
\qquad General Description
The MAX662A is a regulated $+12 \mathrm{~V}, 30 \mathrm{~mA}$－output，charge－ pump DC－DC converter．It provides the necessary +12 V $\pm 5 \%$ output to program byte－wide flash memories，and requires no inductors to deliver a guaranteed 30 mA out－ put from inputs as low as 4.75 V ．It fits into less than $0.1 \mathrm{in}^{2}$ of board space．The MAX662A is a pin－compatible upgrade to the MAX662，and is recommended for new designs．The MAX662A offers lower quiescent and shut－ down currents，and guarantees the output current over all temperature ranges．
The MAX662A is the first charge－pump boost converter to provide a regulated +12 V output．It requires only a few inexpensive capacitors，and the entire circuit is complete－ ly surface－mountable．
A logic－controlled shutdown pin that interfaces directly with microprocessors reduces the supply current to only $0.5 \mu \mathrm{~A}$ ．The MAX662A comes in 8 －pin narrow SO and DIP packages．
For higher－current flash memory programming solutions， refer to the data sheets for the MAX734（ 120 mA output current，guaranteed）and MAX732（200mA output cur－ rent，guaranteed）PWM，switch－mode DC－DC converters． Or，refer to the MAX761 data sheet for a 150 mA ，PFM switch－mode DC－DC converter that operates from inputs as low as 2 V ．

Applications

+12 V Flash Memory Programming Supplies
Compact +12 V Op－Amp Supplies
Switching MOSFETs in Low－Voltage Systems
Dual－Output +12 V and +20 V Supplies

Typical Operating Circ uit

Features
－Regulated $+12 \mathrm{~V} \pm 5 \%$ Output Voltage
－4．5V to 5．5V Supply Voltage Range
－Fits in 0.1 in 2
－Guaranteed 30mA Output
－No Inductor－Uses Only 4 Capacitors
－ $185 \mu \mathrm{~A}$ Quiescent Current
－Logic－Controlled $0.5 \mu \mathrm{~A}$ Shutdown
－8－Pin Narrow SO and DIP Packages

PART	TEMP．RANGE	PIN－PACKAGE
MAX662ACPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX662ACSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX662AC／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX662AEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX662AESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX662AMJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP ${ }^{* *}$

＊Dice are tested at $T_{A}=+25^{\circ} \mathrm{C}$ ．
＊＊Contact factory for availability and processing to MIL－STD－883．
勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－34970699胜特力电子（深圳）86－755－83298787 Http：／／www． 100 y．com．tw

MAXIN Maxim Integrated Products
Call toll free 1－800－998－8800 for free samples or literature．

＋12V，30mA Flash Memory Programming Supply

Http：／／www． 100 y．com．tw

ABSOLUTE MAXIMUM RATINGS

Vcc to GND ．．－0．3V to 6V	Operating Temperature Ranges
SHDN．．－0．3V to（VCC＋0．3V）	MAX662AC＿A ．． $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Iout Continuous．．． 50 mA	MAX662AE＿A ．． $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Continuous Power Dissipation（ $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ ）	MAX662AMJA．． $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Plastic DIP（derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）．．．．．．．．．．． 727 mW	Storage Temperature Range ．．．．．．．．．．．．．．．．．．．．．．．．．． $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
SO（derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）．．．．．．．．．．．．．．．．．．．．． 471 mW	Lead Temperature（soldering，10sec）．．．．．．．．．．．．．．．．．．．．．．．．．．$+300^{\circ} \mathrm{C}$
CERDIP（derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）．．．．．．．．．．．．．．． 640 mW	

ELECTRICAL CHARACTERISTICS
（Circuit of Figure $3 \mathrm{a}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ ，unless otherwise noted．）

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage	Vout	MAX662AC／E	$\begin{aligned} & 0 \mathrm{~mA} \leq \mathrm{lOUT} \leq 30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	11.4	12	12.6	V
			$0 \mathrm{~mA} \leq 1 \mathrm{lout} \leq 20 \mathrm{~mA}$	11.4	12	12.6	
		MAX662AM	$\begin{aligned} & 0 \mathrm{~mA} \leq \mathrm{IOUT} \leq 24 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	11.4	12	12.6	
			$0 \mathrm{~mA} \leq$ lout $\leq 16 \mathrm{~mA}$	11.4	12	12.6	
Supply Current	ICC	No load， $\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$			185	500	$\mu \mathrm{A}$
Shutdown Current		No load，VSHDN＝VCC			0.5	10	$\mu \mathrm{A}$
Oscillator Frequency	fosc	$\mathrm{VCC}=5 \mathrm{~V}$ ， $\mathrm{lOUT}=30 \mathrm{~mA}$			500		kHz
Power Efficiency		$\mathrm{VCC}=5 \mathrm{~V}$ ，IOUT $=30 \mathrm{~mA}$			76		\％
Vcc－to－Vout Switch Impedance	Rsw	$\begin{aligned} & \mathrm{V} \mathrm{VC}=\mathrm{V} \text { SHDN }=5 \mathrm{~V}, \\ & \text { lout }=30 \mathrm{~mA} \end{aligned}$	MAX662AC／E		1	2	$\mathrm{k} \Omega$
			MAX662AM		1	2.5	
Shutdown Input Threshold	V_{IH}			2.4			V
	VIL					0.4	
SHDN Pin Current		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0 \mathrm{~V}$		－50	－15	－5	$\mu \mathrm{A}$
		V CC $=\mathrm{V}_{\text {SHDN }}=5 \mathrm{~V}$			0		

Typical Operating Characteristics
（Circuit of Figure $3 \mathrm{a}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

2

＋12V，30mA Flash Memory Programming Supply

Typical Operating Characteristics（continued）
（Circuit of Figure $3 \mathrm{a}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

$1 \mathrm{~ms} / \mathrm{div}$
A：OUTPUT CURRENT， 20 mA div，Iout $=0 \mathrm{~mA}$ to 30 mA
B：OUTPUT VOLTAGE RIPPLE， $100 \mathrm{mV} / \mathrm{div}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

$1 \mathrm{~ms} /$ div
A：SUPPLY VOLTAGE， $2 \mathrm{~V} / \mathrm{div}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ， $\mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}$ B：OUTPUT VOLTAGE RIPPLE， $200 \mathrm{mV} / \mathrm{div}$

Pin Description

PIN	NAME	FUNCTION
1	C1－	Negative terminal for the first charge－ pump capacitor
2	C1＋	Positive terminal for the first charge－ pump capacitor
3	C2－	Negative terminal for the second charge－pump capacitor
4	C2＋	Positive terminal for the second charge－pump capacitor
5	Vcc	Supply Voltage
6	Vout	+12 V Output Voltage．VOUT $=\mathrm{V}_{\mathrm{CC}}$ when in shutdown mode．
7	GND	Ground
8	SHDN	Active－high CMOS－logic level Shutdown Input．SHDN is internally pulled up to Vcc．Connect to GND for normal operation．In shutdown mode， the charge pumps are turned off and VOUT $=\mathrm{V}_{\mathrm{CC}}$ ．

Figure 1．Block Diagram

＋12V，30mA Flash Memory Programming Supply

Detailed Description

Operating Principle
The MAX662A provides a regulated 12 V output voltage at 30 mA from a $5 \mathrm{~V} \pm 5 \%$ power supply，making it ideal for flash EEPROM programming applications．It uses internal charge pumps and external capacitors to gen－ erate +12 V ，eliminating inductors．Regulation is provid－ ed by a pulse－skipping scheme that monitors the output voltage level and turns on the charge pumps when the output voltage begins to droop．
Figure 1 shows a simplified block diagram of the MAX662A．When the S1 switches are closed and the S2 switches are open，capacitors C1 and C2 are charged up to Vcc．The S1 switches are then opened and the S2 switches are closed so that capacitors C1 and C2 are connected in series between VCc and VOUT．This performs a voltage tripling function．A pulse－ skipping feedback scheme adjusts the output voltage to $12 \mathrm{~V} \pm 5 \%$ ．The efficiency of the MAX662A with VCC＝ 5 V and IOUT $=30 \mathrm{~mA}$ is typically 76% ．See the Efficiency vs．Load Current graph in the Typical Operating Characteristics．
During one oscillator cycle，energy is transferred from the charge－pump capacitors to the output filter capaci－ tor and the load．The number of cycles within a given time frame increases as the load current increases or as the input supply voltage decreases．In the limiting case，the charge pumps operate continuously，and the oscillator frequency is nominally 500 kHz ．

Figure 2．MAX662A Exiting Shutdown

Shutdown Mode

The MAX662A enters shutdown mode when SHDN is a logic high．SHDN is a TTL／CMOS－compatible input sig－ nal that is internally pulled up to Vcc．In shutdown mode，the charge－pump switching action is halted and V_{IN} is connected to Vout through a $1 \mathrm{k} \Omega$ switch．When entering shutdown，Vout declines to VCC in typically 13 ms ．Connect SHDN to ground for normal operation． When $\mathrm{Vcc}=5 \mathrm{~V}$ ，it takes typically $400 \mu \mathrm{~s}$ for the output to reach 12 V after SHDN goes low（Figure 2）．

Applic ations Information

Compatibility with MAX662
The MAX662A is a 100%－compatible upgrade of the MAX662．The MAX662A does not require capacitor C3， although its presence does not affect performance．

Capacitor Selection

Charge－Pump Capacitors，C1 and C2
The capacitance values of the charge－pump capacitors C1 and C2 are critical．Use ceramic or tantalum capaci－ tors in the $0.22 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$ range．For applications requir－ ing operation over extended and／or military temperature ranges，use $1.0 \mu \mathrm{~F}$ tantalum capacitors for C 1 and C 2 （Figure 3b）．

Input and Output Capacitors，C4 and C5 The type of input bypass capacitor（C4）and output filter capacitor（C5）affects performance．Tantalums，ceramics or aluminum electrolytics are suggested．For smallest size， use Sprague 595D475X9016A7 surface－mount capacitors， which are $3.51 \mathrm{~mm} \times 1.81 \mathrm{~mm}$ ．For lowest ripple，use low－ ESR through－hole ceramic or tantalum capacitors．For low－ est cost，use aluminum electrolytic or tantalum capacitors．
Figure 3a shows the component values for proper opera－ tion over the commercial temperature range using mini－ mum board space．The input bypass capacitor（C4）and output filter capacitor（C5）should both be at least $4.7 \mu \mathrm{~F}$ when using Sprague＇s miniature 595D series of tantalum chip capacitors．Figure 3 b shows the suggested compo－ nent values for applications over extended and／or mili－ tary temperature ranges．
The values of C 4 and C 5 can be reduced to $2 \mu \mathrm{~F}$ and $1 \mu \mathrm{~F}$ ，respectively，when using ceramic capacitors．If using aluminum electrolytics，choose capacitance values of $10 \mu \mathrm{~F}$ or larger for C4 and C5．Note that as Vcc increases above 5 V and the output current decreases， the amount of ripple at VOUT increases due to the slower oscillator frequency combined with the higher input volt－ age．Increase the input and output bypass capacitance to reduce output ripple．
Table 1 lists various capacitor suppliers．

＋12V，30mA Flash Memory Programming Supply

Table 1．Capacitor Suppliers

Supplier	Phone Number	Fax Number	Capacitor	Capacitor Type＊
Murata Erie	（814）237－1431	（814）238－0490	GRM42－6Z5U224M50	$0.22 \mu \mathrm{~F}$ Ceramic（SM）
			RPE123Z5U105M50V	$1.0 \mu \mathrm{~F}$ Ceramic（TH）
Sprague Electric	$\begin{aligned} & \text { (603) 224-1961 } \\ & \text { (207) 324-4140 } \end{aligned}$	$\begin{aligned} & \text { (603) 224-1430 } \\ & \text { (207) 324-7223 } \end{aligned}$	595D475X9016A7	$4.7 \mu \mathrm{~F}$ Tantalum（SM）
			595D105X9016A7	1．0رF Tantalum（SM）

＊Note：（SM）denotes surface－mount component，（TH）denotes through－hole component．

Figure 3a．Flash EEPROM Programming Power Supply for Commercial Temperature Range Applications

Figure 3b．Flash EEPROM Programming Power Supply for Extended and／or Military Temperature Range Applications

Layout Considerations

Layout is critical，due to the MAX662A＇s high oscillator frequency．Good layout ensures stability and helps maintain the output voltage under heavy loads．For best performance，use very short connections to the capaci－ tors．The order of importance is：C4，C5，C1，C2．

Flash EEPROM Applications
The circuit of Figure 3a is a $+12 \mathrm{~V} \pm 5 \% 30 \mathrm{~mA}$ flash EEPROM programming power supply．A microproces－ sor controls the programming voltage via the SHDN pin．When SHDN is low，the output voltage（which is connected to the flash memory VPP supply－voltage pin） rises to +12 V to facilitate programming the flash memo－ ry．When SHDN is high，the output voltage is connected to VIN through an internal $1 \mathrm{k} \Omega$ resistor．

Paralleling Devices

Two MAX662As can be placed in parallel to increase output drive capability．The VCC，VOUT，and GND pins can be paralleled，reducing pin count．Use a single bypass capacitor and a single output filter capacitor with twice the capacitance value if the two devices can be placed close to each other．If the MAX662As cannot be placed close together，use separate bypass and output capacitors．The amount of output ripple observed will determine whether single input bypass and output filter capacitors can be used．Under certain conditions，one device may supply the total output cur－ rent．Therefore，regardless of the number of devices in parallel，the maximum continuous current must not exceed 50 mA ．

12V and 20V Dual－Output Power Supply Using the charge－pump voltage－doubler circuit of Figure 4，the MAX662A can produce a +20 V supply from a single +5 V supply．Figure 5 shows the current capability of the +20 V supply．

＋12V，30mA Flash Memory Programming Supply

Figure 4．+12 V and +20 V Dual Supply from $\mathrm{a}+5 \mathrm{~V}$ Input

Figure 5．＋20V Supply Output Current Capability

Chip Topography

TRANSISTOR COUNT： 225
SUBSTRATE CONNECTED TO VOUT

