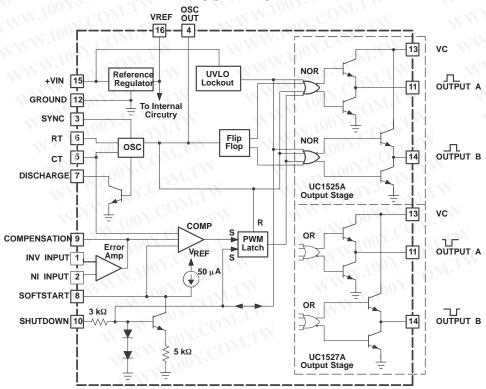
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

UC1525A, UC1527A UC2525A, UC2527A UC3525A, UC3527A

SLUS191C-FEBRUARY 1997-REVISED JANUARY 2008

REGULATING PULSE WIDTH MODULATORS


FEATURES

- 8-V to 35-V Operation
- 5.1-V Reference Trimmed to 1%
- 100-Hz to 500-kHz Oscillator Range
- Separate Oscillator Sync Terminal
- Adjustable Deadtime Control
- Internal Soft-Start
- Pulse-by-Pulse Shutdown
- Input Undervoltage Lockout With Hysteresis
- Latching PWM to Prevent Multiple Pulses
- Dual Source/Sink Output Drivers

DESCRIPTION

The UC1525A/1527A series of pulse width modulator integrated circuits are designed to offer improved performance and lowered external parts count when used in designing all types of switching power supplies. The on-chip +5.1-V reference is trimmed to 1% and the input common-mode range of the error amplifier includes the reference voltage, eliminating external resistors. A sync input to the oscillator allows multiple units to be slaved or a single unit to be synchronized to an external system clock. A single resistor between the C_T and the discharge terminals provides a wide range of dead-time adjustment. These devices also feature built-in soft-start circuitry with only an external timing capacitor required. A shutdown terminal controls both the soft-start circuitry and the output stages, providing instantaneous turn off through the PWM latch with pulsed shutdown, as well as soft-start recycle with longer shutdown commands.

BLOCK DIAGRAM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (continued)

These functions are also controlled by an undervoltage lockout which keeps the outputs off and the soft-start capacitor discharged for sub-normal input voltages. This lockout circuitry includes approximately 500 mV of hysteresis for jitter- free operation. Another feature of these PWM circuits is a latch following the comparator. Once a PWM pulse has been terminated for any reason, the outputs will remain off for the duration of the period. The latch is reset with each clock pulse. The output stages are totem-pole designs capable of sourcing or sinking in excess of 200 mA. The UC1525A output stage features NOR logic, giving a LOW output for an OFF state. The UC1527A utilizes OR logic which results in a HIGH output level when OFF.

ABSOLUTE MAXIMUM RATINGS(1)

	WWW. TOOX.CO.	UCx52xA	UNIT
+V _{IN}	Supply voltage	40	Y.Com
V _C	Collector supply voltage	40	COM
M	Logic inputs	-0.3 to +5.5	$00^{1.0}$ $M.$
W	Analog inputs	–0.3 to +V _{IN}	
4.	Output current, source or sink	500	CON.
V	Reference output current	50	mA O
4	Oscillator charging current	5	
	Power dissipation at T _A = +25°C ⁽²⁾	1000	100/01
	Power dissipation at $T_C = +25^{\circ}C^{(2)}$	2000	mW
	Operating junction temperature	-55 to 150	MM.100
	Storage temperature range	-65 to 150	°C
	Lead temperature (soldering, 10 seconds)	300	

⁽¹⁾ Values beyond which damage may occur.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

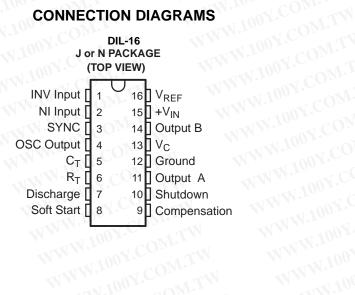
	W. 100 COM.	W.Inc. COM.	MIN	MAX	UNIT
+V _{IN}	Input voltage	W 1007.	8	35	10 10
V _C	Collector supply voltage	MM	4.5	35	V.
	Sink/source load current (steady state)	MAN. TO OA. COM.	0	100	MM
	Sink/source load current (peak)	WW.100 COL	0	400	mA
	Reference load current	W. 1007.	0	20	
	Oscillator frequency range	N WWW.TOOX.Co	100	400	Hz
	Oscillator timing resistor	WWW.LOV.C	2	150	kΩ
	Oscillator timing capacitorm	W.100	0.001	0.01	μF
	Dead time resistor range	I.W. W.	0	500	Ω
	MANN OON COM	UC1525A, UC1527A	-55	125	
	Operating ambient temperature range	UC2525A, UC2527A	-25	85	°C
	W. 100x.	UC3525A, UC3527A	0	70	

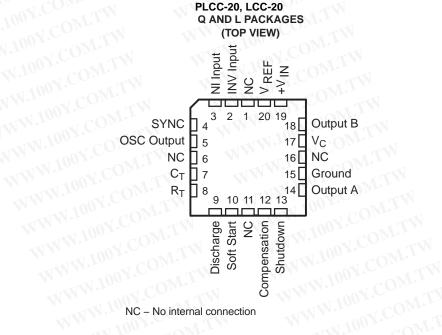
⁽¹⁾ Range over which the device is functional and parameter limits are assured.

⁽²⁾ See Thermal Characteristics table.

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw


UC1525A, UC1527A UC2525A, UC2527A UC3525A, UC3527A


SLUS191C-FEBRUARY 1997-REVISED JANUARY 2008

THERMAL CHARACTERISTICS

PACKAGE	θ_{JA}	θ_{JC}
J-16	80-120	28
N-16	90	45
DW-16	45-90	25

CONNECTION DIAGRAMS

NC - No internal connection

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

ELECTRICAL CHARACTERISTICS

 $+V_{IN}$ = 20 V, and over operating temperature, unless otherwise specified, $T_A = T_J$

PARAMETER	TEST CONDIT	TIONS	MIN	TYP	MAX	UNIT
REFERENCE	M. Jon COM.	TANN Too	<1 CO	VI.		
100Y.CO.TV	M. 1007. C.M. IM	UC152xA, UC252xA	5.05	5.10	5.15	.,
Output voltage	$T_J = 25^{\circ}C$	UC352xA	5.0	5.1	5.2	V
Line regulationg	V _{IN} = 8 V to 35 V	W WWW.	any.C	10	20	
Load regulationg	I _L = 0 mA to 20 mA	WILL	47	20	50	mV
Temperature stability ⁽¹⁾	Over operating range	1.11	700 x.	20	50	
T-1-1	1 100	UC152xA, UC252xA	5.0		5.2	
Total output variation ⁽¹⁾	Line, load, and temperature	UC352xA	4.95	V.COF	5.25	V
Shorter circuit current	$V_{REF} = 0, T_{J} = 25^{\circ}C$	M. I	M.Ing	80	100	_s mA
Output noise Voltage ⁽¹⁾	10 Hz ≤ 10 kHz, T _J = 25°C	M.TW	-TXV.10	40	200	μVrms
Long term stability (1)	T _J = 125°C	W WITH	N 1	20	50	mV
OSCILLATOR SECTION ⁽²⁾	TWW.I	Ohr	MM	any.C	OB	TW
Initial accuracy ⁽¹⁾ (2)	$T_J = 25^{\circ}C$	COM.	Witte	2%	6%	-31
1) (1) (2)	(1) av. a. W. 100x.	UC152xA, UC252xA	MAL	0.3%	1%	V.I.M.
Voltage stability ⁽¹⁾ (2)	V _{IN} = 8 V to 35 V	UC352xA	MM	1%	2%	VTIL
Temperature stability ⁽¹⁾	Over operating range	A COM	WIN	3%	6%	INT.
Minimum frequency	$R_T = 200 \text{ k}\Omega, C_T = 0.1 \mu\text{F}$	COMP	77	VW.10	120	Hz
Maximum frequency	$R_T = 2 \text{ k}\Omega, C_T = 470 \text{ pF}$	107.0 M.T.N	400	- xx 1	10 x.	kHz
Current mirror	I _{RT} = 2 mA	ONY.COM TW	1.7	2.0	2.2	mA
Clock amplitude ⁽¹⁾ (2)	COM.	COM	3.0	3.5		CV
Clock width ⁽¹⁾ (2)	$T_J = 25^{\circ}C$	1003. COM:14.	0.3	0.5	1.0	μs
Syncronization threshold ⁽¹⁾ (2)	TO THE WAY	1100Y.	1.2	2.0	2.8	V
Sync input current	Sync voltage = 3.5 V	W. CON. CONT.		1.0	2.5	mA
ERROR AMPLIFIER SECTION (V	_{CM} = 5.1 V)	M.In. COM.	K]	VIX	111.70	. N.C
lanut effect veltage	00 r. OW:IN	UC152xA, UC252xA		0.5	5	mV
Input offset voltage	ONY.CO. TW W	UC352xA	N	2	10	100%.
Input bias current	ON CONTRACTO	MM. CO.	TW	1	10	4005
Input offset current	COM.	TAN I TOO	-XXI		1	μΑ
DC open loop gain	$R_L \ge 10 \text{ M}\Omega$	W. 1001.	60	75	-11	dB
Gain-bandwidth product ⁽¹⁾	$A_V = 0 \text{ dB}, T_J = 25^{\circ}\text{C}$	MM. 1001.00	11	2	MA	MHz
DC transconductanc(1) (3)	$T_J = 25^{\circ}C$, 30 k $\Omega \le R_L \le 1 M\Omega$	WWW. CO	1.1	1.5	W	mS
Low-level output voltage	M. Ton COM.	TANN TOO	DIVI	0.2	0.5	
High-level output voltage	TI 100Y.	M. 1001.	3.8	5.6	M	V
Common mode rejection	V _{CM} = 1.5 V to 5.2 V	MANATOOX	60	75		4D
Supply voltage rejection	V _{IN} = 8 V to 35 V	WW.	50	60		dB

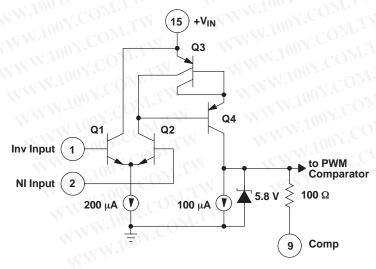
- (1) These parameters, although ensured over the recommended operating conditions, are not 100% tested in production.
- (2) Tested at $f_{OSC} = 40$ kHz ($R_T = 3.6$ k Ω , $C_T = 0.01$ μ F, $R_D = 0$. Approximate oscillator frequency is defined by:

$$f = \frac{1}{C_T(0.7R_T + 3R_D)}$$

(3) DC transconductance (g_M) relates to DC open-loop voltage gain (A_V) according to the following equation: $A_V = g_M R_L$ where R_L is the resistance from pin 9 to ground. The minimum g_M specification is used to calculate minimum A_V when the error amplifier output is loaded.

UC1525A, UC1527A UC2525A, UC2527A UC3525A, UC3527A

SLUS191C-FEBRUARY 1997-REVISED JANUARY 2008


ELECTRICAL CHARACTERISTICS (continued)

 $+V_{IN}$ = 20 V, and over operating temperature, unless otherwise specified, $T_A = T_J$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PWM COMPARATOR	M. Ton COM.	- ST COD	1	1	
Minimum duty-cycle	M. 1005. ON THE WAY TO THE	0.7.	William	0%	
Maximum duty-cycle	WWW. TOOK. CO. TW. WWW.	45%	49%		
lanut through alal(4)	Zero duty-cycle	0.7	0.9	W	V
Input threshold ⁽⁴⁾	Maximum duty-cycle	100	3.3	3.6	V
Input bias current ⁽⁴⁾	WW. 100x. WITH W	1 100 x.	0.05	1.0	μΑ
SHUTDOWN	MANA CONTRACTOR TAN MAN	-100¥		TW	
Soft-start current	$V_{SD} = 0 \text{ V}, V_{SS} = 0 \text{ V}$	25	50	80	μΑ
Soft-start low level	V _{SD} = 2.5 V	11. Jan	0.4	0.7	Νv
Shutdown threshold	To outputs, $V_{SS} = 5.1 \text{ V}$, $T_J = 25^{\circ}\text{C}$	0.6	0.8	1.0	V
Shutdown input current	V _{SD} = 2.5 V	MAN	0.4	1.0	mA
Shutdown Delay ⁽⁵⁾	V _{SD} = 2.5 V, T _J = 25°C	MM.	0.2	0.5	μs
OUTPUT DRIVERS (each outp	ut) (V _C = 20 V)	WIN	100	COM	-31
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I _{SINK} = 20 mA	M. A.	0.2	0.4	1.1.11
Low-level output voltage	I _{SINK} = 100 mA	MMA	1.0	2.0	
Lligh level output voltage	I _{SOURCE} = 20 mA	18	19	V.CC	V
High-level output voltage	I _{SOURCE} = 100 mA	17	18	-7 (
Undervoltage lockout	V _{COMP} and V _{SS} = High	6	7	8	
V _C OFF Current ⁽⁶⁾	V _C = 35 V	W	M.	200	μΑ
Rise Time ⁽⁵⁾	$C_L = 1 \text{ nF, } T_J = 25^{\circ}\text{C}$		100	600	CO_D
Fall Time ⁽⁵⁾	C _L = 1 nF, T _J = 25°C		50	300	ns
TOTAL STANDBY CURRENT	WY.CO. CTW WWW. 100Y.CO. TITW		MAL	1 100	
Supply Current	V _{IN} = 35 V	V	14	20	mA

- (4) Tested at $f_{OSC} = 40 \text{ kHz}$ ($R_T = 3.6 \text{ k}\Omega$, $C_T = 0.01 \mu\text{F}$, $R_D = 0 \Omega$.
- (5) These parameters, although ensured over the recommended operating conditions, are not 100% tested in production.
- (6) Collector off-state quiescent current measured at pin 13 with outputs low for UC1525A and high for UC1527A.

UC1525A Error Amplifier

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PRINCIPLES OF OPERATION AND TYPICAL CHARACTERISTICS

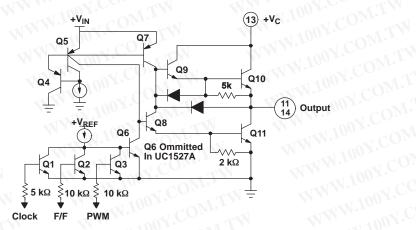


Figure 1. UC1525A Output Circuit (1/2 circuit shown)

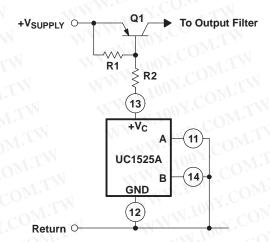


Figure 2. Grounded Driver Outputs For Single-Ended Supplies

For single-ended supplies, the driver outputs are grounded. The $V_{\rm C}$ termainal is switched to ground by the totem-pole source transistors on alternate oscillator cycles.

TEXAS

INSTRUMENTS

www.ti.com

SLUS191C-FEBRUARY 1997-REVISED JANUARY 2008

PRINCIPLES OF OPERATION AND TYPICAL CHARACTERISTICS (continued)

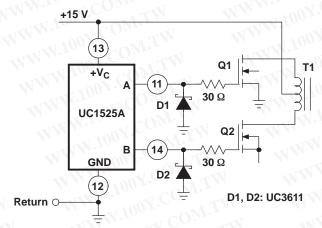


Figure 3. Output Drivers With Low Source Impedance

The low source impedance of the output drivers provides rapid charging of power FET input capacitance while minimizing external components.

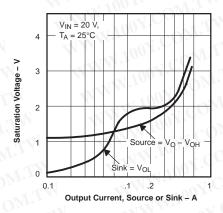


Figure 4. UC1525A Output Saturation Characteristics.

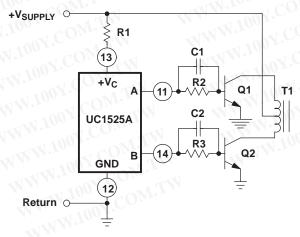


Figure 5. Conventional Push-Pull Bipolar Design

In conventional push-pull bipolar designs, forward base drive is controlled by R1–R3. Rapid turn-off times for the power devices are achieved with speed-up capacitors C1 and C2.

PRINCIPLES OF OPERATION AND TYPICAL CHARACTERISTICS (continued)

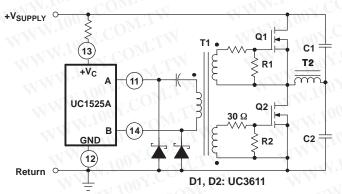


Figure 6. Low Power Transformers

Low power transformers can be driven by the UC1525A. Automatic reset occurs during dead time, when both ends of the primary winding are switched to ground.

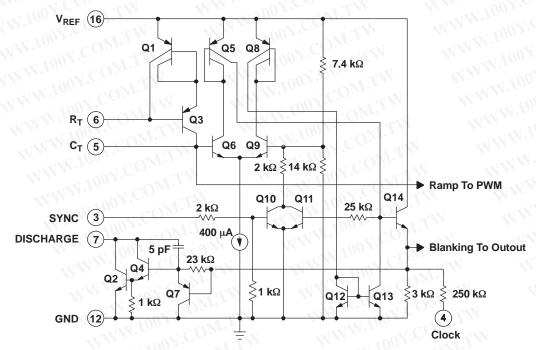
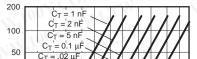


Figure 7. UC1525A Oscillator Schematic


PRINCIPLES OF OPERATION AND TYPICAL CHARACTERISTICS (continued)

Shutdown Options (See Block Diagram)

Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of 100 A to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.

An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions; the PWM latch is immediately set providing the fastest turn-off signal to the outputs; and a 150-A current sink begins to discharge the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release.

Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation. All transitions of the voltage on pin 10 should be within the time frame of one clock cycle and not repeated at a frequency higher than 10 clock cycles.

Oscillator Charge Time vs R_T and C_T

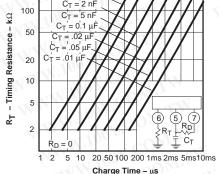


Figure 8.

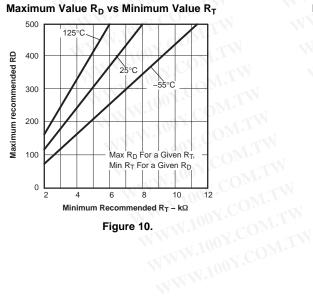


Figure 10.

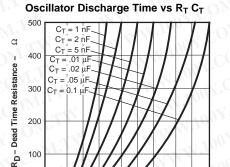


Figure 9.

10 20

5

Charge Time - µs

0.2 0.5

50 100 200

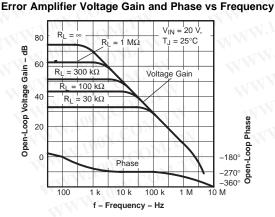
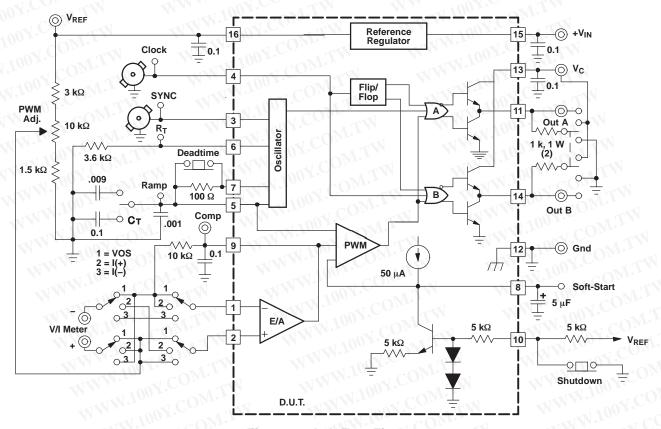
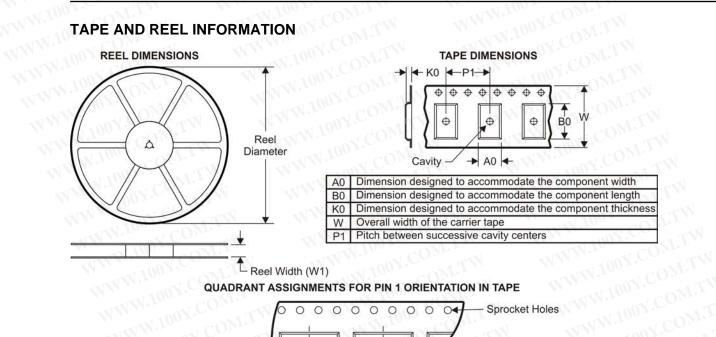


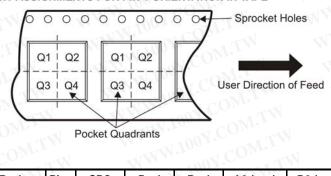
Figure 11.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PRINCIPLES OF OPERATION AND TYPICAL CHARACTERISTICS (continued)



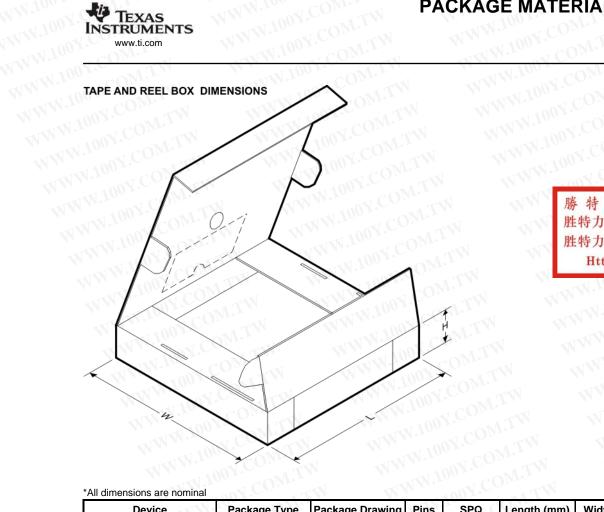

Figure 12. Lab Test Fixture


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

PACKAGE MATERIALS INFORMATION

6-Oct-2008

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadran
JC2525ADWTR	SOIC	DW	16	2000	330.0	16.4	10.85	10.8	2.7	12.0	16.0	Q1
JC3525ADWTR	SOIC	DW	16	2000	330.0	16.4	10.85	10.8	2.7	12.0	16.0	Q1
UC3525AQTR	PLCC	FN	20	1000	330.0	16.4	10.3	10.3	4.9	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

6-Oct-2008

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

N.COM.TW

WWW.100Y.CO

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
JC2525ADWTR	SOIC	DW	16	2000	346.0	346.0	33.0
JC3525ADWTR	SOIC	DW	16	2000	346.0	346.0	33.0
UC3525AQTR	PLCC	FN	20	1000	346.0	346.0	33.0