

ADVANCED REGULATING PULSE WIDTH MODULATORS

FEATURES

- Complete PWM Power Control Circuitry
- Uncommitted Outputs for Single-Ended or Push-Pull Applications
- Low Standby Current . . . 8 mA Typical
- Interchangeable With SG1524, SG2524 and SG3524, Respectively

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

DESCRIPTION

The UC1524, UC2524 and UC3524 incorporate on a single monolithic chip all the functions required for the construction of regulating power supplies, inverters or switching regulators. They can also be used as the control element for high-power-output applications. The UC1524 family was designed for switching regulators of either polarity, transformer-coupled dc-to-dc converters, transformerless voltage doublers and polarity converter applications employing fixedfrequency, pulse-width modulation techniques. The dual alternating outputs allow either single-ended or push-pull applications. Each device includes an on-chip reference, error amplifier, programmable oscillator, pulse-steering flip-flop, two uncommitted output transistors, a high-gain comparator, and current-limiting and shut-down circuitry. The UC1524 is characterized for operation over the full military temperature range of -55°C to 125°C. The UC2524 and UC3524 are designed for operation from -25°C to 85°C and 0°C to 70°C, respectively.

BLOCK DIAGRAM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

WW	M_{100} $^{-OM}$	TW WWW.100Y.COM.TW WWW.10	
	OLUTE MAXIMU perating free-air ten	JM RATINGS nperature range (unless otherwise noted)	100Y.COM.TW
	TANN. TO	DM. TANN.TO COM. TAN MAM.	UNIT
V _{CC}	Supply voltage ⁽¹⁾⁽²⁾	ON. I TOWN TOWN TOWN	40 V
	Collector output curi	rent M.T.V	100 mA
	Reference output cu	irrent TW WW. 100X-	50 mA
	Current through C _T	terminalg	-50 mA
	D	$T_A = 25^{\circ}C^{(3)}$	1000 mW
	Power dissipation	$T_{C} = 25^{\circ}C^{(3)}$	2000 mW
	Operating junction to	emperature range	–55°C to 150°C
	Storage temperature	e range	-65°C to +150°C

All voltage values are with respect to the ground terminal, pin 8.

The reference regulator may be bypassed for operation from a fixed 5 V supply by connecting the V_{CC} and reference output pins both to the supply voltage. In this configuration the maximum supply voltage is 6 V.

RECOMMENDED OPERATING CONDITIONS

	MENDED OPERATING CO ting free-air temperature range (un				
vei opeia	uing nee-an temperature range (ui	niess otherwise rioteu)	MIN	NOM MAX	UNIT
V _{CC} S	Supply voltage	ON:111	8	40	.10V
R	Reference output current	NITW WWW.	0	20	mA
С	Current through C _T terminal	COM WWW.10	-0.03	-2	mA
R _T T	iming resistor	COM. THE WAY.	1.8	100	kΩ
C _T T	iming capacitor	COM.	0.001	0.1	μF
	WW. 100	UC1524	– 55	125	-
С	Operating ambient temperature range	UC2524	-25	85	°C
		UC3524	V. CO	70	

WWW.100Y.COM.T

ELECTRICAL CHARACTERISTICS

these specifications apply for $T_A = -55^{\circ}C$ to 125°C for the UC1524, $-25^{\circ}C$ to 85°C for the UC2524, and 0°C to 70°C for the UC3524, $V_{IN} = 20$ V, and f = 20 kHz, $T_A = T_J$, over operating free-air temperature range (unless otherwise noted)

TEST CONDITIONS 8 V to 40 V mA to 20 mA 20 Hz, $T_J = 25^{\circ}C$ = 0, $T_J = 25^{\circ}C$ operating temperature range 125°C, $t = 1000$ Hrs 1 nF, $R_T = 2 \text{ k}\Omega$ and C_T constant 8 V to 40 V, $T_J = 25^{\circ}C$ operating temperature range 1. $T_J = 25^{\circ}C$ 0.01 mfd, $T_J = 25^{\circ}C$	4.8 4.8	5.0 10 20 66 100 0.3% 20 300 5% 3.5 0.5	5.2 20 50 1%	4.6	5.0 10 20 66 100 0.3% 20 300 5%	5.4 30 50 1%	V mV dB mA
mA to 20 mA 20 Hz, $T_J = 25^{\circ}C$ = 0, $T_J = 25^{\circ}C$ operating temperature range 125°C, $t = 1000$ Hrs 1 nF, $R_T = 2 \text{ k}\Omega$ and C_T constant 8 V to 40 V, $T_J = 25^{\circ}C$ operating temperature range 1, $T_J = 25^{\circ}C$ 0.01 mfd, $T_J = 25^{\circ}C$	4.8	10 20 66 100 0.3% 20 300 5% 3.5 0.5	20 50 1%	4.6	10 20 66 100 0.3% 20 300 5%	30 50 1%	mV MV dB mA mV
mA to 20 mA 20 Hz, $T_J = 25^{\circ}C$ = 0, $T_J = 25^{\circ}C$ operating temperature range 125°C, $t = 1000$ Hrs 1 nF, $R_T = 2 \text{ k}\Omega$ and C_T constant 8 V to 40 V, $T_J = 25^{\circ}C$ operating temperature range 1, $T_J = 25^{\circ}C$ 0.01 mfd, $T_J = 25^{\circ}C$	4.8	10 20 66 100 0.3% 20 300 5% 3.5 0.5	20 50 1%	4.6	10 20 66 100 0.3% 20 300 5%	30 50 1%	mV MV dB mA mV
mA to 20 mA 20 Hz, $T_J = 25^{\circ}C$ = 0, $T_J = 25^{\circ}C$ operating temperature range 125°C, $t = 1000$ Hrs 1 nF, $R_T = 2 \text{ k}\Omega$ and C_T constant 8 V to 40 V, $T_J = 25^{\circ}C$ operating temperature range 1, $T_J = 25^{\circ}C$ 0.01 mfd, $T_J = 25^{\circ}C$		20 66 100 0.3% 20 300 5% 3.5 0.5	1%	17 W M.T.Y 0 W.T.Y 0 W.C.O.Y 0 O.Y.C.O.Y 0 O.Y.C.O.Y 0 O.Y.C.O.Y	20 66 100 0.3% 20 300 5%	1%	mV dB mA mV kHz
20 Hz, $T_J = 25^{\circ}C$ = 0, $T_J = 25^{\circ}C$ operating temperature range 125°C, $t = 1000$ Hrs 1 nF, $R_T = 2 k\Omega$ and C_T constant 8 V to 40 V, $T_J = 25^{\circ}C$ operating temperature range 1 T _J = 25°C 0.01 mfd, $T_J = 25^{\circ}C$		66 100 0.3% 20 300 5% 3.5 0.5	1%	M.TY M.TY OM.T OM. OM. COM. COM.	66 100 0.3% 20 300 5%	1%	dB mA mV kHz
= 0, T_J = 25°C operating temperature range 125°C, t = 1000 Hrs 1 nF, R_T = 2 k Ω and C_T constant 8 V to 40 V, T_J = 25°C operating temperature range T_J = 25°C 0.01 mfd, T_J = 25°C		100 0.3% 20 300 5% 3.5 0.5	1%	M.TV 074-T 074-T 074-T 0074-T 0074-T	100 0.3% 20 300 5%	1%	mV kHz
operating temperature range 125°C, $t = 1000$ Hrs 1 nF, $R_T = 2 \text{ k}\Omega$ and C_T constant 8 V to 40 V, $T_J = 25^{\circ}\text{C}$ operating temperature range $T_J = 25^{\circ}\text{C}$ 0.01 mfd, $T_J = 25^{\circ}\text{C}$		0.3% 20 300 5% 3.5 0.5	1%	M.TV -0M- -0M- -0M- -00M- -00X-C	0.3% 20 300 5%	1%	mV kHz
125°C, $t = 1000$ Hrs 1 nF, $R_T = 2 \text{ k}\Omega$ 1 nG C_T constant 8 V to 40 V, $T_J = 25$ °C 1 operating temperature range 1 nF, $R_T = 2 \text{ k}\Omega$ 2 nd $R_T = 2 \text{ k}\Omega$ 3 nd $R_T = 2 \text{ k}\Omega$ 4 nd $R_T = 2 \text{ k}\Omega$ 5 nd $R_T = 2 \text{ k}\Omega$ 6 nd $R_T = 2 \text{ k}\Omega$ 7 nd $R_T = 2 \text{ k}\Omega$ 8 V to 40 V, $R_T = 2 \text{ k}\Omega$		300 5% 3.5 0.5	1%	ON T. COM	300 5% 3.5	1%	kHz
1 nF, $R_T = 2 \text{ k}\Omega$ and C_T constant 8 V to 40 V, $T_J = 25^{\circ}\text{C}$ operating temperature range 1. $T_J = 25^{\circ}\text{C}$ 0.01 mfd, $T_J = 25^{\circ}\text{C}$		300 5% 3.5 0.5	- A 64		300 5% 3.5	`	kHz
and C_T constant 8 V to 40 V, $T_J = 25^{\circ}C$ operating temperature range 1, $T_J = 25^{\circ}C$ 0.01 mfd, $T_J = 25^{\circ}C$		3.5 0.5	- A 64	COM.	3.5	`	
and C_T constant 8 V to 40 V, $T_J = 25^{\circ}C$ operating temperature range 1, $T_J = 25^{\circ}C$ 0.01 mfd, $T_J = 25^{\circ}C$		3.5 0.5	- A 64	COM V.CO3	3.5	`	
8 V to 40 V, $T_J = 25^{\circ}C$ operating temperature range 1, $T_J = 25^{\circ}C$ 0.01 mfd, $T_J = 25^{\circ}C$ 2.5 V	V V	3.5	- A 64	00 X C	3.5	`	
operating temperature range , $T_J = 25^{\circ}C$ 0.01 mfd, $T_J = 25^{\circ}C$ = 2.5 V	N N	0.5	- A 64	OOX:C		`	
, T _J = 25°C 0.01 mfd, T _J = 25°C = 2.5 V	N W	0.5	5%	07.CC		5%	V
0.01 mfd, T _J = 25°C	N	0.5	W.19	00 X .C		44	\/
= 2.5 V	N N	W	WW.	001.	0.5		v
	N SN	W	MAN	-11	0.5	L.M.	μs
					Com	TW	
		0.5	5	100	(2	10	m\
MANN TOOL CO.		2	10	1.700.	2	10	μΑ
	72	80	MAN	60	80	TIM	dB
25°C	1.8		3.4	1.8	W.CE	3.4	V
25°C	1.	70		111.7	70	ON	dE
AA AA AAAA	M.T.W			WW.	U// / 	COM	МН
	0.5	N	3.8	0.5	1002	3.8	V
TW WWW.	000		1	MAJAN	1007	CUPI	
ch output on	0%	-XX	45%	0%	1.100	45%	M.
A (1) (1) (1) (1) (1) (1) (1) (1	MOD	1	10,0	- 11	W.1	=7 C	11/1- ,
		1800		A VI		07.	V
TW WWW.	A.C.	-4% 1	Ĭ	W	 	UO X.	μA
ON THE WAY	ov.co			11		.001	COM
= 2 V with error amplifier set for num out, T _J = 25°C	190	200	210	180	200	220	Cm\
COM TW	anny.	0.2	TW		0.2	-110	mV/
-55°C to 85°C for the -1 V to 1 V limit	-1	COM	- 1	-1	WW	1	N.Yo.
25°C	-0.3	-1 CO	1.	ī		MIN'T	V
Oxice Milliam Mill	TA 100	X.	MIT		- 11		100,
W.Com TW WY	40	OXIC	777	40		N. I	10V
= 40 V	MAN	0.1	50	rW	0.1	50	μ
60 mA	WW.	1	2	TIN	1	2	·V
20 V	17	18	-CON	17	18	1	V-V
V 4/1 V 4/1	MAN	0.2		I.TW	0.2	A)	μs
	WWW	0.1	V.CU	TT	0.1	11	μs
- 1 1 1 V	TATAN	W. July	10	Mr.		10	m/
	o dB, T _J = 25°C ch output on duty-cycle num duty-cycle = 2 V with error amplifier set for num out, T _J = 25°C 55°C to 85°C for the -1 V to 1 V limit 5°C	20 dB, $T_J = 25^{\circ}C$ 25°C 26 output on 37 duty-cycle 38 and uty-cycle 39 and uty-cycle 40 and	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

WWW.100Y.COM.T

PRINCIPLES OF OPERATION

The UC1524 is a fixed-frequency pulse-width-modulation voltage regulator control circuit. The regulator operates at a frequency that is programmed by one timing resistor (R_T), and one timing capacitor (C_T), R_T establishes a constant charging current for C_T. This results in a linear voltage ramp at C_T, which is fed to the comparator providing linear control of the output pulse width by the error amplifier. The UC1524 contains an on-board 5 V regulator that serves as a reference as well as powering the UC1524's internal control circuitry and is also useful in supplying external support functions. This reference voltage is lowered externally by a resistor divider to provide a reference within the common-mode range of the error amplifier or an external reference may be used. The power supply output is sensed by a second resistor divider network to generate a feedback signal to the error amplifier. The amplifier output voltage is then compared to the linear voltage ramp at C_T. The resulting modulated pulse out of the high-gain comparator is then steered to the appropriate output WWW.100Y.COM.TW pass transistor $(Q_1 \text{ or } Q_2)$ by the pulse-steering WWW.100Y.CON

WWW.100Y.COM.TW

WWW.100X.

100Y.COM.TW

WWW.100Y.COM.T

flip-flop, which is synchronously toggled by the oscillator output. The oscillator output pulse also serves as a blanking pulse to assure both outputs are never on simultaneously during the transition times. The width of the blanking pulse is controlled by the valve of C_T. The outputs may be applied in a push-pull configuration in which their frequency is half that of the base oscillator Note that for buck regulator topologies, the two outputs can be wire-ORed for an effective 0-90% duty cycle range. With this connection, the output frequency is the same as the oscillator frequency. The output of the error amplifier shares a common input to the comparator with the current limiting and shutdown circuitry and can be overridden by signals from either of these inputs. This common point is also available externally and may be employed to control the gain of, or to compensate, the error amplifier or to provide additional control to the regulator.

TYPICAL CHARACTERISTICS

Figure 1.

WWW.100Y.COM.T

WWW.100X.

WWW.100Y.COM.T

OSCILLATOR FREQUENCY VS TIMING COMPONENTS

Figure 2.

OUTPUT SATURATION VOLTAGE vs LOAD CURRENT

APPLICATION INFORMATION

OSCILLATOR

The oscillator controls the frequency of the UC1524 and is programmed by R_{T} and C_{T} according to the approximate formula:

$$f = \frac{1.18}{R_T C_T}$$
 (1)

where

 R_T is in $k\Omega$

 C_T is in μF

f is in kHz

Practical values of C_T fall between 1 nF and 100 nF. Practical values of R_T fall between 1.8 $k\Omega$ and 100 $k\Omega.$ This results in a frequency range typically from 120 Hz to 500 kHz.

BLANKING

The output pulse of the oscillator is used as a blanking pulse at the output. This pulse width is controlled by the value of C_T . If small values of C_T are required for frequency control, the oscillator output pulse width may still be increased by applying a shunt capacitance of up to 100 pF from pin 3 to ground. If still greater dead-time is required, it should be accomplished by limiting the maximum duty cycle by clamping the output of the error amplifier. This can easily be done with the circuit in Figure 5.

SYNCHRONOUS OPERATIONS

When an external clock is desired, a clock pulse of approximately 3 V can be applied directly to the oscillator output terminal. The impedance to ground at this point is approximately 2 k Ω . In this configuration R_T C_T must be selected for a clock period slightly greater than that of the external clock.

If two or more UC1524 regulators are to operated synchronously, all oscillator output terminals should be tied together, all C_T terminals connected to single timing capacitor, and the timing resistor connected to a single R_T , terminal.

Figure 5. Error Amplifier Clamp

The other R_T terminals can be left open or shorted to V_{REF} . Minimum lead lengths should be used between the C_T terminals.

Figure 6. Single-Ended LC Switching Regulator Circuit

Figure 7. Push-Pull Transformer Coupled Circuit

Figure 8. Open Loop Test Circuit

WWW.100Y.COM.TW

WWW.100Y.COM.T

WWW.100X.

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
UC1524J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
UC1524J/80937	OBSOLETE	CDIP	N J	16	MAN	TBD	Call TI	Call TI	-55 to 125		
UC1524J883B	OBSOLETE	CDIP	J	16	MM.I	TBD	Call TI	Call TI	-55 to 125		
UC2524DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-25 to 85	UC2524DW	Samples
UC2524J	OBSOLETE	CDIP	JV	16	WWW	TBD	Call TI	Call TI	-25 to 85		
UC2524N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-25 to 85	UC2524N	Samples
UC2524NG4	ACTIVE	PDIP	NTV	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-25 to 85	UC2524N	Samples
UC3524-W	ACTIVE	WAFERSALE	YS	0	N.	TBD	Call TI	Call TI	ONL		Samples
UC3524D	ACTIVE	SOIC	.COM	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3524D	Samples
UC3524DG4	ACTIVE	SOIC	V.CO	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3524D	Samples
UC3524DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3524DW	Samples
UC3524DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3524DW	Samples
UC3524DWTR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3524DW	Samples
UC3524J	OBSOLETE	CDIP	W.Voo	16	Mi	TBD	Call TI	Call TI	0 to 70	Nr.	
UC3524N	ACTIVE	PDIP	NOO	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UC3524N	Samples
UC3524NG4	ACTIVE	PDIP	N.N.	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UC3524N	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

10-Jun-2014

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UC1524, UC3524:

Catalog: UC3524

www.ti.com

Military: UC1524

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

14-Jul-2012 www ti com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

30 1	Dimension designed to accommodate the component length
<0 I	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
IC3524DWTR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

WWW.100Y.C

Jay.COM.TW 14-Jul-2012 www ti com

*All dimensions are nominal

ensions are nomina Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
JC3524DWTR	SOIC	DW	16	2000	367.0	367.0	38.0

WWW.100Y.COM.TW

WWW.100Y.C

WWW.100Y.COM.TW

- All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- This package is hermetically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. WWW.100Y.COM.TW

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.

 Body width does not include interlead flash. Interlead flash shall

 E. Reference IEDEC No. 672
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- В. This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- Falls within JEDEC MS-013 variation AA.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

