3．0V／3．3V Microprocessor Supervisory Circuits

General Description
These microprocessor（ $\mu \mathrm{P}$ ）supervisory circuits reduce the complexity and number of components required for power－supply monitoring and battery－control functions in $\mu \mathrm{P}$ systems．They significantly improve system relia－ bility and accuracy compared to separate ICs or discrete components．
These devices are designed for use in systems powered by 3.0 V or 3.3 V supplies．See the selector guide in the back of this data sheet for similar devices designed for 5 V systems．The suffixes denote different reset threshold voltages： $3.075 \mathrm{~V}(\mathrm{~T}), 2.925 \mathrm{~V}(\mathrm{~S})$ ，and $2.625 \mathrm{~V}(\mathrm{R})$（see the Reset Threshold section in the Detailed Description）．All these parts are available in 8－pin DIP and SO packages． Functions offered in this series are as follows：

MAX690	\checkmark		\checkmark		\checkmark	$\pm 4 \%$	\checkmark	$\pm 75 \mathrm{mV}$
MAX704	\checkmark			\checkmark	\checkmark	$\pm 4 \%$	\checkmark	$\pm 75 \mathrm{mV}$
MAX802	\checkmark		\checkmark		\checkmark	$\pm 2 \%$	\checkmark	$\pm 2 \%$
MAX804		\checkmark	\checkmark		\checkmark	$\pm 2 \%$	\checkmark	$\pm 2 \%$
MAX805		\checkmark	\checkmark		\checkmark	$\pm 4 \%$	\checkmark	$\pm 75 \mathrm{mV}$
MAX806	\checkmark			\checkmark	\checkmark	$\pm 2 \%$	\checkmark	$\pm 2 \%$

Applications
Battery－Powered Computers and Controllers Embedded Controllers
Intelligent Instruments
Automotive Systems
Critical $\mu \mathrm{P}$ Power Monitoring
Portable Equipment
Pin Configuration

Features		
－$\overline{\text { RESET }}$ and RESET Outputs		
－Manual Reset Input		
－Precision Supply－Voltage Monitor		
－200ms Reset Time Delay		
－Watchdog Timer（1．6s timeout）		
－Battery－Backup Power Switching－		
－40رA V ${ }_{\text {cc }}$ Supply Current		
－1ヶA Battery Supply Current		
Voltage Monitor for Power－Fail or Low－Battery Warning		
Guaranteed $\overline{\text { RESET }}$ Assertion to $\mathrm{V}_{\mathrm{CC}}=1 \mathrm{~V}$ －8－Pin DIP and SO Packages		
Ordering Information		
PART＊＊	TEMP RANGE	PIN－PACKAGE
MAX690＿CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX690＿CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX690＿C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊
MAX690＿EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX690＿ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX690＿MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP

Ordering Information continued at end of data sheet．
＊Contact factory for dice specifications．
＊＊These parts offer a choice of reset threshold voltage．Select the letter corresponding to the desired nominal reset threshold voltage（ $T=3.075 \mathrm{~V}, S=2.925 \mathrm{~V}, R=2.625 \mathrm{~V}$ ）and insert it into the blank to complete the part number．
Devices in PDIP and SO packages are available in both leaded and lead－free packaging．Specify lead free by adding the＋ symbol at the end of the part number when ordering．Lead free not available for CERDIP package．

Typical Operating Circuits

（）ARE FOR MAX804T／S／R，MAX805T／S／R
See last page for MAX704T／S／R，MAX806T／S／R．

3.0V/3.3V Microprocessor Supervisory Circuits

ABSOLUTE MAXIMUM RATINGS

Terminal Voltage (with re	t to GND)
$V_{\text {Cc. }}$..........................-0.3V to 6.0V
VBATT-0.3V to 6.0V
All Other Inputs	.-0.3V to the higher of V_{CC} or VBATT
Continuous Input Current	
$\mathrm{V}_{\text {Cc }} \ldots$. 100 mA
VBATT	.18mA
GND	18 mA
Output Current	
$\overline{R E S E T}, \overline{\text { PFO }}$.18mA
	. 100 mA

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$
.727 mW
SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. \qquad CERDIP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad .640 mW Operating Temperature Ranges
MAX690_C_ JMAX704_C_」MAX80__C_ _ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ MAX690_E_/MAX704_E_ /MAX80__ E_- $\ldots . . .40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ MAX690_M__MAX704_M__MAX80__M__..-55 ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10sec) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{C C}=3.17 \mathrm{~V}$ to 5.5 V for the MAX690T/MAX704T/MAX80_T, $\mathrm{V}_{C C}=3.02 \mathrm{~V}$ to 5.5 V for the MAX690S/MAX704S/MAX80_S, $\mathrm{V}_{C C}=2.72 \mathrm{~V}$ to 5.5 V for the MAX690R/MAX704R/MAX80_R; VBATT $=3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

3.0V/3.3V Microprocessor Supervisory Circuits

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=3.17 \mathrm{~V}\right.$ to 5.5 V for the MAX690T/MAX704T/MAX80_T, $\mathrm{V}_{C C}=3.02 \mathrm{~V}$ to 5.5 V for the $\mathrm{MAX} 690 \mathrm{~S} / \mathrm{MAX704S} / \mathrm{MAX} 80 _\mathrm{S}, \mathrm{V}_{C C}=2.72 \mathrm{~V}$ to 5.5 V for the MAX690R/MAX704R/MAX80_R; VBATT $=3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

3.0V/3.3V Microprocessor Supervisory Circuits

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=3.17 \mathrm{~V}\right.$ to 5.5 V for the MAX690T/MAX704T/MAX80_T, $\mathrm{V}_{C C}=3.02 \mathrm{~V}$ to 5.5 V for the MAX690S/MAX704S/MAX80_S, $\mathrm{V}_{\mathrm{CC}}=2.72 \mathrm{~V}$ to 5.5 V for the MAX690R/MAX704R/MAX80_R; VBATT $=3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
PFI Input Threshold	VPFT	$\mathrm{V}_{\mathrm{CC}}<3.6 \mathrm{~V}$ VPFI falling	$\begin{aligned} & \text { MAX802_C/E, MAX804_C/E, } \\ & \text { MAX806_C/E } \end{aligned}$	1.212	1.237	1.262	V
			MAX690_/MAX704_MAX805_	1.187	1.237	1.287	
PFI Input Current		MAX690_C/E, MAX704_C/E, MAX80__C/E		-25	2	25	nA
		MAX690_M, MAX704_M, MAX80__M		-500	2	500	
PFI Hysteresis, PFI Rising	VPFH	$\mathrm{V}_{\mathrm{CC}}<3.6 \mathrm{~V}$	$\begin{aligned} & \text { MAX690_C/E, MAX704_C/E, } \\ & \text { MAX80__C/E } \end{aligned}$		10	20	mV
			MAX690_M, MAX704_M, MAX80_-M		10	25	
PFI Input Current		MAX690_C/E, MAX704_C/E, MAX80__C/E		-25	2	25	nA
		MAX690_M, MAX	704_M, MAX80__M	-500	2	500	
$\overline{\mathrm{MR}}$ Input Threshold	V_{IH}	MAX704_MAX806_ only				$\times \mathrm{VCC}$	V
	VIL			$0.3 \times \mathrm{V}$			
$\overline{\mathrm{MR}}$ Pulse Width	tMR	MAX704_MAX806_ only		100	20		ns
$\overline{\mathrm{MR}}$ to Reset Delay	t_{MD}	MAX704_MAX806_ only			60	500	ns
$\overline{M R}$ Pull-Up Current		MAX704_MAX806_only, $\overline{\mathrm{MR}}=0 \mathrm{~V}, \mathrm{VCC}=3 \mathrm{~V}$		20	60	350	$\mu \mathrm{A}$
WDI Input Threshold	V_{IH}	MAX690_MAX802_MAX804_MAX805_ only				$\times \mathrm{VCC}$	V
	$\mathrm{V}_{\text {IL }}$			$0.3 \times \mathrm{V}$			
WDI Input Current		$\mathrm{OV}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}$	MAX690_C/E, MAX802_C/E, MAX804_C/E, MAX805_C/E	-1	+0.01	+1	
			MAX690_M, MAX802_M, MAX804_M, MAX805_M	-10	+0.01	+10	
Watchdog Timeout Period	twd	$\mathrm{V}_{\mathrm{CC}}<3.6 \mathrm{~V}$	MAX690/MAX802/MAX804/ MAX805 only	1.12	1.60	2.24	s
WDI Pulse Width		MAX690_MAX802_MAX804_MAX805_only		100	20		ns

Note 1: $V_{C C}$ supply current, logic input leakage, watchdog functionality (MAX690_/802_/805_/804_), $\overline{M R}$ functionality (MAX704」806_), PFI functionality, state of $\overline{R E S E T}$ (MAX690_/704」802_806_), and RESET (MAX804_/805_) tested at $\mathrm{VBATT}=3.6 \mathrm{~V}$, and $\mathrm{V}_{C C}=5.5 \mathrm{~V}$. The state of $\overline{\mathrm{RESET}}$ or RESET and $\overline{\mathrm{PFO}}$ is tested at $\mathrm{V}_{C C}=\mathrm{V}_{C C}$ min.
Note 2: Tested at VBATT $=3.6 \mathrm{~V}, \mathrm{~V} C \mathrm{CC}=3.5 \mathrm{~V}$ and 0 V . The battery current will rise to $10 \mu \mathrm{~A}$ over a narrow transition window around $V_{C C}=1.9 \mathrm{~V}$.
Note 3: Leakage current into the battery is tested under the worst-case conditions at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{VBATT}=1.8 \mathrm{~V}$ and at $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$, VBATT= 1.0V.
Note 4: Guaranteed by design.
Note 5: When $\mathrm{V}_{S W}>\mathrm{V}_{C C}>$ VBATT, $\mathrm{V}_{\text {OUT }}$ remains connected to $\mathrm{V}_{C C}$ until $\mathrm{V}_{C C}$ drops below VBATT. The V_{CC}-to-VBATT comparator has a small 25 mV typical hysteresis to prevent oscillation. For $\mathrm{V}_{\mathrm{CC}}<1.75 \mathrm{~V}$ (typ), $\mathrm{V}_{\text {OUT }}$ switches to VBATT regardless of the voltage on VBATT.
Note 6: When VBATT $>\mathrm{V}_{C C}>\mathrm{V}_{S W}, V_{\text {OUT }}$ remains connected to $\mathrm{V}_{C C}$ until $\mathrm{V}_{C C}$ drops below the battery switch threshold $\left(\mathrm{V}_{S W}\right)$.
Note 7: $\mathrm{V}_{\text {OUT }}$ switches from VBATT to V_{CC} when V_{CC} rises above the reset threshold, independent of VBATT. Switchover back to $V_{\text {CC }}$ occurs at the exact voltage that causes $\overline{R E S E T}$ to go high (on the MAX804_/805_, RESET goes low); however switchover occurs 200ms prior to reset.
Note 8: The reset threshold tolerance is wider for $V_{C C}$ rising than for $V_{C C}$ falling to accommodate the 10 mV typical hysteresis, which prevents internal oscillation.
Note 9: The leakage current into or out of the RESET pin is tested with RESET asserted (RESET output high impedance).

3.0V/3.3V Microprocessor Supervisory Circuits

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

3.0V/3.3V Microprocessor Supervisory Circuits

PIN			NAME	FUNCTION
MAX690 MAX802	MAX704 MAX806	$\begin{array}{\|l\|} \hline \text { MAX804 } \\ \text { MAX805 } \end{array}$		
1	1	1	Vout	Supply Output for CMOS RAM. When $\mathrm{V}_{C C}$ is above the reset threshold, Vout is connected to V_{Cc} through a p-channel MOSFET switch. When V_{Cc} falls below $\mathrm{V}_{\text {sw }}$ and VBATT, VBATT connects to Vout. Connect to VCC if no battery is used.
2	2	2	VCC	Main Supply Input
3	3	3	GND	Ground
4	4	4	PFI	Power-Fail Input. When PFI is less than $\mathrm{V}_{\text {PFT }}$ or when $\mathrm{V}_{C C}$ falls below $\mathrm{V}_{\mathrm{SW}}, \overline{\mathrm{PFO}}$ goes low; otherwise, $\overline{\text { PFO }}$ remains high. Connect to ground if unused.
5	5	5	$\overline{\mathrm{PFO}}$	Power-Fail Output. When PFI is less than $V_{\text {PFT, }}$ or $V_{C C}$ falls below $V_{S W}, \overline{\text { PFO }}$ goes low; otherwise, $\overline{\text { PFO }}$ remains high. Leave open if unused.
6		6	WDI	Watchdog Input. If WDI remains high or low for 1.6 s, the internal watchdog timer runs out and reset is triggered. The internal watchdog timer clears while reset is asserted or when WDI sees a rising or falling edge. The watchdog function cannot be disabled.
-	6	-	$\overline{\mathrm{MR}}$	Manual Reset Input. A logic low on $\overline{\mathrm{MR}}$ asserts reset. Reset remains asserted as long as $\overline{\mathrm{MR}}$ is low and for 200 ms after $\overline{\mathrm{MR}}$ returns high. This active-low input has an internal $70 \mu \mathrm{~A}$ pullup current. It can be driven from a TTL or CMOS logic line, or shorted to ground with a switch. Leave open if unused.
7	7	-	$\overline{\text { RESET }}$	Active-Low Reset Output. Pulses low for 200ms when triggered, and stays low whenever $V_{C C}$ is below the reset threshold or when $\overline{M R}$ is a logic low. It remains low for 200 ms after either $V_{C C}$ rises above the reset threshold, the watchdog triggers a reset, or $\overline{M R}$ goes from low to high.
-	-	7	RESET	Active-High, Open-Drain Reset Output is the inverse of $\overline{\mathrm{RESET}}$.
8	8	8	VBATT	Backup-Battery Input. When V_{CC} falls below $\mathrm{V}_{S W}$ and VBATT, $\mathrm{V}_{\text {OUT }}$ switches from V_{CC} to VBATT. When V_{C} rises above the reset threshold, $\mathrm{V}_{\text {OUT }}$ reconnects to V_{C}. VBATT may exceed V_{CC}. Connect to $\mathrm{V}_{\text {CC }}$ if no battery is used.

Detailed Description

Reset Output

A microprocessor's ($\mu \mathrm{P}$'s) reset input starts the $\mu \mathrm{P}$ in a known state. These $\mu \mathrm{P}$ supervisory circuits assert reset to prevent code execution errors during power-up, powerdown, brownout conditions, or a watchdog timeout.
$\overline{\text { RESET }}$ is guaranteed to be a logic low for $\mathrm{OV}<\mathrm{V}_{\mathrm{CC}}<$ $\mathrm{V}_{\text {RST }}$, provided that VBATT is greater than 1 V . Without a backup battery, $\overline{R E S E T}$ is guaranteed valid for $V_{C C}$ $>1 \mathrm{~V}$. Once $\mathrm{V}_{c c}$ exceeds the reset threshold, an internal timer keeps $\overline{R E S E T}$ low for the reset timeout period; after this interval, $\overline{\text { RESET }}$ goes high (Figure 2).
If a brownout condition occurs (V_{CC} dips below the reset threshold), $\overline{R E S E T}$ goes low. Each time RESET is asserted, it stays low for the reset timeout period. Any time V_{CC} goes below the reset threshold, the internal timer restarts.
The watchdog timer can also initiate a reset. See the Watchdog Input section.
The MAX804_/MAX805_ active-high RESET output is open drain, and the inverse of the MAX690_/MAX704_ل MAX802_/MAX806_ RESET output.

Reset Threshold
The MAX690T/MAX704T/MAX805T are intended for 3.3 V systems with a $\pm 5 \%$ power-supply tolerance and a 10% system tolerance. Except for watchdog faults, reset will not assert as long as the power supply remains above 3.15V (3.3V-5\%). Reset is guaranteed to assert before the power supply falls below 3.0 V .
The MAX690S/MAX704S/MAX805S are designed for $3.3 \mathrm{~V} \pm 10 \%$ power supplies. Except for watchdog faults, they are guaranteed not to assert reset as long as the supply remains above 3.0 V (3.3V-10\%). Reset is guaranteed to assert before the power supply falls below 2.85 V ($\mathrm{V}_{\mathrm{CC}}-14 \%$).
The MAX690R/MAX704R/MAX805R are optimized for monitoring $3.0 \mathrm{~V} \pm 10 \%$ power supplies. Reset will not occur until V_{CC} falls below $2.7 \mathrm{~V}(3.0 \mathrm{~V}-10 \%)$, but is guaranteed to occur before the supply falls below 2.59V (3.0V-14\%).

The MAX802R/S/T, MAX804R/S/T, and MAX806R/S/T are respectively similar to the MAX690R/S/T, MAX805R/S/T, and MAX704R/S/T, but with tightened reset and power-fail threshold tolerances.

3.0V/3.3V Microprocessor Supervisory Circuits

Figure 1. Block Diagram

Watchdog Input
 (MAX690_/802_/804_/805_)

The watchdog circuit monitors the $\mu \mathrm{P}$'s activity. If the $\mu \mathrm{P}$ does not toggle the watchdog input (WDI) within 1.6 sec , a reset pulse is triggered. The internal 1.6 sec timer is cleared by either a reset pulse or by a transition (low-tohigh or high-to-low) at WDI. If WDI is tied high or low, a RESET pulse is triggered every 1.8 sec ($\mathrm{t}_{\text {WD }}$ plus $\mathrm{t}_{\text {RS }}$).
As long as reset is asserted, the timer remains cleared and does not count. As soon as reset is deasserted, the timer starts counting. Unlike the 5V MAX690 family, the watchdog function cannot be disabled.

Figure 2. Timing Diagram

Power-Fail Comparator

The PFI input is compared to an internal reference. If PFI is less than VPFT, $\overline{P F O}$ goes low. The power-fail comparator is intended for use as an undervoltage detector to signal a failing power supply. However, the comparator does not need to be dedicated to this function because it is completely separate from the rest of the circuitry.
The power-fail comparator turns off and $\overline{\mathrm{PFO}}$ goes low when V_{CC} falls below V_{SW} on power-down. The powerfail comparator turns on as $\mathrm{V}_{\text {CC }}$ crosses $\mathrm{V}_{\text {SW }}$ on power-up. If the comparator is not used, connect PFI to ground and leave PFO unconnected. PFO may be connected to MR on the MAX704_/MAX806_ so that a low voltage on PFI will generate a reset (Figure 5b).

3.0V/3.3V Microprocessor Supervisory Circuits

Abstract

Backup-Battery Switchover In the event of a brownout or power failure, it may be necessary to preserve the contents of RAM. With a backup battery installed at VBATT, the devices automatically switch RAM to backup power when V_{CC} falls. This family of $\mu \mathrm{P}$ supervisors (designed for 3.3 V and 3 V systems) doesn't always connect VBATT to $\mathrm{V}_{\text {OUT }}$ when VBATT is greater than V_{CC}. VBATT connects to $\mathrm{V}_{\text {OUT }}$ (through a 140Ω switch) when $V_{C C}$ is below $V_{S W}$ and VBATT is greater than V_{CC}, or when V_{CC} falls below 1.75 V (typ) regardless of the VBATT voltage. This is done to allow the backup battery (e.g., a 3.6V lithium cell) to have a higher voltage than V_{CC}. Switchover at $\mathrm{V}_{\text {SW }}(2.40 \mathrm{~V})$ ensures that battery-backup mode is entered before $\mathrm{V}_{\text {OUT }}$ gets too close to the 2.0 V minimum required to reliably retain data in CMOS RAM. Switchover at higher V_{CC} voltages would decrease backup-battery life. When $\mathrm{V}_{\text {Cc }}$ recovers, switchover is deferred until $V_{C C}$ rises above the reset threshold $\left(\mathrm{V}_{\mathrm{RST}}\right)$ to ensure a stable supply. $\mathrm{V}_{\text {OUT }}$ is connected to $V_{C C}$ through a 3Ω PMOS power switch.

Manual Reset

A logic low on $\overline{\mathrm{MR}}$ asserts reset. Reset remains asserted while $\overline{M R}$ is low, and for $t_{W P}$ (200ms) after $\overline{M R}$ returns high. This input has an internal $70 \mu \mathrm{~A}$ pull-up current, so it can be left open if it is not used. $\overline{M R}$ can be driven with TTL or CMOS logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from $\overline{M R}$ to GND to create a manual-reset function; external debounce circuitry is not required.

Table 1. Input and Output Status in Battery-Backup Mode

PIN NAME	STATUS
Vout	Connected to VBATT through an internal 140Ω switch
VCC	Disconnected from Vout
PFI	The power-fail comparator is disabled when $V_{C C}<V_{S W}$
PFO	Logic low when $\mathrm{V}_{\text {CC }}<\mathrm{V}_{\text {SW }}$ or PFI < VPFT
WDI	The watchdog timer is disabled
$\overline{\mathrm{MR}}$	Disabled
RESET	Low logic
RESET	High impedance
VBATT	Connected to Vout

Applications Information

These $\mu \mathrm{P}$ supervisory circuits are not short-circuit protected. Shorting $\mathrm{V}_{\text {OUT }}$ to ground-excluding powerup transients such as charging a decoupling capacitor-destroys the device. Decouple both V_{CC} and VBATT pins to ground by placing $0.1 \mu \mathrm{~F}$ capacitors as close to the device as possible.

Using a SuperCap

as a Backup Power Source
SuperCaps ${ }^{\text {TM }}$ are capacitors with extremely high capacitance values (e.g., order of 0.47 F) for their size. Figure 3 shows two ways to use a SuperCap as a backup power source. The SuperCap may be connected through a diode to the 3 V input (Figure 3a) or, if a 5 V supply is also available, the SuperCap may be charged up to the 5V supply (Figure 3b) allowing a longer backup period. Since VBATT can exceed $V_{C C}$ while V_{CC} is above the reset threshold, there are no special precautions when using these $\mu \mathrm{P}$ supervisors with a SuperCap.

Operation without a Backup Power Source

These $\mu \mathrm{P}$ supervisors were designed for batterybacked applications. If a backup battery is not used, connect both VBATT and $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {Cc }}$, or use a different $\mu \mathrm{P}$ supervisor such as the MAX706T/S/R or MAX708T/S/R.

Replacing the Backup Battery

The backup power source can be removed while $V_{C C}$ remains valid, if VBATT is decoupled with a $0.1 \mu \mathrm{~F}$ capacitor to ground, without danger of triggering RESET/RESET. As long as $\mathrm{V}_{\text {CC }}$ stays above $\mathrm{V}_{\text {SW }}$, battery-backup mode cannot be entered.

Adding Hysteresis to the Power-Fail Comparator
The power-fail comparator has a typical input hysteresis of 10 mV . This is sufficient for most applications where a power-supply line is being monitored through an external voltage divider (see the Monitoring an Additional Power Supply section).
If additional noise margin is desired, connect a resistor between $\overline{\mathrm{PFO}}$ and PFI as shown in Figure 4a. Select the ratio of R1 and R2 such that PFI sees 1.237 V ($\mathrm{V}_{\mathrm{PFT}}$) when $\mathrm{V}_{\text {IN }}$ falls to its trip point ($\mathrm{V}_{\text {TRIP }}$). R3 adds the hysteresis and will typically be more than 10 times the value of R1 or R2. The hysteresis window extends both above $\left(\mathrm{V}_{\mathrm{H}}\right)$ and below $\left(\mathrm{V}_{\mathrm{L}}\right)$ the original trip point $\left(\mathrm{V}_{\text {TRIP }}\right)$.

SuperCap is a trademark of Baknor Industries.

3.0V/3.3V Microprocessor Supervisory Circuits

Figure 3. Using a SuperCap as a Backup Power Source

Connecting an ordinary signal diode in series with R3, as shown in Figure 4b, causes the lower trip point $\left(\mathrm{V}_{\mathrm{L}}\right)$ to coincide with the trip point without hysteresis ($V_{\text {TRIP }}$), so the entire hysteresis window occurs above $V_{\text {TRIP }}$. This method provides additional noise margin without compromising the accuracy of the power-fail threshold when the monitored voltage is falling. It is useful for accurately detecting when a voltage falls past a threshold.
The current through R1 and R2 should be at least $1 \mu \mathrm{~A}$ to ensure that the 25nA (max over extended temperature range) PFI input current does not shift the trip point. R3 should be larger than $10 \mathrm{k} \Omega$ so it does not load down the $\overline{\text { PFO }}$ pin. Capacitor C 1 adds additional noise rejection.

Monitoring an Additional Power Supply

These $\mu \mathrm{P}$ supervisors can monitor either positive or negative supplies using a resistor voltage divider to PFI. $\overline{\mathrm{PFO}}$ can be used to generate an interrupt to the $\mu \mathrm{P}$ (Figure 5). Connecting $\overline{\mathrm{PFO}}$ to $\overline{\mathrm{MR}}$ on the MAX704 and MAX806 causes reset to assert when the monitored supply goes out of tolerance. Reset remains asserted as long as $\overline{\text { PFO }}$ holds $\overline{\mathrm{MR}}$ low, and for 200ms after $\overline{\mathrm{PFO}}$ goes high.

Interfacing to μ Ps with Bidirectional Reset Pins

$\mu \mathrm{Ps}$ with bidirectional reset pins, such as the Motorola 68HC11 series, can contend with the MAX690_/ MAX704_/MAX802_/MAX806_ RESET output. If, for
example, the $\overline{\operatorname{RESET}}$ output is driven high and the $\mu \mathrm{P}$ wants to pull it low, indeterminate logic levels may result. To correct this, connect a $4.7 \mathrm{k} \Omega$ resistor between the $\overline{\operatorname{RESET}}$ output and the $\mu \mathrm{P}$ reset I / O, as in Figure 6. Buffer the RESET output to other system components.

Negative-Going $\mathbf{V}_{\boldsymbol{c c}}$ Transients
While issuing resets to the $\mu \mathrm{P}$ during power-up, powerdown, and brownout conditions, these supervisors are relatively immune to short-duration negative-going V_{CC} transients (glitches). It is usually undesirable to reset the $\mu \mathrm{P}$ when V_{CC} experiences only small glitches.
Figure 7 shows maximum transient duration vs. resetcomparator overdrive, for which reset pulses are not generated. The graph was produced using negativegoing V_{CC} pulses, starting at 3.3 V and ending below the reset threshold by the magnitude indicated (reset comparator overdrive). The graph shows the maximum pulse width a negative-going V_{CC} transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a $V_{C C}$ transient that goes 100 mV below the reset threshold and lasts for $40 \mu \mathrm{~s}$ or less will not cause a reset pulse to be issued.
A 100nF bypass capacitor mounted close to the V_{CC} pin provides additional transient immunity.

3.0V/3.3V Microprocessor Supervisory Circuits

804-806T/S/R

$$
\begin{aligned}
& V_{\text {TRIP }}=V_{\text {PFT }}\left(\frac{R_{1}+R_{2}}{R_{2}}\right) \\
& V_{H}=\left(V_{\text {PFT }}+V_{\text {PFH }}\right)\left(R_{1}\right)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) \quad \text { WHERE } \begin{array}{l}
V_{\text {PFT }}=1.237 \mathrm{~V} \\
V_{P F H}=10 \mathrm{mV}
\end{array} \\
& V_{L}=R_{1}\left[V_{\text {PFT }}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)-\frac{V_{C C}}{R_{3}}\right]
\end{aligned}
$$

$$
V_{T R I P}=V_{P F T}\left(\frac{R_{1}+R_{2}}{R_{2}}\right)
$$

$$
V_{H}=R_{1}\left[\left(V_{P F T}+V_{P F H}\right)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)-\frac{\left(V_{C C}-V_{D}\right)}{R_{3}}\right]
$$

WHERE VPFT $=1.237 \mathrm{~V}$
$V_{\text {PFH }}=10 \mathrm{mV}$
$V_{D}=$ DIODE FORWARD VOLTAGE DROP $V_{L}=V_{\text {TRIP }}$

Figure 4. a) Adding Additional Hysteresis to the Power-Fail Comparator
b) Shifting the Additional Hysteresis above V VFT

$V_{T R I P}=R_{2}\left[\left(V_{P F T}+V_{\text {PFH }}\right)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)-\frac{V_{C C}}{R_{1}}\right]$ $V_{L}=R_{2}\left[\left(V_{\text {PFT }}\right)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)-\frac{V_{C C}}{R_{1}}\right]$

WHERE $V_{\text {PFT }}=1.237 \mathrm{~V}$
$V_{\text {PFF }}=10 \mathrm{mV}$
NOTE: VTRIP IS NEGATIVE

a
b

Figure 5. Using the Power-Fail Comparator to Monitor an Additional Power Supply

3.0V/3.3V Microprocessor Supervisory Circuits

_Typical Operating Circuits (cont.)

Figure 7. Maximum Transient Duration without Causing a
Reset Pulse vs. Reset Comparator Overdrive

3．0V／3．3V Microprocessor Supervisory Circuits

＿Ordering Information（continued）

PART＊＊	TEMP RANGE	PIN－PACKAGE
MAX704＿CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX704＿CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX704＿C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊
MAX704＿EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX704＿ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX704＿MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP
MAX802＿CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX802＿CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX802＿C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊
MAX802＿EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX802＿ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX802＿MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP
MAX804＿CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX804＿CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX804＿C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊
MAX804＿EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX804＿ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX804＿MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP
MAX805＿CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX805＿CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX805＿C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊
MAX805＿EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX805＿ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX805＿MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP
MAX806＿CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX806＿CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX806＿C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊
MAX806＿EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX806＿ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX806＿MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP

＊Contact factory for dice specifications．
＊＊These parts offer a choice of reset threshold voltage．Select the letter corresponding to the desired nominal reset threshold voltage（ $T=3.075 \mathrm{~V}, S=2.925 \mathrm{~V}, R=2.625 \mathrm{~V}$ ）and insert it into the blank to complete the part number．
Devices in PDIP and SO packages are available in both leaded and lead－free packaging．Specify lead free by adding the＋ symbol at the end of the part number when ordering．Lead free not available for CERDIP package．

（ ）ARE FOR MAX804T／S／R，MAX805T／S／R． ［ ］ARE FOR MAX704T／S／R，MAX806T／S／R．

TRANSISTOR COUNT：802；
SUBSTRATE IS CONNECTED TO THE HIGHER OF $V_{C C}$ OR VBATT，AND MUST BE FLOATED IN ANY HYBRID DESIGN．

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．

