time	t.	-	5	100	ns
Input Fall Time	ι_j	_	5	100	ns


•AC TEST CONDITIONS

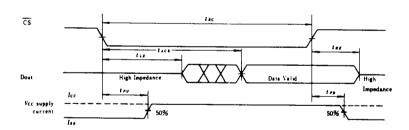
Input pulse levels: GND to 3.0V Input rise and fall times: 5ns

Input and Output timing reference levels: 1.5V

Output load: See Figure


* Including scope & jig.

EAC CHARACTERISTICS (Ta-0 to $+70^{\circ}$ C, $V_{cc}-5V\pm10\%$, unless otherwise noted.) • READ CYCLE

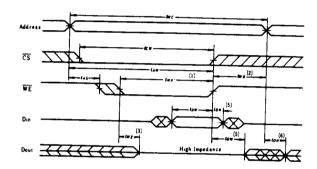

•.	Symbol	HM6148HLP-45		HM6148HLP-55		
Item		min	max	min	max	Unit
Read Cycle Time	lac .	45	_	55	_	ns
Address Access Time	LAA	-	45	_	55	ns
Chip Select Access Time	LACS	_	45	_	55	ns
Output Hold from Address Change	ton	5		5	_	ns
Chip Selection to Output in Low Z	t _{LZ} *	10	_	10	_	ns
Chip Deselection to Output in High Z	tuz*	0	20	0	20	ns
Chip Selection to Power Up Time	tpu	0	_	0	_	ns
Chip Deselection to Power Down Time	t _{PD}	_	30	-	30	ns

^{*} Transition is measured ±500mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested. At any temperature and voltage condition fuz max is less than faz min.

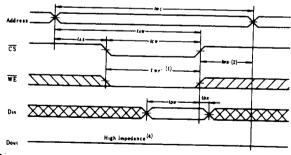
●TIMING WAVEFORM OF READ CYCLE NO.1 (1)(2)

● TIMING WAVEFORM OF READ CYCLE NO.2 (1)(3)

Notes) 1. WE is High for Read Cycle.


Device is continuously selected, CS = V_{i.t.}
 Address Valid prior to or coincident with CS transition Low.

• WRITE CYCLE


Item	Symbol	HM6148HLP-45		HM6148HLP-55		T	
		min	max	min	max	Unit	
Write Cycle Time	fwc .	45	_	55		 	
Chip Selection to End of Write	tor	40		50		ns	
Address Valid to End of Write	l av	40		50		ns	
Address Setup Time	las	0		0		ns	
Write Pulse Width	twe	35		40		ns	
Write Recovery Time	ive	5				ns	
Data Valid to End of Write	t pw	20		5		ns	
Data Hold Time	I DH	0		20		ns	
Write Enabled to Output in High Z.				0		ns	
Output Active from End of Write.	twz	0	15	0	20	ns	
Transition is measured ±500 mV from steady state	tow	0	-	0	_	ns	

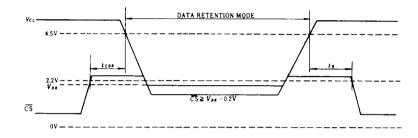
 $[\]Phi$ Transition is measured $\pm 500\,\text{mV}$ from steady state voltage with Load B. This parameter is sampled and not 100% tested.

ullet TIMING WAVEFORM OF WRITE CYCLE NO.1 (\overline{WE} Controlled)

• TIMING WAVEFORM OF WRITE CYCLE NO.2 (CS Controlled)

Notes of Timing Waveform of Write:

- 1. A write occurs during the overlap of a low \overline{CS} and a low \overline{WE} ($t_{\pi\pi}$) 2. Let as measured from the earlier of \overline{CS} or \overline{WE} going high to the end of write cycle.
- for as measured from the earlier of CS or WE going high to the end of write cycle.
 During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
 If the CS bw transition occurs samukaneously with the WE low transition or after the WE transition, the output buffers remain in a high impedance state.
 If CS is low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
 Dout is the same phase of write data of this write cycle.


■LOW Vcc DATA RETENTION CHARACTERISTICS (0°C ≤ Ta≤70°C)

Parameter	Symbol	Test Conditions	min	typ	max	Unit
Vcc for Data Retention	V _{DA}		2.0	_	_	v
Data Retention Current	Iccor	$\overline{CS} \ge V_{cc} - 0.2V$ $V_{cc} \ge V_{cc} - 0.2V \text{ or}$	_	_	30° 20**	μA
Chip Deselect to Data Retention Time	ICDA	0V ≤ V.,≤0.2V	0	_	_	ns
Operation Recovery Time	I R		tnc (1)	_	_	ns

Note) 1, tac-Read Cycle Time.

• Vcc-3.0V • • Vcc-2.0V

●LOW Vcc DATA RETENTION WAVEFORM

