Dual Voltage Detector with Adjustable Hysteresis ### **FEATURES** - Dual Voltage Detector With Adjustable Hysteresis 3.3-V/Adjustable and 2-V/Adjustable - Assured Reset at V_{DD} = 0.8 V - Supply Current: 3 μA Typical at V_{DD} = 3.3 V - Independent Open-Drain Reset Outputs - Temperature Range: -40°C to +85°C - 6-Pin SOT-23 Package ### DESCRIPTION The TPS3806 integrates two independent voltage detectors for battery voltage monitoring. During power-on, RESET and RSTSENSE are asserted when supply voltage V_{DD} or the voltage at LSENSE input become higher than 0.8 V. Thereafter, the supervisory circuit monitors VDD and LSENSE, keeping RESET and RSTSENSE active as long as VDD and LSENSE remain below the threshold voltage, V_{IT}. As soon as V_{DD} or LSENSE rise above the threshold voltage V_{IT} , RESET or RSTSENSE is deasserted, respectively. The TPS3806 device has a fixed-sense threshold voltage VIT set by an internal voltage divider at V_{DD} and an adjustable second-LSENSE input. In addition, an upper voltage threshold can be set at **HSENSE** to allow wide adjustable a hysteresis window. The devices are available in a 6-pin SOT-23 package. The TPS3806 device is characterized for operation over a temperature range of -40°C to +85°C. **Typical Operating Circuit** Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### ORDERING INFORMATION(1) | | DEVIC | FNAMES | THRESHOLD | VOLTAGE | MARKING | |----------------|-------------------------------|-------------------------------|-----------------|---------|---------| | IA | DEVIC | E NAME | V _{DD} | SENSE | MARKING | | 1000 1 0500 | TPS3806J20DBVR (2) | TPS3806J20DBVT ⁽³⁾ | 1.8 V | 1.207 V | PGQI | | -40°C to +85°C | TPS3806I33DBVR ⁽²⁾ | TPS3806I33DBVT ⁽³⁾ | 3 V | 1.207 V | PGPI | - (1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet or refer to our web site at www.ti.com. - 2) The DBVR passive indicates tape and reel containing 3000 parts. - (3) The DBVT passive indicates tape and reel containing 250 parts. ### **ABSOLUTE MAXIMUM RATINGS** over operating free-air temperature range (unless otherwise noted) (1) | M. OOT. | TPS3806J20, TPS3806I33 | UNIT | |---|------------------------------|--| | Supply voltage, V _{DD} ⁽²⁾ | C 7 | V | | All other pins ⁽²⁾ | -0.3 to 7 | V | | Maximum low-output current, I _{OL} | 5 | mA | | Maximum high-output current, I _{OH} | -5 | mA | | Input clamp current, I _{IK} (V _I < 0 or V _I > V _{DD}) | ±10 | mA | | Output clamp current, I _{OK} (V _O < 0 or V _O > V _{DD}) | ±10 | mA | | Continuous total power dissipation | See Dissipation Rating Table | The state of s | | Operating free-air temperature range, T _A | -40 to +85 | °C | | Storage temperature range, T _{stg} | -65 to +150 | °C | | Soldering temperature | +260 | °C | ⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### **DISSIPATION RATING TABLE** | PACKAGE | T _A < 25°C | DERATING FACTOR
ABOVE T _A = 25°C | T _A = 70°C
POWER RATING | T _A = 85°C
POWER RATING | |---------|-----------------------|--|---------------------------------------|---------------------------------------| | DBV | 437 mW | 3.5 mW/°C | 280 mW | 227 mW | ⁽²⁾ All voltage values are with respect to GND. For reliable operation, the device must not be continuously operated at 7 V for more than t = 1000 h. ### RECOMMENDED OPERATING CONDITIONS | M. 100 x COM. | 11/1/2/1002 CON | MIN | MAX | UNIT | |--|-----------------|-----|----------------|------| | Supply voltage, V _{DD} | TANK OF CO | 1.3 | 6 | V | | Input voltage, V _I | | 0 | $V_{DD} + 0.3$ | V | | Operating free-air temperature range, T _A | 11/1/2012 | -40 | +85 | °C | ### **ELECTRICAL CHARACTERISTICS** over recommended operating free-air temperature range (unless otherwise noted) | PARA | AMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|---|----------------|--|-------|--------|-------|-------| | IN | | N.Co | V _{DD} = 1.5 V, I _{OL} = 1 mA | 1.00 | 11 | | | | V _{OL} | Low-level output voltage | | V _{DD} = 3.3 V, I _{OL} = 2 mA | -1 C |) jar. | 0.3 | V | | | | | V _{DD} = 6 V, I _{OL} = 3 mA | 07. | M. | 7 | | | 11 | Power-up reset voltage ⁽¹⁾ | 011.00 | $V_{DD} \ge 0.8 \text{ V}, I_{OL} = 50 \mu\text{A}$ | 001.4 | | 0.2 | V | | | | LSENSE | TIN W | 1.198 | 1.207 | 1.216 | | | | | TPS3806J20 | $T_A = +25^{\circ}C$ | 1.787 | 1.8 | 1.813 | V | | | | TPS3806l33 | TITY TO | 2.978 | 3.0 | 3.022 | | | | | LSENSE | Dr. Tall | 1.188 | 1.207 | 1.226 | | | V _{IT} | Negative-going input threshold voltage ⁽²⁾ | TPS3806J20 | $T_A = 0$ °C to +70°C | 1.772 | 1.8 | 1.828 | V | | | input uncondid voltage | TPS3806l33 | | 2.952 | 3.0 | 3.048 | | | | | LSENSE | COLL | 1.183 | 1.207 | 1.231 | | | | | TPS3806J20 | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | 1.764 | 1.8 | 1.836 | V | | | | TPS3806l33 | Y.C. | 2.94 | 3.0 | 3.06 | | | 100 | 11 CO2 TO | 111.70 | 1.2 V < V _{IT} < 2.5 V | 11 | 60 | <1 C |) } ' | | V _{hys} | Hysteresis | | 2.5 V < V _{IT} < 3.5 V | | 90 | 00 2. | mV | | l _i | Input current | LSENSE, HSENSE | 003.0 | -25 | MM. | 25 | nA | | Іон | High-level output current | | $V_{DD} = V_{IT} + 0.2 \text{ V}, V_{OH} = V_{DD}$ | | | 300 | nA | | | 100 - 100 ON | | V _{DD} = 3.3 V, Output unconnected | | 3 | 5 | | | I _{DD} | Supply current | | V _{DD} = 6 V, Output unconnected | | 4 | 6 | μA | | Ci | Input capacitance | M. | $V_I = 0 \text{ V to } V_{DD}$ | | 1 | | pF | ### SWITCHING CHARACTERISTICS at R_L = 1 M Ω , C_L = 50 pF, T_A = -40°C to +85°C | PARA | AMETER | O. TW | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|---------------------------|--------------------------------|-------------------------------|-----|-----|-----|------| | | Propagation (delay) time, | V _{DD} to RESET delay | 1100, 000 | · | - | 100 | 1 | | τ _{PHL} | high-to-low-level output | LSENSE to RSTSENSE delay | $V_{IH} = 1.05 \times V_{IT}$ | | 5 | 100 | μs | | | Propagation (delay) time, | V _{DD} to RESET delay | $V_{IL} = 0.95 \times V_{IT}$ | | _ | 400 | -1.1 | | ^T PLH | low-to-high-level output | HSENSE to RSTSENSE delay | 11, 100, | | 5 | 100 | μs | ### **TIMING REQUIREMENTS** at R₁ = 1 M Ω , C₁ = 50 pF, T_A = -40°C to +85°C | PARA | AMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------|-------------|-----------------------------|---|-----|-----|-----|------| | t _w | Pulse width | At V _{DD} At SENSE | V _{IH} = 1.05 x V _{IT} , V _{IL} = 0.95 x V _{IT} | 5.5 | M. | W | μs | The lowest supply voltage at which \overline{RESET} becomes active. $t_{r,VDD} \ge 15~\mu s/V$ To ensure best stability of the threshold voltage, place a bypass capacitor (ceramic, 0.1 μF) near the supply terminals. **Table 1. TERMINAL FUNCTIONS** | | | | Table 1. TERMINAL FUNCTIONS | |----------|-----|-----|--| | TERMI | NAL | 1/0 | Propherioto CONF. THE TOO CONF. | | NAME | NO. | 1/0 | DESCRIPTION | | GND | 2 | | Ground | | HSENSE | 6 | | Adjustable hysteresis input | | LSENSE | 5 | I. | Adjustable sense input | | RESET | 3 | 0 | Active-low open drain reset output (from V _{DD}) | | RSTSENSE | 1.0 | 0 | Active-low open-drain reset output (from LSENSE) | | V_{DD} | 4 | 1 | Input supply voltage and fixed sense input | ## FUNCTION/TRUTH TABLE | 11/1/1/100 | |------------| | RSTSENSE | | L | | Н | | | WWW.100Y.COM.TW WWW.100x W.100Y.COM.TW MAMAY TOOK COM COM.TW WWW.100Y.COM.TW MMM.100 W.100Y.COM.TW MAIN'100X'CON COM.TW TET THAY COM. TW ### **FUNCTIONAL BLOCK DIAGRAM** ### **Detailed Description** ### Operation The TPS3806 is used for monitoring battery voltage and asserting $\overline{\text{RESET}}$ when a battery gets discharged below a certain threshold voltage. The battery voltage is monitored by a comparator via an external resistor divider. When the voltage at the LSENSE input drops below the internal reference voltage the $\overline{\text{RSTSENSE}}$ output pulls low. The output remains low until the battery is replaced, or recharged above a second higher trip-point, set at HSENSE. A second voltage can be monitored at V_{DD} . The independent $\overline{\text{RESET}}$ output pulls low when the voltage at V_{DD} drops below the fixed threshold voltage. Because the TPS3806 outputs are open-drain MOSFETs, most applications may require a pull-up resistor. ### **Programming the Threshold Voltage Levels** The low-voltage threshold at LSENSE is calculated according to Equation 1: $$V_{(LSENSE)} = V_{ref} \left(\frac{R1 + R2 + R3}{R2 + R3} \right)$$ (1) where $V_{ref} = 1.207 \text{ V}$ The high-voltage threshold at HSENSE is calculated as shown in Equation 2: $$V_{(HSENSE)} = V_{ref} \left(\frac{R1 + R2 + R3}{R3} \right)$$ (2) where $V_{ref} = 1.207 \text{ V}$ To minimize battery current draw it is recommended to use 1-M Ω as the total resistor value $R_{(tot)}$, with $R_{(tot)} = R1 + R2 + R3$. ### TYPICAL CHARACTERISTICS Figure 3. ## LOW-LEVEL OUTPUT VOLTAGE ## LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT Figure 2. Figure 4. ### **TYPICAL CHARACTERISTICS (continued)** Figure 5. ## NORMALIZED INPUT THRESHOLD VOLTAGE vs FREE-AIR TEMPERATURE AT VDD MINIMUM PULSE DURATION AT LSENSE ### **PACKAGE OPTION ADDENDUM** 10-Jun-2014 ### **PACKAGING INFORMATION** www.ti.com | Orderable Device | Status (1) | Package Type | Package
Drawing | | Package
Qty | Eco Plan | Lead/Ball Finish (6) | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|------------|--------------|--------------------|---|----------------|----------------------------|----------------------|--------------------|--------------|----------------------|---------| | TPS3806l33DBVR | ACTIVE | SOT-23 | DBV | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PGPI | Samples | | TPS3806l33DBVRG4 | ACTIVE | SOT-23 | DBV | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PGPI | Samples | | TPS3806I33DBVT | ACTIVE | SOT-23 | DBV | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PGPI | Samples | | TPS3806l33DBVTG4 | ACTIVE | SOT-23 | DBV | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PGPI | Samples | | TPS3806J20DBVR | ACTIVE | SOT-23 | DBV | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PGQI | Sample | | TPS3806J20DBVT | ACTIVE | SOT-23 | DBV | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PGQI | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. ## **PACKAGE OPTION ADDENDUM** 10-Jun-2014 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF TPS3806I33: Automotive: TPS3806I33-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects ## M.M.M. TOOX.C PACKAGE MATERIALS INFORMATION TOON COM TW www ti com 22-Dec-2011 ### TAPE AND REEL INFORMATION #### REEL DIMENSIONS ### TAPE DIMENSIONS | 0 | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | Ó | Dimension designed to accommodate the component thickness | | / | Overall width of the carrier tape | | 21 | Pitch between successive cavity centers | WWW.100Y.COM.TW WWW.100X W100Y.COM.TW WWW.100Y.COM. CON.TW # TAPE AND REEL INFORMATION | l dimensions are nomina | | | | | | | | | | | | | |-------------------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | | TPS3806I33DBVR | SOT-23 | DBV | 6 | 3000 | 179.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TPS3806I33DBVR | SOT-23 | DBV | 6 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | TPS3806I33DBVT | SOT-23 | DBV | 6 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | TPS3806I33DBVT | SOT-23 | DBV | 6 | 250 | 179.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TPS3806J20DBVR | SOT-23 | DBV | 6 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | TPS3806J20DBVT | SOT-23 | DBV | 6 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 (| WWW.100X. 22-Dec-2011 www ti com | nensions are nominal Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | PS3806I33DBVR | SOT-23 | DBV | 6 | 3000 | 203.0 | 203.0 | 35.0 | | PS3806I33DBVR | SOT-23 | DBV | 6 | 3000 | 180.0 | 180.0 | 18.0 | | PS3806I33DBVT | SOT-23 | DBV | 6 | 250 | 180.0 | 180.0 | 18.0 | | PS3806I33DBVT | SOT-23 | DBV | 6 | 250 | 203.0 | 203.0 | 35.0 | | S3806J20DBVR | SOT-23 | DBV | 6 | 3000 | 180.0 | 180.0 | 18.0 | | S3806J20DBVT | SOT-23 | DBV | 6 | 250 | 180.0 | 180.0 | 18.0 | WWW.100X. WWW.100Y.COM.TW WWW.1001. W100Y.COM.TW MAM.TOOA'COW. COMITY DBV (R-PDSO-G6) ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. - Falls within JEDEC MO-178 Variation AB, except minimum lead width. ## DBV (R-PDSO-G6) ### PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw