AUTOSWITCHING POWER MUX Check for Samples: TPS2110A, TPS2111A #### **FEATURES** - Two-Input, One-Output Power Multiplexer with Low r_{DS(on)} Switches: - 84 mΩ Typ (TPS2111A) - 120 mΩ Typ (TPS2110A) - Reverse and Cross-Conduction Blocking - Wide Operating Voltage Range: 2.8 V to 5.5 V - Low Standby Current: 0.5 μA Typ Low Operating Current: 55 μA Typ - Adjustable Current Limit - Controlled Output Voltage Transition Time: Limits Inrush Current Minimizes Output Voltage Hold-Up Capacitance - CMOS- and TTL-Compatible Control Inputs - Manual and Auto-Switching Operating Modes - Thermal Shutdown - Available in a TSSOP-8 Package #### APPLICATIONS - PCs - PDAs - Digital Cameras - Modems - Cell Phones - Digital Radios - MP3 Players #### DESCRIPTION The TPS211xA family of power multiplexers enables seamless transition between two power supplies, such as a battery and a wall adapter, each operating at 2.8 V to 5.5 V and delivering up to 1 A. The TPS211xA family includes extensive protection circuitry, including user-programmable current limiting, thermal protection, inrush current control, seamless supply transition, cross-conduction blocking, and reverse-conduction blocking. These features greatly simplify designing power multiplexer applications. ### N1: 2.8 V to 5.5 V TPS2110A/TPS2111A 8 D₀ IN₁ 2 D₁ OUT 3 6 **VSNS** IN₂ ILIM **GND** IN2: 2.8 V to 5.5 V 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 TYPICAL APPLICATION Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### **AVAILABLE OPTIONS** | FEATURE Current Limit Adjustment Range | | TPS2110A | TPS2111A | TPS2112A | TPS2113A | TPS2114A | TPS2115A | |---|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | | | 0.31 A to
0.75 A | 0.63 A to
1.25 A | 0.31 A to
0.75 A | 0.63 A to
1.25 A | 0.31 A to
0.75 A | 0.63 A to
1.25 A | | Cuitabia a Madaa | Manual | Yes | Yes | No | No | Yes | Yes | | Switching Modes | Automatic | Yes | Yes | Yes | Yes | Yes | Yes | | Switch Status Output | | No | No | Yes | Yes | Yes | Yes | #### ORDERING INFORMATION(1) | T _A | PACKAGE | ORDERING NUMBER | PACKAGE MARKING | |----------------|--------------|-----------------|-----------------| | -40°C to 85°C | TESOD 8 (DM) | TPS2110APW | 2110A | | -40°C to 85°C | TSSOP-8 (PW) | TPS2111APW | 2111A | ⁽¹⁾ For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. #### ABSOLUTE MAXIMUM RATINGS(1) Over recommended operating junction temperature range, unless otherwise noted. | | | TPS2110A, TPS2111A | UNIT | | |--------------------------------------|--|---------------------|------------|--| | Input voltage range at pir | ns IN1, IN2, D0, D1, VSNS, ILIM ⁽²⁾ | -0.3 to 6 | V | | | Output voltage range, V _C | (OUT) (2) | -0.3 to 6 | V | | | | TPS2110A | 0.9 | | | | Continuous output currer | TPS2111A | 1.5 | A | | | Continuous total power d | issipation | See Dissipation Rat | ings table | | | Operating virtual junction | temperature range, T _J | Internally Lim | ited | | | Human body m | odel (HBM) | 2 | kV | | | Charged device | e model (CDM) | 500 | V | | ⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### **DISSIPATION RATINGS** | PACKAGE | DERATING FACTOR | T _A ≤ 25°C POWER | T _A = 70°C POWER | T _A = 85°C POWER | |--------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------| | | ABOVE T _A = 25°C | RATING | RATING | RATING | | TSSOP-8 (PW) | 3.9 mW/°C | 387 mW | 213 mW | 155 mW | Product Folder Link(s): TPS2110A TPS2111A 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw ittp://www.fooy.com.tw ⁽²⁾ All voltages are with respect to GND. **INSTRUMENTS** Http://www.100y.com.tw SBVS043A - MARCH 2004-REVISED MARCH 2010 #### RECOMMENDED OPERATING CONDITIONS | | | TPS211 | TPS2110A, TPS2111A | | | |---|-----------------------------|--------|--------------------|------|--| | | | MIN | NOM MAX | UNIT | | | Innertal voltage at INICV | V _{I(IN2)} ≥ 2.8 V | 1.5 | 5.5 | V | | | nput voltage at IN1, V _{I(IN1)} | V _{I(IN2)} < 2.8 V | 2.8 | 5.5 | V | | | Input voltage of INIQ V | V _{I(IN1)} ≥ 2.8 V | 1.5 | 5.5 | V | | | Input voltage at IN2, V _{I(IN2)} | V _{I(IN1)} < 2.8 V | 2.8 | 5.5 | V | | | Input voltage: V _{I(DO)} , V _{I(D1)} , V _{I(VSNS)} | ON. THE | 0 | 5.5 | V | | | Current limit adjustment renge I | TPS2110A | 0.31 | 0.75 | Α | | | Current limit adjustment range, $I_{O(OUT)}$ | TPS2111A | 0.63 | 1.25 | | | | Operating virtual junction temperature, T _J | | -40 | 125 | °C | | #### **ELECTRICAL CHARACTERISTICS: Power Switch** Over recommended operating junction temperature, $V_{I(IN1)} = V_{I(IN2)} = 5.5 \text{ V}$, and $R_{ILIM} = 400 \Omega$, unless otherwise noted. | | | | | TI | PS2110A | | TP | S2111A | | | | | |-------------------------|------------------------------------|--|---|---|---|------|-----|--------|-----|------|-----|----| | PARAMETER | | TEST CONDITIONS | | MIN | MIN TYP | MAX | MIN | TYP | MAX | UNIT | | | | | | | $V_{I(IN1)} = V_{I(IN2)} = 5.0 \text{ V}$ | | 120 | 140 | | 84 | 110 | 40 | | | | | r _{DS(on)} ⁽¹⁾ | $T_J = 25^{\circ}C$, $I_L = 500 \text{ mA}$ | $V_{I(IN1)} = V_{I(IN2)} = 3.3 \text{ V}$ | | 120 | 140 | | 84 | 110 | mΩ | | | | Drain-source on-state | | | $V_{I(IN1)} = V_{I(IN2)} = 2.8 \text{ V}$ | | 120 | 140 | | 84 | 110 | | | | | resistance
(INx-OUT) | | IDS(on) | T _J : | | $V_{I(IN1)} = V_{I(IN2)} = 5.0 \text{ V}$ | ~ 1. | 1 | 220 | | | 150 | 1 | | (IIX-OUT) | | | | $T_J = 125$ °C,
$I_L = 500 \text{ mA}$ | $V_{I(IN1)} = V_{I(IN2)} = 3.3 \text{ V}$ | ~ () | | 220 | -1 | | 150 | mΩ | | | 1 | 16 = 000 1117 | $V_{I(IN1)} = V_{I(IN2)} = 2.8 \text{ V}$ | | | 220 | | | 150 | | | | The TPS211xA can switch a voltage as low as 1.5 V as long as there is a minimum of 2.8 V at one of the input power pins. In this specific case, the lower supply voltage has no effect on the IN1 and IN2 switch on-resistances. #### **ELECTRICAL CHARACTERISTICS** Over recommended operating junction temperature, $V_{I(IN1)} = V_{I(IN2)} = 5.5 \text{ V}$, $I_{O(OUT)} = 0 \text{ A}$, and $R_{ILIM} = 400 \Omega$, unless otherwise | 100 | 21/1/2/100 | TPS2110 | OA, TPS2111A | | -1 | |--|---|---------|--------------|-----|------| | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | LOGIC INPUTS (D0 AND D1) | 4N 1 10 21 Co | | | | | | High-level input voltage V _{IH} | 100,00 | 2 | | | V | | Low-level input voltage V _{IL} | | | -1 | 0.7 | ٧ | | Land aumont of DO and | D0 or D1 = High, sink current | 0/2 | | 1 | | | input current at Do or D1 | D0 or D1 = Low, source current | 0.5 | 1.4 | 5 | μА | | SUPPLY AND LEAKAGE CURR | ENTS | (O) | | | | | 1, 100 x COM | D1 = High, D0 = Low (IN1 active),
$V_{I(IN2)} = 3.3 \text{ V}$ | COM | 55 | 90 | | | Supply current from IN1 (operation | D1 = High, D0 = Low (IN1 active),
$V_{I(IN1)} = 3.3 \text{ V}$ | 4.00 | 1 | 12 | μΑ | | | $D0 = D1 = Low (IN2 active), V_{I(IN2)} = 3.3 V$ | | | 75 | | | Tupply current at D0 or D1 Supply AND LEAKAGE CURRENT Supply current from IN1 (operating) Supply current from IN2 (operating) | D0 = D1 = Low (IN2 active), V _{I(IN1)} = 3.3 V | 100 | | 1 | | | 1007 | D1 = High, D0 = Low (IN1 active),
$V_{I(IN2)} = 3.3 \text{ V}$ | 1007 | ·03/ | 1 | | | Supply current from IN2 (operating | D1 = High, D0 = Low (IN1 active),
$V_{I(IN1)} = 3.3 \text{ V}$ | 1007 | COM | 75 | μА | | | $D0 = D1 = Low (IN2 active), V_{I(IN2)} = 3.3 V$ | / 1 | | 12 | | | | $D0 = D1 = Low (IN2 active), V_{I(IN1)} = 3.3 V$ | 1100 | 55 | 90 | | SBVS043A - MARCH 2004-REVISED MARCH 2010 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw www.ti.com # **ELECTRICAL CHARACTERISTICS (continued)** Over recommended operating junction temperature, $V_{I(IN1)} = V_{I(IN2)} = 5.5 \text{ V}$, $I_{O(OUT)} = 0 \text{ A}$, and $R_{ILIM} = 400 \Omega$, unless otherwise noted | | | W. Will | TPS21 | 10A, TPS211 | 1A | | |--|--------------------------|---|----------------|-------------|-------|------------| | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | SUPPLY AND LEAKAGE | CURRENTS, con | ntinued | | | 41 | | | Oliver of the State Stat | | D0 = D1 = High (inactive), $V_{I(IN2)} = 3.3 \text{ V}$ | | 0.5 | 2 | | | Quiescent current from IN1 | (standby) | D0 = D1 = High (inactive), V _{I(IN1)} = 3.3 V | | | 1 | μА | | 0 : 11 | 4 4 41 3 | D0 = D1 = High (inactive), $V_{I(IN2)} = 3.3 \text{ V}$ | 1100 | 1 | 1 | | | Quiescent current from IN2 | (standby) | D0 = D1 = High (inactive), V _{I(IN1)} = 3.3 V | | 0.5 | 2 | μΑ | | Forward leakage current from (measured from OUT to GN | | D0 = D1 = High (inactive), IN2 open, V _{O(OUT)}
= 0 V (shorted), T _J = 25°C | M.J. | 0.1 | 5 | μА | | Forward leakage current from (measured from OUT to GN | | D0 = D1 = High (inactive), IN1 open, $V_{O(OUT)}$
= 0 V (shorted), T_J = 25°C | | 0.1 | 5 | μА | | Reverse leakage current to from INx to GND) | INx (measured | D0 = D1 = High (inactive), $V_{I(INx)} = 0 \text{ V}$, $V_{O(OUT)} = 5.5 \text{ V}$, $T_J = 25^{\circ}\text{C}$ | | 0.3 | 5 | μА | | CURRENT LIMIT CIRCUIT | 111 | 1 | | 1100 | -1 C | <i>y</i> , | | | TD004404 | $R_{ILIM} = 400 \Omega$ | 0.51 | 0.63 | 0.80 | | | Current limit agains | TPS2110A | R _{ILIM} = 700 Ω | 0.30 | 0.36 | 0.50 | Α | | Current limit accuracy | TDC0444A | $R_{ILIM} = 400 \Omega$ | 0.95 | 1.25 | 1.56 | | | | TPS2111A | $R_{ILIM} = 700 \Omega$ | 0.47 | 0.71 | 0.99 | A | | Current limit settling time | t _d | Time for short-circuit output current to settle within 10% of its steady state value. | | 1 | 1.100 | ms | | Input current at ILIM | | $V_{I(ILIM)} = 0 \text{ V}, I_{O(OUT)} = 0 \text{ A}$ | -15 | | 0 | μА | | VSNS COMPARATOR | | TIM. ON THE | | | W. | | | VSNS threshold voltage | | V _{I(VSNS)} ↑ | 0.78 | 0.80 | 0.82 | 100 | | | | V _{I(VSNS)} ↓ | 0.735 | 0.755 | 0.775 | V | | VSNS comparator hysteres | is | | 30 | | 60 | mV | | Deglitch of VSNS comparat | or (both ↑↓) | $\uparrow\downarrow)$ | | 150 | 220 | μS | | Input current | .1 | 0 V ≤ V _{I(VSNS)} ≤ 5.5 V | - 1 | • | 1 | μΑ | | UVLO | | 100, 00, | | | | 1 | | INIA and INIQ LIV/LO | | Falling edge | 1.15 | 1.25 | | M | | IN1 and IN2 UVLO | | Rising edge | | 1.30 | 1.35 | V | | IN1 and IN2 UVLO hysteres | sis | 1. 11. 01. | 30 | 57 | 65 | mV | | Internal V _{DD} UVLO | | Falling edge | 2.4 | 2.53 | | V | | (the higher of IN1 and IN2) | | Rising edge | | 2.58 | 2.8 | V | | Internal V _{DD} UVLO hysteres | sis | 11 21 2 | 30 | 50 | 75 | mV | | UVLO deglitch for IN1, IN2 | | Falling edge | 90/ | 110 | | μS | | REVERSE CONDUCTION | BLOCKING | N TW. I | | | (1 | | | Minimum output-to-input voltage difference to block switching | $\Delta V_{O(I_block)}$ | D0 = D1 = high, $V_{I(INx)}$ = 3.3 V. Connect OUT to a 5-V supply through a series 1-k Ω resistor. Let D0 = low. Slowly decrease the supply voltage until OUT connects to IN1. | 80 | 100 | 120 | mV | | THERMAL SHUTDOWN | | | . 007. | | | | | Thermal shutdown threshol | d | TPS211xA is in current limit. | 135 | 0 | | °C | | Recovery from thermal shu | tdown | TPS211xA is in current limit. | 125 | 40) | | °C | | Hysteresis | | | N.Y | 10 | | °C | | IN2-IN1 COMPARATORS | 100 | O. In | 1100 | 700 | 1 | | | Hysteresis of IN2-IN1 comp | parator | | 0.1 | | 0.2 | V | | Deglitch of IN2-IN1 compa | rator (both ↑ 1) | | 10 | 20 | 50 | μS | Submit Documentation Feedback Copyright © 2004–2010, Texas Instruments Incorporated 4 #### **SWITCHING CHARACTERISTICS** Over recommended operating junction temperature, $V_{I(IN1)} = V_{I(IN2)} = 5.5 \text{ V}$, and $R_{ILIM} = 400 \Omega$, unless otherwise noted. | | 100 | CO2 4 | (((11) | TF | PS2110A | ILIVI | TI | PS2111A | N | | |--------------------|--|---|--|-------|---------|-------|-------|---------|------|------| | P. | ARAMETER | TEST CO | NDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | t _R | Output rise time from an enable | $V_{I(IN1)} = V_{I(IN2)} = 5 \text{ V}$ | $T_J = 25^{\circ}C$,
$C_L = 1 \mu F$,
$I_L = 500 \text{ mA}$; see
Figure 1(a). | 0.5 | 1.0 | 1.5 | 1.7 | 1.8 | 3 | ms | | t _F | Output fall time from a disable | $V_{I(IN1)} = V_{I(IN2)} = 5 \text{ V}$ | $T_J = 25^{\circ}C,$
$C_L = 1 \mu F,$
$I_L = 500 \text{ mA}; \text{ see}$
Figure 1(a). | 0.35 | 0.5 | 0.7 | 0.5 | CO | 2 | ms | | | | IN1 to IN2 transition,
$V_{I(IN1)} = 3.3 \text{ V},$
$V_{I(IN2)} = 5 \text{ V}$ | $T_J = 125^{\circ}C,$
$C_L = 10 \ \mu F,$
$I_L = 500 \ mA;$ | N | 40 | 60 | 1.100 | 40 | 60 | 77 | | t _T Tra | Transition time | IN2 to IN1 transition, $V_{I(IN1)} = 5 \text{ V}$, $V_{I(IN2)} = 3.3 \text{ V}$ | measure transition time as 10% to 90% rise time or from 3.4 V to 4.8 V on V _{O(OUT)} . See Figure 1(b). | | 40 | 60 | | 40 | 60 | μs | | t _{PLH1} | Turn-on
propagation
delay from an
enable | $V_{I(IN1)} = VI_{(IN2)} = 5 \text{ V}$
Measured from enable to 10% of $V_{O(OUT)}$ | $T_J = 25^{\circ}C$,
$C_L = 10 \mu F$,
$I_L = 500 \text{ mA}$; see
Figure 1(a). | N. TY | 0.5 | | NAM | 10 | 01.0 | ms | | t _{PHL1} | Turn-off
propagation
delay from a
disable | $V_{I(IN1)} = VI_{(IN2)} = 5 \text{ V}$
Measured from
disable to 90% of
$V_{O(OUT)}$ | $T_J = 25^{\circ}\text{C},$ $C_L = 10 \ \mu\text{F},$ $I_L = 500 \ \text{mA}; \text{ see}$ Figure 1(a). | OMI | 3 | | W | 5 | 100 | ms | | t _{PLH2} | Switch-over
rising
propagation
delay | $\begin{aligned} &\text{Logic 1 to Logic 0} \\ &\text{transition on D1,} \\ &V_{\text{I(IN1)}} = 1.5 \text{ V,} \\ &V_{\text{I(IN2)}} = 5 \text{ V,} \\ &V_{\text{I(DD)}} = 0 \text{ V,} \\ &\text{Measured from D1 to} \\ &10\% \text{ of } V_{\text{O(OUT)}} \end{aligned}$ | $T_J = 25^{\circ}\text{C},$ $C_L = 10 \mu\text{F},$ $I_L = 500 \text{mA}; \text{see}$ Figure 1(c). | Y.COM | 40 | 100 | | 40 | 100 | μs | | t _{PHL2} | Switch-over
falling
propagation
delay | Logic 0 to Logic 1 transition on D1, $V_{I(N1)} = 1.5 \text{ V}, \\ V_{I(N2)} = 5 \text{ V}, \\ V_{I(N2)} = 5 \text{ V}, \\ V_{I(N2)} = 0 \text{ V}, \\ \text{Measured from D1 to} \\ 90\% \text{ of } V_{O(OUT)}$ | $T_J = 25^{\circ}\text{C},$ $C_L = 10 \mu\text{F},$ $I_L = 500 \text{mA}; \text{see}$ Figure 1(c). | 2 | | 10 | 2 | 5 | 10 | ms | 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw # PARAMETER MEASUREMENT INFORMATION # **TIMING WAVEFORMS** Figure 1. Propagation Delays and Transition Timing Waveforms #### **DEVICE INFORMATION** #### **TRUTH TABLE** | D1 | D0 | V _{I(VSNS)} > 0.8 V ⁽¹⁾ | $V_{I(IN2)} > V_{I(IN1)}$ | OUT ⁽²⁾ | |----|-----|---|---------------------------|--------------------| | 0 | 0 | X | X CON | IN2 | | 0 | 1 | Yes | X | IN1 | | 0 | 1 (| No | No | IN1 | | 0 | 1 | No | Yes | IN2 | | 1 | 0 | X | X | IN1 | | 1 | 1 | X | X | Hi-Z | - (1) X = Don't care. - (2) The undervoltage lockout circuit causes the output to go Hi-Z if the selected power supply does not exceed the IN1/IN2 UVLO, or if neither of the supplies exceeds the internal V_{DD} UVLO. **Table 1. TERMINAL FUNCTIONS** | TERMINAL | | | | |----------|-------|-------|--| | NAME | NO. | 1/0 | DESCRIPTION | | D0 | 1 | I | TTL- and CMOS-compatible input pins. Each pin has a 1-µA pull-up. The Truth Table | | D1 | 2 | , I | illustrates the functionality of D0 and D1. | | GND | 5 | Power | Ground | | IN1 | 8 | NI I | Primary power switch input. The IN1 switch can be enabled only if the IN1 supply is above the UVLO threshold and at least one supply exceeds the internal V_{DD} UVLO. | | IN2 | 6 | I | Secondary power switch input. The IN2 switch can be enabled only if the IN2 supply is above the UVLO threshold and at least one supply exceeds the internal V _{DD} UVLO. | | ILIM | 4 | 1 | A resistor ($R_{\rm ILIM}$) from ILIM to GND sets the current limit I _L to 250/ $R_{\rm ILIM}$ and 500/ $R_{\rm ILIM}$ for the TPS2110A and TPS2111A, respectively. | | OUT | 7 | 0 | Power switch output | | VSNS | 3 . C | | In the auto-switching mode (D0 = 1, D1 = 0), an internal power FET connects OUT to IN1 if the VSNS voltage is greater than 0.8 V. Otherwise, the FET connects OUT to the higher of IN1 and IN2. The Truth Table illustrates the functionality of VSNS. | #### **FUNCTIONAL BLOCK DIAGRAM** #### TYPICAL CHARACTERISTICS **Output Switchover Response Test Circuit** Figure 2. **Output Turn-On Response Test Circuit** Figure 3. #### **OUTPUT SWITCHOVER VOLTAGE DROOP** TPS2111APW **0.1** μF $V_{I(D0)}$ 2 V/div 8 f = 580 Hz IN1 D0 90% Duty Cycle 2 7 D1 OUT $V_{I(D1)}$ 3 6 $C_L = 1 \mu F$ VSNS IN2 2 V/div \geq 50 Ω C_{L} ILIM GND V_{O(OUT)} 2 V/div = **0.1** μF $C_L = 0 \mu F$ **Output Switchover Voltage Droop Test Circuit** t - Time - 40 μs/div Figure 4. # OUTPUT SWITCHOVER VOLTAGE DROOP Output Switchover Voltage Droop Test Circuit Figure 5. #### **AUTO SWITCHOVER VOLTAGE DROOP** **Auto Switchover Voltage Droop Test Circuit** Figure 6. Output Capacitor Inrush Current Test Circuit Figure 7. # IN1 SUPPLY CURRENT #### SWITCH ON-RESISTANCE vs SUPPLY VOLTAGE #### IN1 SUPPLY CURRENT vs SUPPLY VOLTAGE Figure 13. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw #### **APPLICATION INFORMATION** Some applications have two energy sources, one of which should be used in preference to another. Figure 14 shows a circuit that will connect IN1 to OUT until the voltage at IN1 falls below a user-specified value. Once the voltage on IN1 falls below this value, the TPS211xA will select the higher of the two supplies. This usually means that the TPS211xA will swap to IN2. Figure 14. Auto-Selecting for a Dual Power-Supply Application In Figure 15, the multiplexer selects between two power supplies based upon the EN1 logic signal. OUT connects to IN1 if EN1 is logic '1'; otherwise, OUT connects to IN2. The logic thresholds for the D1 terminal are compatible with both TTL and CMOS logic. Figure 15. Manually Switching Power Sources www.ti.com #### **DETAILED DESCRIPTION** #### **AUTO-SWITCHING MODE** D0 equal to logic '1' and D1 equal to logic '0' selects the auto-switching mode. In this mode, OUT connects to IN1 if $V_{I(VSNS)}$ is greater than 0.8 V; otherwise, OUT connects to the higher of IN1 and IN2. The VSNS terminal includes hysteresis equal to 3.75% to 7.5% of the threshold selected for transition from the primary supply to the higher of the two supplies. This hysteresis helps avoid repeated switching from one supply to the other due to resistive drops. #### MANUAL SWITCHING MODE D0 equal to logic '0' selects the manual-switching mode. In this mode, OUT connects to IN1 if D1 is equal to logic '1'; otherwise, OUT connects to IN2. #### **N-CHANNEL MOSFETs** Two internal high-side power MOSFETs implement a single-pole double-throw (SPDT) switch. Digital logic selects the IN1 switch, IN2 switch, or no switch (Hi-Z state). The MOSFETs have no parallel diodes so output-to-input current cannot flow when the FET is off. An integrated comparator prevents turn-on of a FET switch if the output voltage is greater than the input voltage. #### **CROSS-CONDUCTION BLOCKING** The switching circuitry ensures that both power switches will never conduct at the same time. A comparator monitors the gate-to-source voltage of each power FET and allows a FET to turn on only if the gate-to-source voltage of the other FET is below the turn-on threshold voltage. #### **REVERSE-CONDUCTION BLOCKING** When the TPS211xA switches from a higher-voltage supply to a lower-voltage supply, current can potentially flow back from the load capacitor into the lower-voltage supply. To minimize such reverse conduction, the TPS211xA will not connect a supply to the output until the output voltage has fallen to within 100 mV of the supply voltage. Once a supply has been connected to the output, it will remain connected regardless of output voltage. #### **CHARGE PUMP** The higher of supplies IN1 and IN2 powers the internal charge pump. The charge pump provides power to the current limit amplifier and allows the output FET gate voltage to be higher than the IN1 and IN2 supply voltages. A gate voltage that is higher than the source voltage is necessary to turn on the N-channel FET. #### **CURRENT LIMITING** A resistor R_{ILIM} from ILIM to GND sets the current limit to 250/ R_{ILIM} and 500/ R_{ILIM} for the TPS2110A and TPS2111A, respectively. Setting resistor R_{ILIM} equal to zero is not recommended as that disables current limiting. #### **OUTPUT VOLTAGE SLEW-RATE CONTROL** The TPS211xA slews the output voltage at a slow rate when OUT switches to IN1 or IN2 from the Hi-Z state (see the Truth Table). A slow slew rate limits the inrush current into the load capacitor. High inrush currents can glitch the voltage bus and cause a system to hang up or reset. It can also cause reliability issues—like pit the connector power contacts, when hot-plugging a load such as a PCI card. The TPS211xA slews the output voltage at a much faster rate when OUT switches between IN1 and IN2. The fast rate minimizes the output voltage droop and reduces the output voltage hold-up capacitance requirement. #### **REVISION HISTORY** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | CI | nanges from Original (March, 2004) to Revision A | Page | |----|---|----------| | | Updated document to current format | 1 | | • | Deleted package information from Available Options table | 2 | | • | Revised Ordering Information table | 2 | | • | Deleted <i>lead temperature</i> and <i>storage temperature</i> specifications from, added <i>electrostatic discharge</i> specifications to Absolute Maximum Ratings table; changed <i>operating virtual junction temperature</i> specification; deleted <i>ESD Protection</i> table | 2 | | • | Updated conditions for Electrical Characteristics | 3 | | • | Deleted footnote 1 for Electrical Characteristics table | 3 | | • | Deleted footnote 1 for Switching Characteristics table | 5 | 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw Submit Documentation Feedback PACKAGE OPTION ADDENDUM www.ti.com 15-Feb-2010 #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins P | ackage
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|--------|---------------|---------------------------|------------------|------------------------------| | TPS2110APW | ACTIVE | TSSOP | PW | 8 | 150 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TPS2110APWG4 | ACTIVE | TSSOP | PW | 8 | 150 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TPS2110APWR | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TPS2110APWRG4 | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TPS2111APW | ACTIVE | TSSOP | PW | 8 | 150 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TPS2111APWG4 | ACTIVE | TSSOP | PW | 8 | 150 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TPS2111APWR | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TPS2111APWRG4 | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # PACKAGE MATERIALS INFORMATION www.ti.com 15-Feb-2010 #### TAPE AND REEL INFORMATION # TAPE DIMENSIONS $\phi \phi \phi \phi \phi$ Cavity → A0 **←** | | A0 | Dimension designed to accommodate the component width | |---|----|---| | 1 | B0 | Dimension designed to accommodate the component length | | | K0 | Dimension designed to accommodate the component thickness | | | W | Overall width of the carrier tape | | y | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS2110APWR | TSSOP | PW | 8 | 2000 | 330.0 | 12.4 | 7.0 | 3.6 | 1.6 | 8.0 | 12.0 | Q1 | | TPS2111APWR | TSSOP | PW | 8 | 2000 | 330.0 | 12.4 | 7.0 | 3.6 | 1.6 | 8.0 | 12.0 | Q1 | WWW.100Y.COM.TW TOON COME LA www.ti.com 15-Feb-2010 #### *All dimensions are nominal MMM.100X.COM.T | dimensions are nominal Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm | |--------------------------------|--------------|-----------------|-------------|------|-------------|------------|------------| | | 4.2 | | 21 \ | | | | | | TPS2110APWR | TSSOP | PW | 8 | 2000 | 346.0 | 346.0 | 29.0 | | TPS2111APWR | TSSOP | PW | 8 | 2000 | 346.0 | 346.0 | 29.0 | MAMAN TOOK COMPLE WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw PW (R-PDSO-G28) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 PW (R-PDSO-G8) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - F. Falls within JEDEC MO-153 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |-----------------------------|------------------------|-------------------------------|-----------------------------------| | Audio | www.ti.com/audio | Communications and Telecom | www.ti.com/communications | | Amplifiers | amplifier.ti.com | Computers and Peripherals | www.ti.com/computers | | Data Converters | dataconverter.ti.com | Consumer Electronics | www.ti.com/consumer-apps | | DLP® Products | www.dlp.com | Energy and Lighting | www.ti.com/energy | | DSP | dsp.ti.com | Industrial | www.ti.com/industrial | | Clocks and Timers | www.ti.com/clocks | Medical | www.ti.com/medical | | Interface | interface.ti.com | Security | www.ti.com/security | | Logic | logic.ti.com | Space, Avionics and Defense | www.ti.com/space-avionics-defense | | Power Mgmt | power.ti.com | Transportation and Automotive | www.ti.com/automotive | | Microcontrollers | microcontroller.ti.com | Video and Imaging | www.ti.com/video | | RFID | www.ti-rfid.com | Wireless | www.ti.com/wireless-apps | | RF/IF and ZigBee® Solutions | www.ti.com/lprf | | | Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated TI E2E Community Home Page