UC3844B，UC3845B， UC2844B，UC2845B

High Performance
 Current Mode Controllers

The UC3844B，UC3845B series are high performance fixed frequency current mode controllers．They are specifically designed for Off－Line and dc－dc converter applications offering the designer a cost－effective solution with minimal external components．These integrated circuits feature an oscillator，a temperature compensated reference，high gain error amplifier，current sensing comparator，and a high current totem pole output ideally suited for driving a power MOSFET．

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis，cycle－by－cycle current limiting，a latch for single pulse metering，and a flip－flop which blanks the output off every other oscillator cycle，allowing output deadtimes to be programmed from 50% to 70% ． These devices are available in an 8 －pin dual－in－line and surface mount（SOIC－8）plastic package as well as the 14 －pin plastic surface mount（SOIC－8）plastic package as well as the 14 －pin plastic surface
mount（SOIC－14）．The SOIC－14 package has separate power and ground pins for the totem pole output stage．

The UCX844B has UVLO thresholds of 16 V （on）and 10 V （off），
ideally suited for off－line converters．The UCX845B is tailored for
lower voltage applications having UVLO thresholds of 8.5 V （on）and
ideally suited for off－line converters．The UCX845B is tailored for
lower voltage applications having UVLO thresholds of 8.5 V （on）and 7．6 V（off）．

Features

－Trimmed Oscillator for Precise Frequency Control
－Oscillator Frequency Guaranteed at 250 kHz
－Current Mode Operation to 500 kHz Output Switching Frequency
－Output Deadtime Adjustable from 50% to 70%
－Automatic Feed Forward Compensation
－Latching PWM for Cycle－By－Cycle Current Limiting
－Internally Trimmed Reference with Undervoltage Lockout
－High Current Totem Pole Output
－Undervoltage Lockout with Hysteresis
－Low Startup and Operating Current
－Pb－Free Packages are Available

Figure 1．Simplified Block Diagram

ON Semiconductor ${ }^{\circledR}$

http：／／onsemi．com

PIN CONNECTIONS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 15 of this data sheet．

DEVICE MARKING INFORMATION
See general marking information in the device marking section on page 16 of this data sheet．

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Bias and Driver Voltages（Zero Series Impedance，see also Total Device spec）（Note 1）	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{C}}$	36	V
Total Power Supply and Zener Current	$\left(I_{C C}+I_{z}\right)$	30	mA
Output Current，Source or Sink（Note 2）	10	1.0	A
Output Energy（Capacitive Load per Cycle）	W	5.0	$\mu \mathrm{J}$
Current Sense and Voltage Feedback Inputs	$\mathrm{V}_{\text {in }}$	-0.3 to +5.5	V
Error Amp Output Sink Current	10	10	mA
Power Dissipation and Thermal Characteristics D Suffix，Plastic Package，SOIC－14 Case 751A Maximum Power Dissipation＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance，Junction－to－Air D1 Suffix，Plastic Package，SOIC－8 Case 751 Maximum Power Dissipation＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance，Junction－to－Air N Suffix，Plastic Package，Case 626 Maximum Power Dissipation＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance，Junction－to－Air	P_{D} $R_{\theta J A}$ P_{D} $R_{\theta J A}$ P_{D} $R_{\theta J A}$	$\begin{aligned} & 862 \\ & 145 \\ & 702 \\ & 178 \\ & \\ & 1.25 \\ & 100 \end{aligned}$	mW ${ }^{\circ} \mathrm{C} / \mathrm{W}$ mW ${ }^{\circ} \mathrm{C} / \mathrm{W}$ W ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	T_{J}	＋150	${ }^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Operating Ambient Temperature } & \text { UC3844B，UC3845B } \\ & \text { UC2844B，UC2845B }\end{array}$	T_{A}	$\begin{gathered} 0 \text { to }+70 \\ -25 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to＋150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device．Maximum Ratings are stress ratings only．Functional operation above the Recommended Operating Conditions is not implied．Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability．
1．The voltage is clamped by a zener diode（see page 9 Under Voltage Lockout section）．Therefore this voltage may be exceeded as long as the total power supply and zener current is not exceeded．
2．Maximum package power dissipation limits must be observed．
3．This device series contains ESD protection and exceeds the following tests：
Human Body Model 4000 V per JEDEC Standard JESD22－A114B
Machine Model Method 200 V per JEDEC Standard JESD22－A115－A
4．This device contains latch－up protection and exceeds 100 mA per JEDEC Standard JESD78
ELECTRICAL CHARACTERISTICS $\left(V_{C C}=15 \mathrm{~V}\right.$［Note 5］， $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}$ ．For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，for min／max values T_{A} is the operating ambient temperature range that applies［Note 6］，unless otherwise noted．）

Characteristic	Symbol	UC284XB			UC384XB，XBV			Unit
		Min	Typ	Max	Min	Typ	Max	

REFERENCE SECTION

Reference Output Voltage（ $\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$ ）	$V_{\text {ref }}$	4.95	5.0	5.05	4.9	5.0	5.1	V
Line Regulation（ $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ to 25 V ）	Regline	－	2.0	20	－	2.0	20	mV
Load Regulation（ $\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}$ to 20 mA ）	Reg ${ }_{\text {load }}$	－	3.0	25	－	3.0	25	mV
Temperature Stability	T_{S}	－	0.2	－	－	0.2	－	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Total Output Variation over Line，Load，and Temperature	$\mathrm{V}_{\text {ref }}$	4.9	－	5.1	4.82	－	5.18	V
Output Noise Voltage（ $\mathrm{f}=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ）	V_{n}	－	50	－	－	50	－	$\mu \mathrm{V}$
Long Term Stability（ $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ for 1000 Hours）	S	－	5.0	－	－	5.0	－	mV
Output Short Circuit Current	ISC	－30	－85	－180	－30	－85	－180	mA

OSCILLATOR SECTION

$\begin{aligned} & \text { Frequency } \\ & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\ & \mathrm{T}_{J}=25^{\circ} \mathrm{C}\left(\mathrm{R}_{\mathrm{T}}=6.2 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\right) \end{aligned}$	$\mathrm{f}_{\text {OSC }}$	$\begin{gathered} 49 \\ 48 \\ 225 \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ - \\ 250 \end{gathered}$	$\begin{gathered} 55 \\ 56 \\ 275 \end{gathered}$	$\begin{gathered} 49 \\ 48 \\ 225 \end{gathered}$	$\begin{gathered} 52 \\ - \\ 250 \end{gathered}$	$\begin{gathered} 55 \\ 56 \\ 275 \end{gathered}$	kHz
Frequency Change with Voltage（ $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ to 25 V ）	$\Delta \mathrm{fosc}^{\prime} / \Delta \mathrm{V}$	－	0.2	1.0	－	0.2	1.0	\％
Frequency Change with Temperature（ $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ ）	$\Delta \mathrm{fosc}^{\text {／}}$－ $\mathrm{T}^{\text {T }}$	－	1.0	－	－	0.5	－	\％
Oscillator Voltage Swing（Peak－to－Peak）	$\mathrm{V}_{\text {OSC }}$	－	1.6	－	－	1.6	－	V

5．Adjust V_{CC} above the Startup threshold before setting to 15 V ．
6．Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible．
$\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for UC3844B，UC3845B $\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for UC3844B，UC3845B
$=-25^{\circ} \mathrm{C}$ for UC2844B，UC2845B $=+85^{\circ} \mathrm{C}$ for UC2844B，UC2845B
$=-40^{\circ} \mathrm{C}$ for UC3844BV，UC3845BV $\quad=+105^{\circ} \mathrm{C}$ for UC3844BV，UC3845BV

ELECTRICAL CHARACTERISTICS（ $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$［Note 7］， $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}$ ．For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，for min $/ \mathrm{max}$ values T_{A} is the operating ambient temperature range that applies［Note 8］，unless otherwise noted．）

Characteristic	Symbol	UC284XB			UC384XB，XBV			Unit
		Min	Typ	Max	Min	Typ	Max	
OSCILLATOR SECTION								
$\begin{aligned} & \hline \text { Discharge Current }\left(\mathrm{V}_{\mathrm{OSC}}=2.0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}(\text { UC284XB, UC384XB) } \\ & \text { (UC384XBV) } \end{aligned}$	Idischg	7.8 7.5	8.3	8.8 8.8	7.8 7.6 7.2	8.3 -	8.8 8.8 8.8	mA

ERROR AMPLIFIER SECTION

Voltage Feedback Input（ $\left.\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\right)$	V_{FB}	2.45	2.5	2.55	2.42	2.5	2.58	V
Input Bias Current（ $\mathrm{V}_{\mathrm{FB}}=5.0 \mathrm{~V}$ ）	I_{B}	－	－0．1	－1．0	－	－0．1	－2．0	$\mu \mathrm{A}$
Open Loop Voltage Gain（ $\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}$ to 4.0 V ）	Avol	65	90	－	65	90	－	dB
Unity Gain Bandwidth（ $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ）	BW	0.7	1.0	－	0.7	1.0	－	MHz
Power Supply Rejection Ratio（ $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ to 25 V ）	PSRR	60	70	－	60	70	－	dB
$\begin{array}{r} \hline \text { Output Current - Sink }\left(\mathrm{V}_{\mathrm{O}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\right) \\ \text { Source }\left(\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\right) \end{array}$	$I_{\text {Sink }}$ ISource	$\begin{gathered} \hline 2.0 \\ -0.5 \end{gathered}$	$\begin{gathered} \hline 12 \\ -1.0 \end{gathered}$		$\begin{gathered} \hline 2.0 \\ -0.5 \end{gathered}$	$\begin{gathered} \hline 12 \\ -1.0 \end{gathered}$	－	mA
Output Voltage Swing High State（ $\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}$ to ground， $\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}$ ） Low State（ $R_{L}=15 \mathrm{k}$ to $\mathrm{V}_{\text {ref }}, \mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}$ ） （UC284XB，UC384XB） （UC384XBV）	V_{OH} $V_{\text {OL }}$	5.0	6.2 0.8	1.1	5.0	$\begin{aligned} & 6.2 \\ & 0.8 \\ & 0.8 \end{aligned}$	1.1 1.2	V

CURRENT SENSE SECTION

| Current Sense Input Voltage Gain（Notes 9 \＆10）
 （UC284XB，UC384XB）
 （UC384XBV） | A_{V} | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

OUTPUT SECTION

```Output Voltage Low State (ISink =20 mA) (ISink = 200 mA, UC284XB, UC384XB) (ISink = 200 mA, UC384XBV) High State (ISource = 20 mA, UC284XB, UC384XB) (ISource = 20 mA, UC384XBV) (Isource = 200 mA)```	$\mathrm{V}_{\mathrm{OL}}$ $\mathrm{V}_{\mathrm{OH}}$	13 -12	$\begin{gathered} 0.1 \\ 1.6 \\ - \\ 13.5 \\ - \\ 13.4 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 2.2 \end{aligned}$	$\begin{gathered} - \\ 13 \\ 12.9 \\ 12 \end{gathered}$	$\begin{gathered} 0.1 \\ 1.6 \\ 1.6 \\ 13.5 \\ - \\ 13.4 \end{gathered}$	$\begin{gathered} 0.4 \\ 2.2 \\ 2.3 \\ - \end{gathered}$	V
Output Voltage with UVLO Activated（ $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ ， $\left.\mathrm{I}_{\text {Sink }}=1.0 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {OL（UVLO）}}$	－	0.1	1.1	－	0.1	1.1	V
Output Voltage Rise Time（ $\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}$ ）	$\mathrm{t}_{\mathrm{r}}$	－	50	150	－	50	150	ns
Output Voltage Fall Time（ $\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}$ ）	$\mathrm{t}_{\mathrm{f}}$	－	50	150	－	50	150	ns

## UNDERVOLTAGE LOCKOUT SECTION

Startup Threshold	$V_{\text {th }}$		16	17	14.5	16	17.5	V
UCX844B，BV		15	16	17				
UCX845B，BV		7.8	8.4	9.0	7.8	8.4	9.0	
Minimum Operating Voltage After Turn－On	$\mathrm{V}_{\mathrm{CC}(\min )}$							V
UCX844B，BV		9.0	10	11	8.5	10	11.5	
UCX845B，BV		7.0	7.6	8.2	7.0	7.6	8.2	

7．Adjust $\mathrm{V}_{\mathrm{CC}}$ above the Startup threshold before setting to 15 V ．
8．Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible．

$$
\begin{aligned}
\mathrm{T}_{\text {low }} & =0^{\circ} \mathrm{C} \text { for UC3844B, UC3845B } & \mathrm{T}_{\text {high }} & =+70^{\circ} \mathrm{C} \text { for UC3844B, UC3845B } \\
& =-25^{\circ} \mathrm{C} \text { for UC2844B, UC2845B } & & =+85^{\circ} \mathrm{C} \text { for UC2844B, UC2845B } \\
& =-40^{\circ} \mathrm{C} \text { for UC3844BV, UC3845BV } & & =+105^{\circ} \mathrm{C} \text { for UC3844BV, UC3845BV }
\end{aligned}
$$

9．This parameter is measured at the latch trip point with $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ ．
10．Comparator gain is defined as：$A_{V}=\frac{\Delta V \text { Output／Compensation }}{\Delta V \text { Curent }}$
$\Delta V$ Current Sense Input

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－34970699胜特力电子（深圳）86－755－83298787 Http：／／www．100y．com．tw

ELECTRICAL CHARACTERISTICS（ $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$［Note 11］， $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}$ ．For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，for min $/ \mathrm{max}$ values $T_{A}$ is the operating ambient temperature range that applies［Note 12］，unless otherwise noted．）

Characteristic		UC284XB			UC384XB，XBV			
	Symbol	Min	Typ	Max	Min	Typ	Max	Unit

PWM SECTION

Duty Cycle							
Maximum（UC284XB，UC384XB）							
（UC384XBV）	$D C_{(\max )}$	47	48	50	47	48	50
Minimum	$D_{(\min )}$	-	-	-	46	48	50

TOTAL DEVICE

Power Supply Current   Startup（VCC $=6.5 \mathrm{~V}$ for UCX845B，   14 V for UCX844B，BV）   Operating（Note 11）	I CC					mA	
Power Supply Zener Voltage（I $\mathrm{ICC}=25 \mathrm{~mA}$ ）		-	0.3	0.5	-	0.3	0.5

11．Adjust $\mathrm{V}_{\mathrm{CC}}$ above the Startup threshold before setting to 15 V ．
12．Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible．
$\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for UC3844B，UC3845B $\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for UC3844B，UC3845B
$=-25^{\circ} \mathrm{C}$ for UC2844B，UC2845B
$=+85^{\circ} \mathrm{C}$ for UC2844B，UC2845B
$=-40^{\circ} \mathrm{C}$ for UC3844BV，UC3845BV $\quad=+105^{\circ} \mathrm{C}$ for UC3844BV，UC3845BV


For $R_{T}>5 \mathrm{Kf} \sim \frac{1.72}{\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}}$

Figure 2．Timing Resistor versus Oscillator Frequency


Figure 4．Error Amp Small Signal Transient Response


Figure 3．Output Deadtime versus Oscillator Frequency


Figure 5．Error Amp Large Signal Transient Response


Figure 6．Error Amp Open Loop Gain and Phase versus Frequency


Figure 7．Current Sense Input Threshold versus Error Amp Output Voltage


Figure 9．Reference Short Circuit Current versus Temperature


Figure 10．Reference Load Regulation


Figure 11．Reference Line Regulation

## Http：／／www．100y．com．tw



Figure 12．Output Saturation Voltage versus Load Current


Figure 14．Output Cross Conduction


Figure 13．Output Waveform


Figure 15．Supply Current versus Supply Voltage

## PIN FUNCTION DESCRIPTION

Pin		Function	Description
8－Pin	14－Pin		
1	1	Compensation	This pin is the Error Amplifier output and is made available for loop compensation．
2	3	Voltage Feedback	This is the inverting input of the Error Amplifier．It is normally connected to the switching power supply output through a resistor divider．
3	5	Current Sense	A voltage proportional to inductor current is connected to this input．The PWM uses this information to terminate the output switch conduction．
4	7	$\mathrm{R}_{\mathrm{T}} / \mathrm{C}_{\mathrm{T}}$	The Oscillator frequency and maximum Output duty cycle are programmed by connecting resistor $\mathrm{R}_{\mathrm{T}}$ to $\mathrm{V}_{\text {ref }}$ and capacitor $\mathrm{C}_{\mathrm{T}}$ to ground．Oscillator operation to 1.0 kHz is possible．
5		GND	This pin is the combined control circuitry and power ground．
6	10	Output	This output directly drives the gate of a power MOSFET．Peak currents up to 1.0 A are sourced and sunk by this pin．The output switches at one－half the oscillator frequency．
7	12	$\mathrm{V}_{\mathrm{CC}}$	This pin is the positive supply of the control IC．
8	14	$\mathrm{V}_{\text {ref }}$	This is the reference output．It provides charging current for capacitor $\mathrm{C}_{\mathrm{T}}$ through resistor $\mathrm{R}_{\mathrm{T}}$ ．
	8	Power Ground	This pin is a separate power ground return that is connected back to the power source．It is used to reduce the effects of switching transient noise on the control circuitry．
	11	$\mathrm{V}_{\mathrm{C}}$	The Output high state $\left(\mathrm{V}_{\mathrm{OH}}\right)$ is set by the voltage applied to this pin．With a separate power source connection，it can reduce the effects of switching transient noise on the control circuitry．
	9	GND	This pin is the control circuitry ground return and is connected back to the powersource ground．
	2，4，6，13	NC	No connection．These pins are not internally connected．

The UC3844B，UC3845B series are high performance， fixed frequency，current mode controllers．They are specifically designed for Off－Line and DC－DC converter applications offering the designer a cost－effective solution with minimal external components．A representative block diagram is shown in Figure 16.

## Oscillator

The oscillator frequency is programmed by the values selected for the timing components $\mathrm{R}_{\mathrm{T}}$ and $\mathrm{C}_{\mathrm{T}}$ ．Capacitor $\mathrm{C}_{\mathrm{T}}$ is charged from the 5.0 V reference through resistor $\mathrm{R}_{\mathrm{T}}$ to approximately 2.8 V and discharged to 1.2 V by an internal current sink．During the discharge of $\mathrm{C}_{\mathrm{T}}$ ，the oscillator generates an internal blanking pulse that holds the center input of the NOR gate high．This causes the Output to be in a low state，thus producing a controlled amount of output deadtime．An internal flip－flop has been incorporated in the UCX844／5B which blanks the output off every other clock cycle by holding one of the inputs of the NOR gate high．This in combination with the $\mathrm{C}_{\mathrm{T}}$ discharge period yields output deadtimes programmable from $50 \%$ to $70 \%$ ．Figure 2 shows $\mathrm{R}_{\mathrm{T}}$ versus Oscillator Frequency and Figure 3，Output Deadtime versus Frequency，both for given values of $\mathrm{C}_{\mathrm{T}}$ ． Note that many values of $\mathrm{R}_{\mathrm{T}}$ and $\mathrm{C}_{\mathrm{T}}$ will give the same oscillator frequency but only one combination will yield a specific output deadtime at a given frequency．The oscillator thresholds are temperature compensated to within $\pm 6 \%$ at 50 kHz ．Also，because of industry trends moving the UC384X into higher and higher frequency applications，the UC384XB is guaranteed to within $\pm 10 \%$ at 250 kHz ．

In many noise－sensitive applications it may be desirable to frequency－lock the converter to an external system clock． This can be accomplished by applying a clock signal to the circuit shown in Figure 18．For reliable locking，the free－running oscillator frequency should be set about $10 \%$ less than the clock frequency．A method for multi－unit synchronization is shown in Figure 19．By tailoring the clock waveform，accurate Output duty cycle clamping can be achieved to realize output deadtimes of greater than $70 \%$ ．

## Error Amplifier

A fully compensated Error Amplifier with access to the inverting input and output is provided．It features a typical dc voltage gain of 90 dB ，and a unity gain bandwidth of 1.0 MHz with 57 degrees of phase margin（Figure 6）．The non－inverting input is internally biased at 2.5 V and is not pinned out．The converter output voltage is typically divided down and monitored by the inverting input．The maximum input bias current is $-2.0 \mu \mathrm{~A}$ which can cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance．

The Error Amp Output（Pin 1）is provided for external loop compensation（Figure 29）．The output voltage is offset by two diode drops（ $\approx 1.4 \mathrm{~V}$ ）and divided by three before it connects to the inverting input of the Current Sense

Comparator．This guarantees that no drive pulses appear at the Output（Pin 6）when Pin 1 is at its lowest state（ $\mathrm{V}_{\mathrm{OL}}$ ）． This occurs when the power supply is operating and the load is removed，or at the beginning of a soft－start interval （Figures 21，22）．The Error Amp minimum feedback resistance is limited by the amplifier＇s source current $(0.5 \mathrm{~mA})$ and the required output voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ to reach the comparator＇s 1.0 V clamp level：

$$
\mathrm{R}_{\mathrm{f}(\mathrm{~min})} \approx \frac{3.0(1.0 \mathrm{~V})+1.4 \mathrm{~V}}{0.5 \mathrm{~mA}}=8800 \Omega
$$

## Current Sense Comparator and PWM Latch

The UC3844B，UC3845B operate as a current mode controller，whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier Output／Compensation（Pin 1）．Thus the error signal controls the peak inductor current on a cycle－by－cyclebasis．The Current Sense Comparator PWM Latch configuration used ensures that only a single pulse appears at the Output during any given oscillator cycle．The inductor current is converted to a voltage by inserting the ground－referenced sense resistor $\mathrm{R}_{\mathrm{S}}$ in series with the source of output switch Q1．This voltage is monitored by the Current Sense Input（Pin 3）and compared to a level derived from the Error Amp Output．The peak inductor current under normal operating conditions is controlled by the voltage at Pin 1 where：

$$
\mathrm{I}_{\mathrm{pk}}=\frac{\mathrm{V}_{(\operatorname{Pin} 1)}-1.4 \mathrm{~V}}{3 \mathrm{R}_{\mathrm{S}}}
$$

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost．Under these conditions，the Current Sense Comparator threshold will be internally clamped to 1.0 V ．Therefore the maximum peak switch current is：

$$
I_{\mathrm{pk}(\max )}=\frac{1.0 \mathrm{~V}}{\mathrm{R}_{\mathrm{S}}}
$$

When designing a high power switching regulator it becomes desirable to reduce the internal clamp voltage in order to keep the power dissipation of $\mathrm{R}_{\mathrm{S}}$ to a reasonable level．A simple method to adjust this voltage is shown in Figure 20．The two external diodes are used to compensate the internal diodes， yielding a constant clamp voltage over temperature．Erratic operation due to noise pickup can result if there is an excessive reduction of the $\mathrm{I}_{\mathrm{pk}(\max )}$ clamp voltage．
A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded．This spike is due to the power transformer interwinding capacitance and output rectifier recovery time． The addition of an RC filter on the Current Sense Input with a time constant that approximates the spike duration will usually eliminate the instability（refer to Figure 24）．


Figure 16．Representative Block Diagram


Figure 17．Timing Diagram

## Undervoltage Lockout

Two undervoltage lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stage is enabled．The positive power supply terminal $\left(\mathrm{V}_{\mathrm{CC}}\right)$ and the reference output $\left(\mathrm{V}_{\mathrm{ref}}\right)$ are each monitored by separate comparators．Each has built－in hysteresis to prevent erratic output behavior as their respective thresholds are crossed．The $\mathrm{V}_{\mathrm{CC}}$ comparator upper and lower thresholds are $16 \mathrm{~V} / 10 \mathrm{~V}$ for the UCX844B， and $8.4 \mathrm{~V} / 7.6 \mathrm{~V}$ for the UCX845B．The $\mathrm{V}_{\text {ref }}$ comparator upper and lower thresholds are $3.6 \mathrm{~V} / 3.4 \mathrm{~V}$ ．The large hysteresis and low startup current of the UCX844B makes it ideally suited in off－line converter applications where efficient bootstrap startup techniques are required （Figure 30）．The UCX845B is intended for lower voltage dc－dc converter applications．A 36 V Zener is connected as a shunt regulator from $\mathrm{V}_{\mathrm{CC}}$ to ground．Its purpose is to protect the IC from excessive voltage that can occur during system startup．The minimum operating voltage for the UCX844B is 11 V and 8.2 V for the UCX845B．

## Output

These devices contain a single totem pole output stage that was specifically designed for direct drive of power MOSFETs．It is capable of up to $\pm 1.0$ A peak drive current and has a typical rise and fall time of 50 ns with a 1.0 nF load． Additional internal circuitry has been added to keep the Output in a sinking mode whenever an undervoltage lockout is active．This characteristic eliminates the need for an external pulldown resistor．

The SOIC－14 surface mount package provides separate pins for $\mathrm{V}_{\mathrm{C}}$（output supply）and Power Ground．Proper implementation will significantly reduce the level of switching transient noise imposed on the control circuitry． This becomes particularly useful when reducing the $\mathrm{I}_{\mathrm{pk}(\max )}$ clamp level．The separate $\mathrm{V}_{\mathrm{C}}$ supply input allows the
designer added flexibility in tailoring the drive voltage independent of $\mathrm{V}_{\mathrm{CC}}$ ．A Zener clamp is typically connected to this input when driving power MOSFETs in systems where $\mathrm{V}_{\mathrm{CC}}$ is greater than 20 V ．Figure 23 shows proper power and control ground connections in a current－sensing power MOSFET application．

## Reference

The 5.0 V bandgap reference is trimmed to $\pm 1.0 \%$ tolerance at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ on the UC284XB，and $\pm 2.0 \%$ on the UC384XB．Its primary purpose is to supply charging current to the oscillator timing capacitor．The reference has short－circuit protection and is capable of providing in excess of 20 mA for powering additional control system circuitry．

## Design Considerations

Do not attempt to construct the converter on wire－wrap or plug－in prototype boards．High frequency circuit layout techniques are imperative to prevent pulse－width jitter．This is usually caused by excessive noise pick－up imposed on the Current Sense or Voltage Feedback inputs．Noise immunity can be improved by lowering circuit impedances at these points．The printed circuit layout should contain a ground plane with low－current signal and high－current switch and output grounds returning on separate paths back to the input filter capacitor．Ceramic bypass capacitors $(0.1 \mu \mathrm{~F})$ connected directly to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{C}}$ ， and $\mathrm{V}_{\text {ref }}$ may be required depending upon circuit layout． This provides a low impedance path for filtering the high frequency noise．All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI．The Error Amp compensation circuitry and the converter output voltage divider should be located close to the IC and as far as possible from the power switch and other noise－generating components．


The diode clamp is required if the Sync amplitude is large enough to cause the bottom side of $\mathrm{C}_{\mathrm{T}}$ to go more than 300 mV below ground．


Figure 19．External Duty Cycle Clamp and Multi－Unit Synchronization


Figure 20．Adjustable Reduction of Clamp Level


Figure 22．Adjustable Buffered Reduction of Clamp Level with Soft－Start


Figure 21．Soft－Start Circuit


Figure 23．Current Sensing Power MOSFET

## UC3844B，UC3845B，UC2844B，UC2845B

胜特力 电子（深圳）86－755－83298787
Http：／／www． 100 y．com．tw


Figure 24．Current Waveform Spike Suppression


Series gate resistor $R_{g}$ will damp any high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate－source circuit．

Figure 25．MOSFET Parasitic Oscillations


The totem pole output can furnish negative base current for enhanced transistor turn－off，with the addition of capacitor $\mathrm{C}_{1}$ ．

Figure 26．Bipolar Transistor Drive

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www． 100 y．com．tw


Figure 27．Isolated MOSFET Drive


The MCR101 SCR must be selected for a holding of $<0.5 \mathrm{~mA} @ \mathrm{~T}_{\mathrm{A}(\mathrm{min})}$ ．The simple two transistor circuit can be used in place of the SCR as shown．All resistors are 10 k ．

Figure 28．Latched Shutdown


Error Amp compensation circuit for stabilizing any current mode topology except for boost and flyback converters operating with continuous inductor current．


Error Amp compensation circuit for stabilizing current mode boost and flyback topologies operating with continuous inductor current．

Figure 29．Error Amplifier Compensation

## UC3844B，UC3845B，UC2844B，UC2845B



Figure 30．7 W Off－Line Flyback Regulator

Test	Conditions	Results
Line Regulation： $\begin{aligned} & 5.0 \mathrm{~V} \\ & \\ & \pm 12 \mathrm{~V}\end{aligned}$	$\mathrm{V}_{\text {in }}=95 \mathrm{Vac}$ to 130 Vac	$\begin{aligned} & \Delta=50 \mathrm{mV} \text { or } \pm 0.5 \% \\ & \Delta=24 \mathrm{mV} \text { or } \pm 0.1 \% \end{aligned}$
Load Regulation： 5.0 V $\pm 12 \mathrm{~V}$	$\begin{aligned} & V_{\text {in }}=115 \mathrm{Vac}, I_{\text {out }}=1.0 \mathrm{~A} \text { to } 4.0 \mathrm{~A} \\ & \mathrm{~V}_{\text {in }}=115 \mathrm{Vac}, I_{\text {out }}=100 \mathrm{~mA} \text { to } 300 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \Delta=300 \mathrm{mV} \text { or } \pm 3.0 \% \\ & \Delta=60 \mathrm{mV} \text { or } \pm 0.25 \% \end{aligned}$
$\begin{array}{ll}\text { Output Ripple：} & \begin{array}{l}5.0 \mathrm{~V} \\ \pm 12 \mathrm{~V}\end{array} \\ & \end{array}$	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}$	$\begin{aligned} & 40 \mathrm{mV}_{\mathrm{pp}} \\ & 80 \mathrm{mV} \end{aligned}$
Efficiency	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}$	70\％

All outputs are at nominal load currents unless otherwise noted．

> 勝 特 力 材 料 $886-3-5753170$胜特力电子(上海) $86-21-34970699$胜特力电子(深圳) $86^{-755-83298787}$
> Http: //www. 100 y. com. tw

## UC3844B，UC3845B，UC2844B，UC2845B



The capacitor＇s equivalent series resistance must limit the Drive Output current to 1．0 A．An additional series resistor may be required when using tantalum or other low ESR capacitors．The converter＇s output can provide excellent line and load regulation by connecting the R2／R1 resistor divider as shown．

Figure 31．Step－Up Charge Pump Converter
勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www．100y．com．tw


The capacitor＇s equivalent series resistance must limit the Drive Output current to 1.0 A ． An additional series resistor may be required when using tantalum or other low ESR capacitors．

Figure 32．Voltage－Inverting Charge Pump Converter

## ORDERING INFORMATION


$\dagger$ For information on tape and reel specifications，including part orientation and tape sizes，please refer to our Tape and Reel Packaging Specifications Brochure，BRD8011／D．
x indicates either a 4 or 5 to define specific device part numbers．

PDIP－8
N SUFFIX
CASE 626


SOIC－14 D SUFFIX CASE 751A


SOIC－8 D1 SUFFIX
CASE 751

$x \quad=4$ or 5
A＝Assembly Location
WL， $\mathrm{L}=$ Wafer Lot
YY，Y＝Year
WW，W＝Work Week
G or •＝Pb－Free Package

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www．100y．com．tw

## PACKAGE DIMENSIONS

PDIP－8
N SUFFIX
CASE 626－05
ISSUE L


NOTES：
1．DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL．
2．PACKAGE CONTOUR OPTIONAL（ROUND OR SQUARE CORNERS）．
3．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	9.40	10.16	0.370	0.400
B	6.10	6.60	0.240	0.260
C	3.94	4.45	0.155	0.175
D	0.38	0.51	0.015	0.020
F	1.02	1.78	0.040	0.070
G	2.54 BSC		0.100	
BSC				
H	0.76	1.27	0.030	0.050
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC	0.300		BSC
M	---	$10^{\circ}$	---	
N	0.76	1.01	0.030	0.040

## UC3844B，UC3845B，UC2844B，UC2845B

SOIC－14
CASE 751A－03
ISSUE H

NOTES：
DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982
2．CONTROLLING DIMENSION：MILLIMETER
3．DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION．
4．MAXIMUM MOLD PROTRUSION 0.15 （0．006 PER SIDE．
5．DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION．ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 （0．005）TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION．

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	8.55	8.75	0.337	0.344		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27		BSC	0.050		BSC
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	$0^{\circ}$	$7^{\circ}$	$0^{\circ}$	$7^{\circ}$		
P	5.80	6.20	0.228	0.244		
R	0.25	0.50	0.010	0.019		

SOLDERING FOOTPRINT


## PACKAGE DIMENSIONS

SOIC－8 NB
CASE 751－07
ISSUE AH


NOTES：
1．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982
2．CONTROLLING DIMENSION：MILLIMETER．
3．DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION
4．MAXIMUM MOLD PROTRUSION 0.15 （ 0.006 ） PER SIDE．
DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION．ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 （ 0.005 ）TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION
6．751－01 THRU 751－06 ARE OBSOLETE．NEW STANDARD IS 751－07．

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	4.80	5.00	0.189	0.197		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27		BSC	0.050		BSC
$\mathbf{H}$	0.10	0.25	0.004	0.010		
$\mathbf{J}$	0.19	0.25	0.007	0.010		
$\mathbf{K}$	0.40	1.27	0.016	0.050		
$\mathbf{M}$	0	$\circ$	$8^{\circ}$	0		
	$\circ$	8				
$\mathbf{N}$	0.25	0.50	0.010	0.020		
$\mathbf{S}$	5.80	6.20	0.228	0.244		

## SOLDERING FOOTPRINT＊



勝 特 力 材 料 886－3－5753170胜特力 电子（上海）86－21－34970699胜特力电子（深圳）86－755－83298787 Http：／／www．100y．com．tw

SENSEFET is a trademark of Semiconductor Components Industries，LLC．


#### Abstract

ON Semiconductor and（ON）are registered trademarks of Semiconductor Components Industries，LLC（SCILLC）．SCILLC reserves the right to make changes without further notice to any products herein．SCILLC makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does SCILLC assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages． ＂Typical＂parameters which may be provided in SCILLC data sheets and／or specifications can and do vary in different applications and actual performance may vary over time．All operating parameters，including＂Typicals＂must be validated for each customer application by customer＇s technical experts．SCILLC does not convey any license under its patent rights nor the rights of others．SCILLC products are not designed，intended，or authorized for use as components in systems intended for surgical implant into the body，or other applications intended to support or sustain life，or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur．Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application，Buyer shall indemnify and hold SCILLC and its officers，employees，subsidiaries，affiliates， and distributors harmless against all claims，costs，damages，and expenses，and reasonable attorney fees arising out of，directly or indirectly，any claim of personal injury or death associated with such unintended or unauthorized use，even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part．SCILLC is an Equa Opportunity／Affirmative Action Employer．This literature is subject to all applicable copyright laws and is not for resale in any manner．


## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P．O．Box 5163，Denver，Colorado 80217 USA
Phone：303－675－2175 or 800－344－3860 Toll Free USA／Canada Fax：303－675－2176 or 800－344－3867 Toll Free USA／Canada Email：orderlit＠onsemi．com

N．American Technical Support：800－282－9855 Toll Free USA／Canada
Europe，Middle East and Africa Technical Support： Phone： 421337902910 Japan Customer Focus Center Phone：81－3－5773－3850

ON Semiconductor Website：www．onsemi．com Order Literature：http：／／www．onsemi．com／orderlit

For additional information，please contact your loca Sales Representative

