

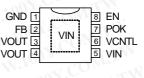
0.8V Reference Ultra Low Dropout (0.15V@7A) Linear Regulator

Features

- Ultra Low Dropout - 0.15V(typical) at 7A Output Current
- Low ESR Output Capacitor (Multi-layer Chip Capacitors (MLCC)) Applicable
 - 0.8V Reference Voltage
- High Output Accuracy - ±1.5% over Line, Load and Temperature
 - Fast Transient Response
- Adjustable Output Voltage by External Resistors
- Power-On-Reset Monitoring on both VCNTL and VIN Pins
- Internal Soft-Start
- Current-Limit Protection
- Under-Voltage Protection
- Thermal Shutdown with Hysteresis
- Power-OK Output with a Delay Time
- Shutdown for Standby or Suspend Mode
- Simple SOP-8P Package with Exposed Pad
- Lead Free and Green Devices Available
 (RoHS Compliant)

Applications

- Note Book PC Applications
- Motherboard Applications
- VGA Card Applications

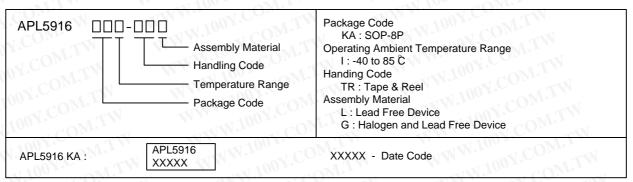

General Description

The APL5916 is a 7A ultra low dropout linear regulator. This product is specifically designed to provide well supply volatage for motherboards and VGA card applications. The IC needs two supply voltages, a control voltage for the circuitry and a main supply voltage for power conversion, to reduce power dissipation and provide extremely low dropout.

The APL5916 integrates many functions into a single package. A Power-On-Reset (POR) circuit monitors both supply voltages to prevent wrong operations. Thermal shutdown and current limit functions protect the device against thermal and current over-loads. POK indicates the output status with time delay which is set internally. It can control other converter for power sequence. The APL5916 can be enabled by other power system. Pulling and holding the EN pin below 0.3V shuts off the output.

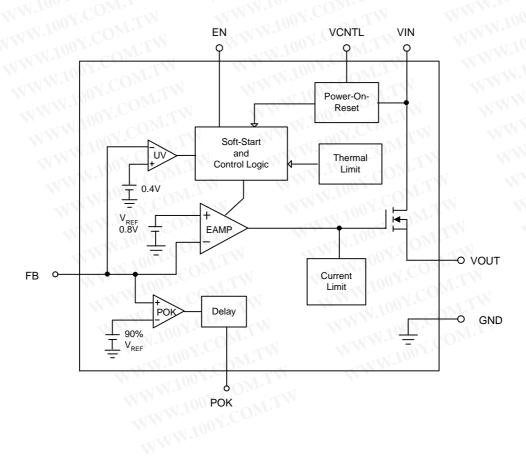
The APL5916 is available in SOP-8P package which features small size as SOP-8 and an Exposed Pad to reduce the junction-to-case resistance, being applicable in 2~2.6W applications.

Pin Configuration



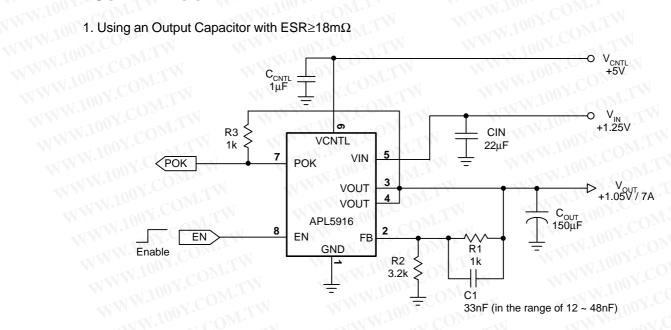
SOP-8P (Top View)

= Exposed Pad (connected to VIN plane for better heat dissipation)

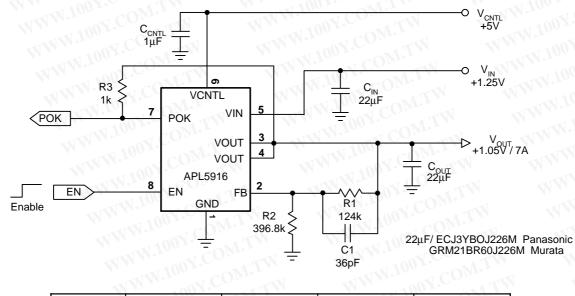


Ordering and Marking Information

Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).


Block Diagram

V.100Y.COM. APL5916



Typical Application Circuit

WWW.100Y

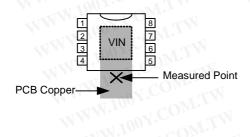
2. Using an MLCC as the Output Capacitor

C _{OUT} (μF)	V _{OUT} (V)	$R_1(k\Omega)$	$R_2(k\Omega)$	C ₁ (pF)
	1.2	120	240	36
22	1.5	120	137.14	39
-	1.8	105	184	39
	1.05	240	768	39
44	1.2	187	374	47
44	1.5	180	205.71	47
	1.8	162	129.6	47

Copyright © ANPEC Electronics Corp. Rev. A.1 - Mar., 2008

WWW.100Y.CO

Absolute Maximum Ratings


Symbol	Parameter	Rating	
V _{CNTL}	VCNTL Supply Voltage (VCNTL to GND)	-0.3 ~ 7	
VIN	VIN Supply Voltage (VIN to GND)	-0.3 ~ 3.9	
V _{I/O}	EN and FB to GND	-0.3 ~ V _{CNTL} +0.3	IM
V _{POK}	POK to GND	-0.3 ~ 7	NT.
PD	Power Dissipation	3	TT
TJC	Junction Temperature	150	a de la dela dela dela dela dela dela de
T _{STG}	Storage Temperature	-65 ~ 150)
T _{SDR}	Lead Soldering Temperature, 10 Seconds	260	01.0

Thermal Characteristics

Therma	I Characteristics		
Symbol	Parameter	Value	Unit
θ _{JA}	Junction-to-Ambient Thermal Resistance in Free Air (Note 1)	38	°C/W
θ _{JC}	Junction-to-Case Thermal Resistance (Note 2)	14	°C/W

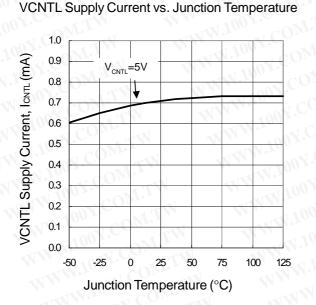
Note 1 : $\theta_{i,k}$ is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad WWW.100Y.COM.TW of SOP-8P is soldered directly on the PCB.

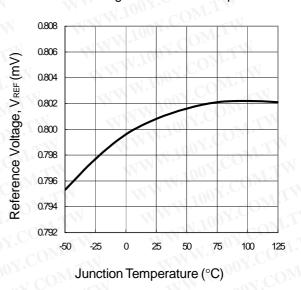
Note 2 : The "Thermal Pad Temperature" is measured on the PCB copper area connected to the thermal pad of package. WWW.100Y.COM.TW

Recommended Operating Conditions

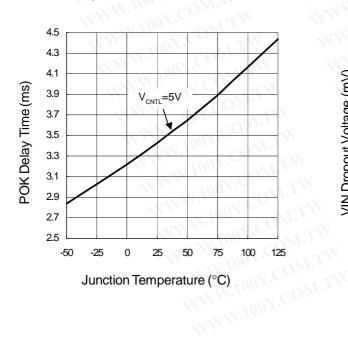
ymbol	Parameter	Range	Unit
V _{CNTL}	VCNTL Supply Voltage	4.5 ~ 6	V
V _{IN}	VIN Supply Voltage	1.0 ~ 3.5	V
V _{OUT}	Output Voltage V _{CNTL} =5.0±5%	0.8 ~ V _{IN} -0.2	V
I _{OUT}	VOUT Output Current	0~7	А
TJ	Junction Temperature	-40 ~ 125	°C

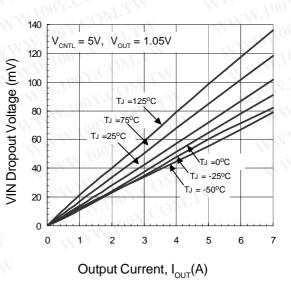
Electrical Characteristics


.100Y.CON Refer to the typical application circuit. These specifications apply over, $V_{CNTL} = 5V$, $V_{IN} = 1.25V$, $V_{OUT} = 1.05V$ and $T_A = -40$ to 85°C, unless otherwise specified. Typical values refer to $T_A = 25$ °C.


WWW.100Y.

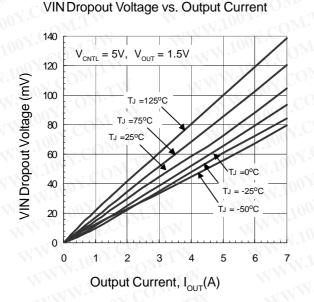
Symbol	Parameter	Test Conditions	Yoo.	APL5916		Unit
	M.1 I ununeter WW.10		Min	Тур	Max	
SUPPLY C	URRENT	COM. I.	W.IVO		1.1	
ICNTL	VCNTL Supply Current	EN = VCNTL, V_{FB} is well regulated	0.4	1	2	mA
I _{SD}	VCNTL Shuntdown Current	EN = GND	10	280	380	μA
POWER-O	N-RESET	V.L. COMMENT	N.W.V.	ov.C	TAN	N
	VCNTL POR Threshold	V _{CNTL} Rising	2.7	2.9	3.1	V
W.100	VCNTL POR Hysteresis	W.Ino CONT.	WWW	0.4	СОйг	V
N.10	VIN POR Threshold	V _{IN} Rising	0.8	0.9	1.0	
1	VIN POR Hysteresis	1001. ONLIN	AL C	0.5	- c0	V
OUTPUT V	OLTAGE	NW 100Y.COM.TW	W	10	5	MIT
V _{REF}	Reference Voltage	FB =VOUT	W	0.8	10X.C	v
WWW	Output Voltage Accuracy	I _{ουτ} =0A ~ 7A, Τ _J = -40~125°C	-1.5	M	+1.5	%
W	Line Regulation	V _{CNTL} =4.5 ~ 6V	-1.5	WWW.	+1.5	mV/V
	Load Regulation	I _{ОUT} =0А ~ 7А	T	0.06	0.15	%
DROPOUT	VOLTAGE	1001.00N.10			N.100	<1 CO
Ŵ	W.1001.COM.TW	I _{OUT} = 7A, V _{CNTL} =5V, T _J = 25°C		0.11	0.14	V
	Dropout Voltage	I _{OUT} = 7A, V _{CNTL} =5V, T _J = -40~125°C	TW .	W	0.2	v
PROTECTI	ON STATISTICS	WWW.In COM	W		MN.	Y no.
	W.1001. COM.1	V _{CNTL} =5V, T _J = 25°C	8	10	12	Α
I _{LIM}	Current Limit	V _{CNTL} =5V, T _J = -40 ~ 125℃	7.2			A
T _{SD}	Thermal Shutdown Temperature	T _J Rising	M.TW	150		°C
	Thermal Shutdown Hysteresis	TH WHITTODY.C	TIM	50	W.	°C
	Under-Voltage Threshold	V _{FB} Falling	COM	0.4	W	V
ENABLE A	ND SOFT-START	The WW.	COM	Wn	4	M.M.
	EN Logic High Threshold Voltage	V _{EN} Rising	0.3	0.4	0.5	V
	EN Hysteresis	M.T. W.100	- CON	30		mV
	EN Pin Pull-Up Current	EN=GND		10		μA
T _{ss}	Soft-Start Interval	NIM WANTI	001.00	2		ms
	K AND DELAY	WWWW	1004.64	T	Ŵ	1
V _{POK}	POK Threshold Voltage for Power OK	V _{FB} Rising	90%	92%	94%	V _{REF}
V _{PNOK}	POK Threshold Voltage for Power Not OK	V _{FB} Falling	79%	81%	83%	V _{REF}
	POK Low Voltage	POK sinks 5mA		0.25	0.4	V
	POK Delay Time		1	3	10	ms

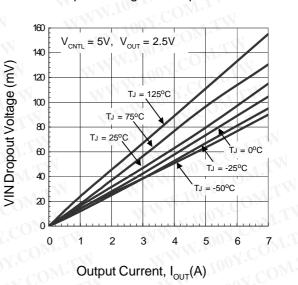

Typical Operating Characteristics



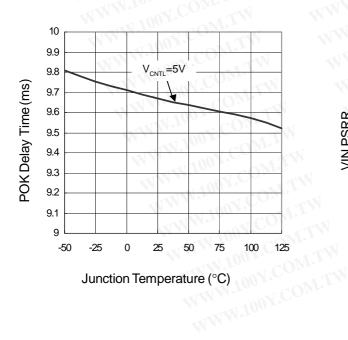
Reference Voltage vs. Junction Temperature

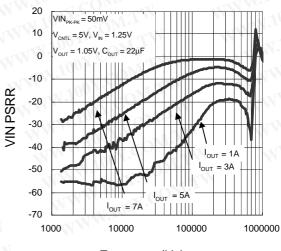
POK Delay Time vs. Junction Temperature


VIN Dropout Voltage vs. Output Current



Copyright © ANPEC Electronics Corp. Rev. A.1 - Mar., 2008 www.anpec.com.tw

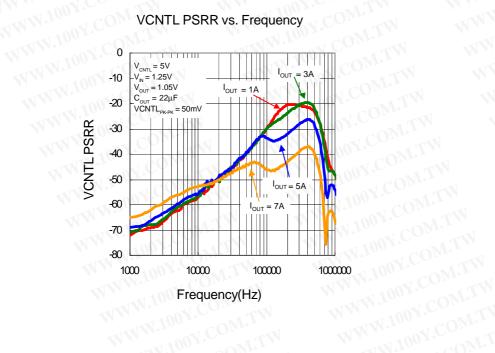




VIN Dropout Voltage vs. Output Current

Current-Limit vs. Junction Temperature

VIN PSRR vs. Frequency



Frequency(Hz)

Copyright © ANPEC Electronics Corp. Rev. A.1 - Mar., 2008

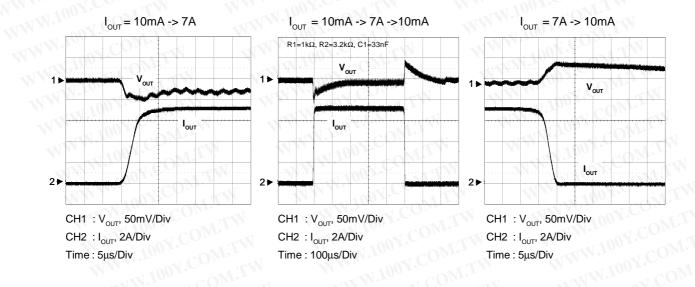


Operating Waveforms

Test Circuit

8

V.100Y.COM.TW **APL5916**

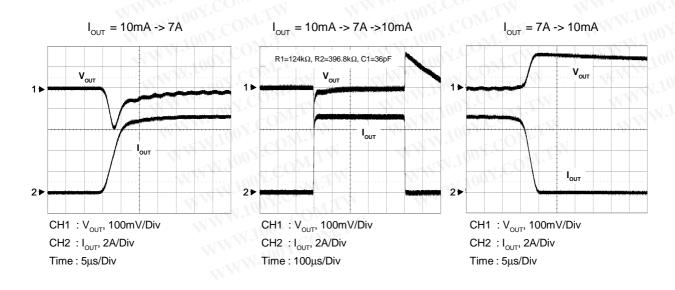


Operating Waveforms (Cont.)

1. Load transient Response

1.1 Using an Output Capacitor with ESR \geq 18m Ω

- $C_{OUT} = 150 \mu F/6.3 V$ (ESR = $25 m \Omega$), $C_{IN} = 22 \mu F/6.3 V$
- I_{OUT} = 10mA to 7A to 10mA, Rise time = Fall time = 5µs

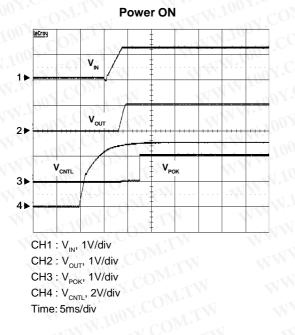


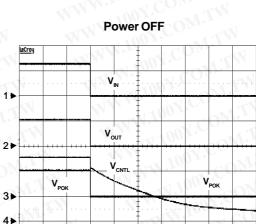
WWW.100Y

WWW.100Y.COM.7

1.2 Using an MLCC as the Output Capacitor

- $C_{OUT} = 22\mu F/6.3V$ (ESR = 3m Ω), $C_{IN} = 22\mu F/6.3V$
- I_{OUT} = 10mA to 7A to 10mA, Rise time = Fall time = 5µs

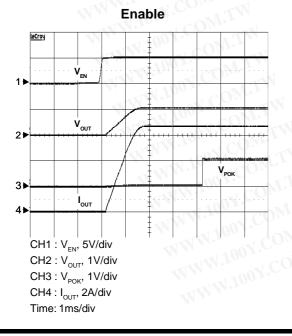

Copyright © ANPEC Electronics Corp. Rev. A.1 - Mar., 2008



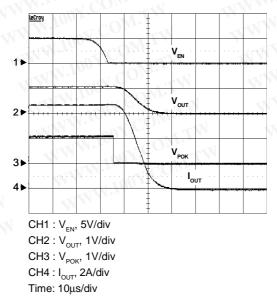
Operating Waveforms (Cont.)

2. Power ON and Power OFF

- $V_{IN} = 1.25V$, $V_{CNTL} = 5V$, $V_{OUT} = 1.05V$ - $C_{OUT} = 22\mu F/6.3V$ (ESR = $3m\Omega$), $C_{IN} = 22\mu F/6.3V$


 $\begin{array}{l} CH1: V_{\text{IN}}, 1V/div\\ CH2: V_{\text{OUT}}, 1V/div\\ CH3: V_{\text{POK}}, 1V/div\\ CH4: V_{\text{CNTL}}, 2V/div\\ Time: 500ms/div \end{array}$

WWW.100Y


3. Shutdown and Enable

- V_{IN} = 1.25V, V_{CNTL} = 5V,V_{OUT} = 1.05V

-
$$C_{OUT} = 22\mu F/6.3V$$
 (ESR = 3m Ω), $C_{IN} = 22\mu F/6.3V$

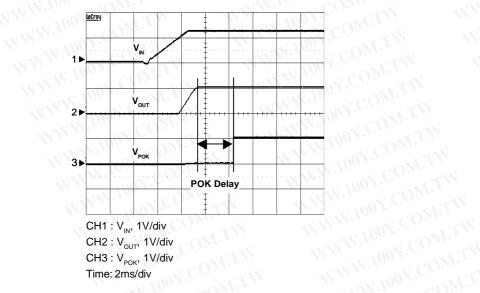
Shutdown

Copyright © ANPEC Electronics Corp. Rev. A.1 - Mar., 2008 W.100Y.COM

WWW.100

V.100Y.COM.TW W.100Y.COM.TW APL5916

WWW.100Y.


WWW.100Y.COM.T

Operating Waveforms (Cont.)

4. POK Delay WWW.100

- $-V_{IN} = 1.25V, V_{CNTL} = 5V, V_{OUT} = 1.05V$
- $C_{OUT} = 22\mu F/6.3V$ (ESR = 3m Ω), $C_{IN} = 22\mu F/6.3V$

W.100Y.COM.TW

 $\text{CH2}:\text{V}_{\text{OUT}},\,\text{1V/div}$ WWW.100Y.COM.TW CH3 : V_{POK}, 1V/div WWW.100Y.COM.TW Time: 2ms/div

Functional Pin Description

GND (Pin 1)

Ground pin of the circuitry. All voltage levels are measured with respect to this pin.

FB (Pin 2)

Connecting this pin to an external resistor divider receives the feedback voltage of the regulator. The output voltage set by the resistor divider is determined by:

Vout = $0.8 \cdot \left(1 + \frac{R1}{R2}\right)$

where R1 is connected from VOUT to FB with Kelvin sensing and R2 is connected from FB to GND. A bypass capacitor may be connected with R1 in parallel to improve load transient response.

VOUT (Pin 3, 4)

Output of the regulator. Please connect Pin 3 and 4 together using wide tracks. It is necessary to connect a output capacitor with this pin for closed-loop compensation and improving transient response.

VIN (Pin 5) and Exposed Pad

Main supply input pins for power conversions. The Exposed Pad provides a very low impedance input path for the main supply voltage. Please tie the Ex-

Function Description

Power-On-Reset

A Power-On-Reset (POR) circuit monitors both input voltages at VCNTL and VIN pins to prevent wrong logic controls. The POR function initiates a soft-start process after the two supply voltages exceed their rising POR threshold voltages during powering on. The POR function also pulls low the POK pin regardless the output voltage when the VCNTL voltage falls below it's falling POR threshold. posed Pad and VIN Pin (Pin 8) together to reduce the dropout voltage. The voltage at this pins is monitored for Power-On Reset purpose.

VCNTL (Pin 6)

Power input pin of the control circuitry. Connecting this pin to a +5V (recommended) supply voltage provides the bias for the control circuitry. The voltage at this pin is monitored for Power-On Reset purpose.

POK (Pin 7)

Power-OK signal output pin. This pin is an open-drain output used to indicate status of output voltage by sensing FB voltage. This pin is pulled low when the rising FB voltage is not above the VPOK threshold or the falling FB voltage is below the VPNOK threshold, indicating the output is not OK.

EN (Pin 8)

Enable control pin. Pulling and holding this pin below 0.3V shuts down the output. When re-enabled, the IC undergoes a new soft-start cycle . When leave this pin open, an internal current source 10μ A pulls this pin up to VCNTL voltage, enabling the regulator.

Internal Soft-Start

An internal soft-start function controls rise rate of the output voltage to limit the current surge at start-up. The typical soft-start interval is about 2ms.

Output Voltage Regulation

An error amplifier working with a temperaturecompensated 0.8V reference and an output NMOS regulates output to the preset voltage. The error amplifier designed with high bandwidth and DC gain

Function Description (Cont.)

Output Voltage Regulation (Cont.)

provides very fast transient response and less load regulation. It compares the reference with the feedback voltage and amplifies the difference to drive the output NMOS which provides load current from VIN to VOUT.

Current-Limit

The APL5916 monitors the current via the output NMOS and limits the maximum current to prevent load and APL5916 from damages during overload or short-circuit conditions.

Under-Voltage Protection (UVP)

The APL5916 monitors the voltage on FB pin after soft-start process is finished. Therefore the UVP is disable during soft-start period. When the voltage on FB pin falls below the under-voltage threshold, the UVP circuit shuts off the output immediately. After a while, the APL5916 starts a new soft-start to regulate output.

Thermal Shutdown

A thermal shutdown circuit limits the junction temperature of APL5916. When the junction temperature exceeds +150°C, a thermal sensor turns off the output NMOS, allowing the device to cool down. The regulator regulates the output again through initiation of a new soft-start cycle after the junction temperature cools by 50°C, resulting in a pulsed output during continuous thermal overload conditions. The thermal shutdown designed

Application Information

Power Sequencing

The power sequencing of VIN and VCNTL is not necessary to be concerned. But do not apply a voltage to VOUT for a long time when the main voltage applied at VIN is not present. The reason is the internal parasitic diode from VOUT to VIN conducts and dissipates power without protections due to the forward-voltage. with a 50°C hysteresis lowers the average junction temperature during continuous thermal overload conditions, extending life time of the device.

For normal operation, device power dissipation should be externally limited so that junction temperatures will not exceed +125°C.

Enable Control

The APL5916 has a dedicated enable pin (EN). A logic low signal (VEN< 0.3V) applied to this pin shuts down the output. Following a shutdown, a logic high signal re-enables the output through initiation of a new softstart cycle. Left open, this pin is pulled up by an internal current source (10μ A typical) to enable operation. It's not necessary to use an external transistor to save cost.

Power-OK and Delay

The APL5916 indicates the status of the output voltage by monitoring the feedback voltage (VFB) on FB pin. As the VFB rises and reaches the rising Power-OK threshold (VPOK), an internal delay function starts to perform a delay time. At the end of the delay time, the IC turns off the internal NMOS of the POK to indicate the output is OK. As the VFB falls and reaches the falling Power-OK threshold (VPNOK), the IC immediately turns on the NMOS of the POK to indicate the output is not OK without a delay time.

Output Capacitor

The APL5916 requires a proper output capacitor to maintain stability and improve transient response over temperature and current. The output capacitor selection is to select proper ESR (equivalent series resistance) and capacitance of the output capacitor for good stability and load transient response.

Application Information (Cont.)

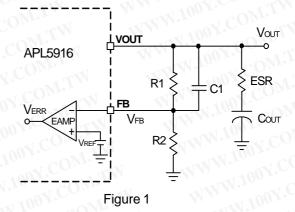
Output Capacitor (Cont.)

The APL5916 is designed with a programmable feedback compensation adjusted by an external feedback network for the use of wide ranges of ESR and capacitance in all applications. Ultra-low-ESR capacitors (such as ceramic chip capacitors), low-ESR bulk capacitors (such as solid Tantalum, POSCap, and Aluminum electrolytic capacitors) all can be used as an output capacitor. The value of the output capacitors can be increased without limit.

During load transients, the output capacitors, depending on the stepping amplitude and slew rate of load current, are used to reduce the slew rate of the current seen by the APL5916 and help the device to minimize the variations of output voltage for good transient response. For the applications with large stepping load current, the low-ESR bulk capacitors are normally recommended.

Decoupling ceramic capacitors must be placed at the load and ground pins as close as possible and the impedance of the layout must be minimized.

Input Capacitor


The APL5916 requires proper input capacitors to supply current surge during stepping load transients to prevent the input rail from dropping. Because the parasitic inductor from the voltage sources or other bulk capacitors to the VIN pin limit the slew rate of the surge currents, more parasitic inductance needs more input capacitance.

Ultra-low-ESR capacitors (such as ceramic chip capacitors), low-ESR bulk capacitors (such as solid tantalum, POSCap, and Aluminum electrolytic capacitors) can all be used as an input capacitor of VIN. For most of applications, the recommended input capacitance of VIN is 10μ F at least. If the drop of the input voltage is not cared, the input capacitance

can be less than 10μ F. More capacitance reduces the variations of the input voltage of VIN pin.

Feedback Network

Figure 1 shows the feedback network between VOUT, GND and FB pins. It works with the internal error amplifier to provide proper frequency response for the linear regulator. The ESR is the equivalent series resistance of the output capacitor. The C_{OUT} is ideal capacitance in the output capacitor. The V_{OUT} is the setting of the output voltage.

The feedback network selection depends on the values of the ESR and C_{OUT} , which has been classified into three conditions:

- Condition 1 : Large ESR (${\geq}18m\Omega$)
 - Select the R1 in the range of 400Ω ~ 2.4k Ω

.... (1)

- Calculate the R2 as the following :

$$R2(\mathbf{k}\Omega) = R1(\mathbf{k}\Omega) \cdot \frac{0.8(\mathbf{V})}{V_{OUT}(\mathbf{V}) - 0.8(\mathbf{V})}$$

- Calculate the C1 as the following :

$$10 \cdot \frac{V_{\text{OUT}(V)}}{R1_{(k\Omega)}} \le C1_{(nF)} \le 40 \cdot \frac{V_{\text{OUT}(V)}}{R1_{(k\Omega)}} \dots (2)$$

- Condition 2 : Middle ESR
- Calculate the R1 as the following:

$$R1_{(k\Omega)} = \frac{6000}{ESR_{(m\Omega)}} - 37.5 \cdot V_{OUT(V)} + 30 \quad \dots \dots \quad (3)$$

Application Information (Cont.)

Feedback Network (Cont.)

- Select a proper R1(selected) to be a little larger than the calculated R1.
- Calculate the C1 as the following :

$$C1(pF) = \left[ESR(m\Omega) + 200\right] \cdot \frac{COUT(\mu F)}{R1(k\Omega)} \quad \dots \dots \quad (4)$$

Where R1=R1(selected)

Select a proper C1(selected) to be a little smaller than the calculated C1.

- The C1 calculated from equation (4) must meet the following equation:

$$C1_{(\text{pF})} \geq 5.1 \cdot \left[1 + \frac{200}{\text{ESR}_{(m\,\Omega)}}\right] \cdot \left[1 + \frac{37.5 \cdot V_{\text{OUT}(V)}}{\text{R1}_{(k\Omega)}}\right].. (5)$$

Where R1=R1(calculated) from equation (3)

If the C1(calculated) can not meet the equation (5), please use the Condition 3.

- Use equation (2) to calculate the R2.

Condition 3 : Low ESR (eg. Ceramic Capacitors)

- Calculate the R1 as the following:

$$R1(k\Omega) = \sqrt{(5.9 \cdot ESR(m\Omega) + 1175) \cdot COUT(\mu F)} - 37.5 \cdot VOUT(V) ... (6)$$

Select a proper R1(selected) to be a little larger than the calculated R1. *The minimum selected R1 is equal to 1kW when the calculated R1 is smaller than 1k or negative.*

- Calculate the C1 as the following :

$$C1(pF) = \sqrt{(0.17 \cdot ESR(m\Omega) + 34) \cdot COUT(\mu F)} \cdot \left[1 + \frac{37.5 \cdot VOUT(V)}{R1(k\Omega)}\right] ..(7)$$

Where R1=R1(selected)

Select a proper C1(selected) to be a little smaller than the calculated C1.

- The C1 calculated from equation (7) must meet the following equation :

 $C1(\mathsf{pF}) \ge \left[0.033 + \frac{1.25 \cdot V\mathsf{OUT}(\mathsf{V})}{R1(k\Omega)}\right] \cdot ESR(\mathsf{m}\Omega) \cdot C\mathsf{OUT}(\mu\mathsf{F}) .. (8)$

Where R1=R1(calculated) from equation (6)

If the C1_(calculated) can not meet the equation (8), please use the Condition 2.

- Use equation (2) to calculate the R2.

The reason to have three conditions described above is to optimize the load transient responses for all kinds of the output capacitor. For stability only, the Condition 2, regardless of equation (5), is enough for all kinds of output capacitor.

PCB Layout Consideration (See Figure 2)

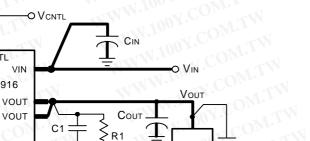
- 1. Please solder the Exposed Pad and VIN together on the PCB. The main current flow is through the exposed pad.
- 2. Please place the input capacitors for VIN and VCNTL pins near pins as close as possible.
- 3. Ceramic decoupling capacitors for load must be placed near the load as close as possible.
- 4. To place APL5916 and output capacitors near the load is good for performance.
- 5. The negative pins of the input and output capacitors and the GND pin of the APL5916 are connected to the ground plane of the load.
- 6. Please connect PIN 3 and 4 together by a wide track.
- 7. Large current paths must have wide tracks.
- 8. See the Typical Application

(see next page Figure 2)

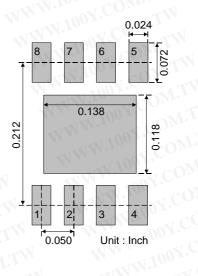
- Connect the one pin of the R2 to the GND of APL5916
- Connect the one pin of R1 to the Pin 3 of APL5916
- Connect the one pin of C1 to the Pin 3 of APL5916

CCNTL

VCNTL


APL5916

GND

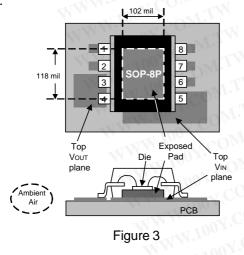


Application Information (Cont.)

PCB Layout Consideration (Cont.)

Load

Recommended Minimum Footprint

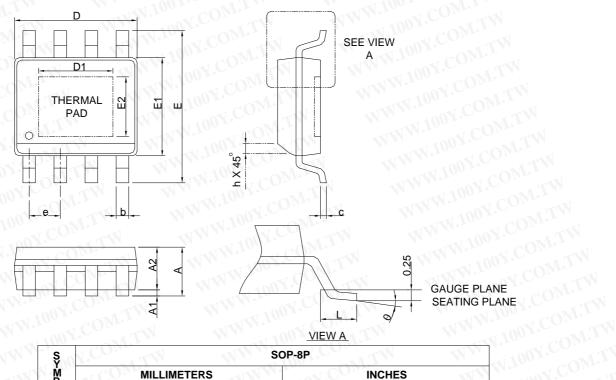

Thermal Consideration

FB

R2

See Figure 3. The SOP-8P is a cost-effective package featuring a small size like a standard SOP-8 and a bottom exposed pad to minimize the thermal resistance of the package, being applicable to high current applications. The exposed pad must be soldered to the top V_{IN} plane. The copper of the V_{IN} plane on the Top layer conducts heat into the PCB and air. Please enlarge the area to reduce the case-to-ambient resistance (θ_{CA}).

Figure 2



Copyright © ANPEC Electronics Corp. Rev. A.1 - Mar., 2008

Package Information

SOP-8P

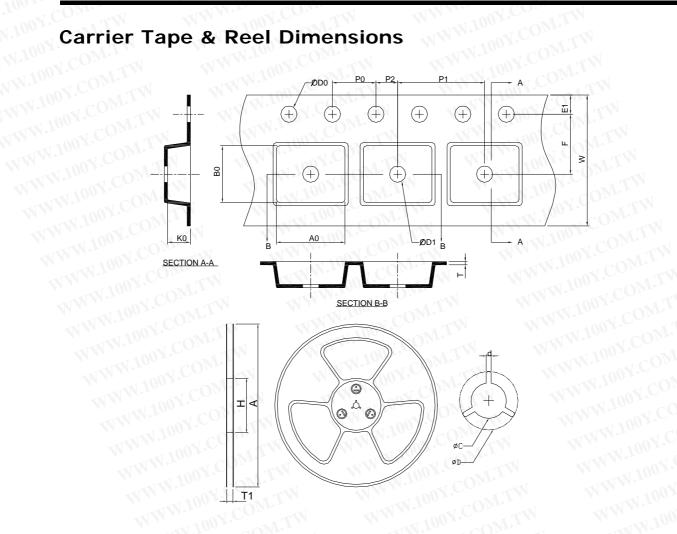
1001.	MIN	· · · · · · · · · · · · · · · · · · ·	<u>VIEW A</u>	
Ş	WT.	S	OP-8P	W WW
SYMBOL	MILLIN	IETERS	IN CONTRACT	CHES
5 C	MIN.	MAX.	MIN.	MAX.
A	COM.	1.75	N.100 CON	0.069
A1	0.00	0.15	0.000	0.006
A2	1.25	th N	0.049	M.T.
b	0.31	0.51	0.012	0.020
с	0.17	0.25	0.007	0.010
D	4.80	5.00	0.189	0.197
D1	2.25	3.50	0.098	0.138
E	5.80	6.20	0.228	0.244
E1	3.80	4.00	0.150	0.157
E2	2.00	3.00	0.079	0.118
e	1.27	BSC	0.0	50 BSC
h	0.25	0.50	0.010	0.020
L	0.40	1.27	0.016	0.050
θ	0°	8°	0°	8°

Note : 1. Follow JEDEC MS-012 BA.

2. Dimension "D" does not include mold flash, protrusions

or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side .

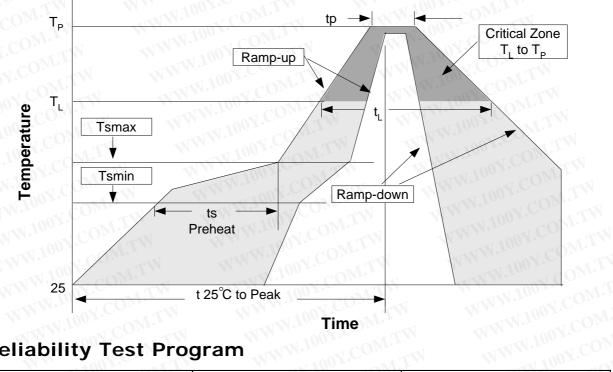
3. Dimension "E" does not include inter-lead flash or protrusions.


Inter-lead flash and protrusions shall not exceed 10 mil per side.

V.100Y.COM.TW W.100Y.COM.TW **APL5916**

Carrier Tape & Reel Dimensions

NW.100Y.COM.TW


pplication	Α	H.CC	T1	C	d	D	W	E1	F 10
	330.0 ± 2.00	50 MIN.	12.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	12.0 ± 0.30	1.75 ±0.10	5.5 £ 0.05
SOP-8(P)	P0	P1	P2	D0	D1	107	A0	B0	K0
	4.0 ± 0.10	8.0 <u>±</u> 0.10	2.0 ± 0.05	1.5+0.10 -0.00	1.5 MIN.	0.6+0.00 -0.40	6.40 ± 0.20	5.20 £ .20	2.10 ± 0.20

Devices Per Unit

ckage Type	Unit	Quantity
)P- 8P	Tape & Reel	2500

V.100X.COM.TW **APL5916**

Reflow Condition (IR/Convection or VPR Reflow)

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	MIL-STD-883D-2003	245°C, 5 sec
HOLT	MIL-STD-883D-1005.7	1000 Hrs Bias @125°C
PCT	JESD-22-B, A102	168 Hrs, 100%RH, 121°C
TST	MIL-STD-883D-1011.9	-65°C~150°C, 200 Cycles
ESD	MIL-STD-883D-3015.7	VHBM > 2KV, VMM > 200V
Latch-Up	JESD 78	$10ms, 1_{tr} > 100mA$

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate (T _L to T _P)	3°C/second max.	3°C/second max.
Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts)	100°C 150°C 60-120 seconds	150°C 200°C 60-180 seconds
Time maintained above: - Temperature (T _L) - Time (t _L)	183°C 60-150 seconds	217°C 60-150 seconds
Peak/Classification Temperature (Tp)	See table 1	See table 2
Time within 5°C of actual Peak Temperature (tp)	10-30 seconds	20-40 seconds
Ramp-down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

Copyright © ANPEC Electronics Corp. Rev. A.1 - Mar., 2008

Classification Reflow Profiles (Cont.)

Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures

Package Thickness	Volume mm ³	Volume mm
OY.CO. TW WW	<350	\$350
<2.5 mm	240 +0/-5°C	225 +0/-5°C
≥2.5 mm	225 +0/-5°C	225 +0/-5°C

NWW.100Y.COM.TW

N.COM.TW

22.3 1111	(223 +	0-5.0	223 +0-3 0
able 2. Pb-free Process – P	ackage Classification R	eflow Temperatures	
Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
<1.6 mm	260 +0°C*	260 +0°C*	260 +0°C*
1.6 mm – 2.5 mm	260 +0°C*	250 +0°C*	245 +0°C*
≥2.5 mm	250 +0°C*	245 +0°C*	245 +0°C*

*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL level. WWW.100Y.COM.TW WWW.100Y.COT WWW.100Y.CO WWW.100X.C

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Copyright @ ANPEC Electronics Corp. Rev. A.1 - Mar., 2008