Http：／／www．100y．com．tw

FEATURES

Single－Chip Integrated $\Sigma \Delta$ Digital Audio Stereo Codec Microsoft ${ }^{\circledR}$ and Windows ${ }^{\circledR}$ Sound System Compatible
MPC Level－2＋Compliant Mixing
16 mA Bus Drive Capability
Supports Two DMA Channels for Full Duplex Operation
On－Chip Capture and Playback FIFOs
Advanced Power－Down Modes
Programmable Gain and Attenuation
Sample Rates from 4.0 kHz to 50 kHz Derived from a Single Clock or Crystal Input
68－Lead PLCC，100－Lead TQFP Packages
Operation from +5 V Supplies
Byte－Wide Parallel Interface to ISA and EISA Buses
Pin Compatible with AD1848，AD1846，CS4248，CS4231

PRODUCT OVERVIEW

The Parallel Port AD 1845 SoundPort Stereo Codec integrates key audio data conversion and control functions into a single integrated circuit．The AD 1845 provides a complete，single chip computer audio solution for business audio and multimedia applications．The codec includes stereo audio converters，com－
plete on－chip filtering，M PC Level－2 compliant analog mixing， programmable gain，attenuation and mute，a variable sample frequency generator，FIFOs，and supports advanced power－ down modes．It provides a direct，byte－wide interface to both ISA（＂AT＂）and EISA computer buses for simplified implemen－ tation on a computer motherboard or add－in card．
The AD 1845 SoundPort Stereo Codec supports a D M A re－ quest／grant architecture for transferring data with the host com－ puter bus．One or two DMA channels can be supported． Programmed I／O（PIO）mode is also supported for control register accesses and for applications lacking D M A control． T wo input control lines support mixed direct and indirect ad－ dressing of thirty－seven internal control registers over this asyn－ chronous interface．The AD 1845 includes dual DM A count registers for full duplex operation enabling the AD 1845 to cap－ ture data on one D M A channel and play back data on a separate channel．The FIF Os on the AD 1845 reduce the risk of losing data when making DM A transfers over the ISA／EISA bus．The FIFOs buffer data transfers and allow for relaxed timing in acknowledging requests for capture and playback data．

FUNCTIONAL BLOCK DIAGRAM

SoundPort is a registered trademark of Analog D evices，Inc．
M icrosoft and Windows are registered trademarks of M icrosoft Corporation．

REV．C

Information furnished by Analog Devices is believed to be accurate and reliable．However，no responsibility is assumed by Analog Devices for its use，nor for any infringements of patents or other rights of third parties which may result from its use．No license is granted by implication or otherwise under any patent or patent rights of Analog Devices．

One Technology Way，P．O．Box 9106，Norwood，MA 02062－9106，U．S．A Tel：781／329－4700 World Wide Web Site：http：／／www．analog．com Fax：781／326－8703 © Analog Devices，Inc．， 1997

AD1845- SPECIFICATIONS

STANDARD TEST CONDITIONS UNLESS OTHERWISE NOTED

Temperature	25	${ }^{\circ} \mathrm{C}$
Digital Supply $\left(\mathrm{V}_{\mathrm{DD}}\right)$	5.0	V
Analog Supply $\left(\mathrm{V}_{\mathrm{CC}}\right)$	5.0	V
Word Rate $\left(\mathrm{F}_{\mathrm{S}}\right)$	48	kHz
Input Signal	1008	Hz
Analog Output Passband	20 Hz to	20 kH z
ADC FFT Size	2048	
DAC FFT Size	8192	
V $_{\text {IH }}$	5	V
$\mathrm{~V}_{\text {IL }}$	0	V

ANALOG INPUT
D AC Test Conditions
C alibrated
0 dB R elative to Full Scale
16 -Bit Linear M ode
$10 \mathrm{k} \Omega$ Output Load
M ute Off, OL $=0$
ADC Test Conditions
Calibrated
0 dB Gain
-1.0 dB Relative to Full Scale
Line Input
16 -Bit Linear M ode

	Min	Typ	Max	Units
Input Voltage (RM S Values Assume Sine W ave Input) Line				
	2.55	2.83	3.35	$\checkmark \mathrm{p}$-p
M IC with +20 dB G ain ($\mathrm{MGE}=1$)		0.1		$\checkmark \mathrm{rms}$
	0.255	0.283	0.335	$\checkmark \mathrm{p}$-p
M IC with 0 dB Gain ($\mathrm{MGE}=0$)		1		\checkmark rms
	2.55	2.83	3.35	V p-p
Input Impedance*	10	17		$k \Omega$
Input C apacitance		15		pF

PROGRAMMABLE GAIN AMPLIFIER-ADC

	Min	Typ	Max	Units
Step Size (All Steps T ested)				
$(0$ dB to 22.5 dB)	0.7	1.5	1.9	$d B$
PGA Gain Range Span	21.5	22.5	23.5	$d B$

AUXILIARY LINE, MONO, AND MICROPHONE INPUT ANALOG GAIN/AMPLIFIERS/ATTENUATORS

	Min	Typ	Max	Units
$\begin{aligned} & \text { Step Size : AU X 1, AU X 2, LIN E, M IC (All Steps T ested) } \\ & (+12 \mathrm{~dB} \text { to }-30 \mathrm{~dB}) \\ & (-31.5 \mathrm{~dB} \text { to }-34.5 \mathrm{~dB}) \end{aligned}$	1.25 1	1.5 1.5	$\begin{aligned} & 1.75 \\ & 2.0 \end{aligned}$	dB $d B$
Step Size: M IN (All Steps T ested) (0 dB to $-\overline{3} 9 \mathrm{~dB}$)	2.5 2.2	3.0 3.0	3.6 3.85	dB
Input Gain/Attenuation Range: AUX1, AU X 2, LINE, M IC	45.0	46.5	49.0	dB
Input Gain/Attenuation Range: M_{-}IN	42	45	49	dB

DIGITAL DECIMATION AND INTERPOLATION FILTERS*

	Min	Max	Units
Passband	0	$0.4 \times \mathrm{F}_{\mathrm{S}}$	Hz
Passband Ripple		± 0.1	dB
Transition Band	$0.4 \times \mathrm{F}_{\mathrm{S}}$	$0.6 \times \mathrm{F}_{\mathrm{S}}$	Hz
Stopband	$0.6 \times \mathrm{F}_{\mathrm{S}}$	∞	Hz
Stopband Rejection	74	dB	
Group D elay		$15 / \mathrm{F}_{\mathrm{S}}$	
Group D elay Variation Over Passband	0.0	$\mu \mathrm{~s}$	

[^0]
ANALOG-TO-DIGITAL CONVERTERS

	Min	Typ	Max	Units
Resolution		16		Bits
Dynamic Range (-60 dB Input, THD +N Referenced to Full Scale, A-W eighted)	73	81		dB
THD+N (R eferenced to Full Scale)			0.025	\%
		-76	-72	dB
Signal-to-Intermodulation Distortion		85		dB
ADC C rosstalk*				
Line Inputs (Input L, Ground R, Read R; Input R, Ground L, Read L)		-90	-80	dB
Line to MIC (Input LINE, Ground and Select M IC, Read ADC)		-90	-80	dB
Line to AUX1		-90	-80	dB
Line to AU X 2		-90	-80	dB
G ain Error (Full-Scale Span Relative to Nominal Input Voltage)	-18.5		+10	\%
Interchannel G ain M ismatch (Difference of Gain Errors)			± 0.9	dB
ADC Offset Error			10	mV

DIGITAL-TO-ANALOG CONVERTERS

	Min	Typ	Max	Units
Resolution		16		Bits
D ynamic Range (-60 dB Input, THD +N Referenced to Full Scale, A-W eighted)	74	82		dB
THD +N (Referenced to Full Scale)			0.032	\%
		-78	-70	dB
Signal-to-Intermodulation Distortion		90		dB
G ain Error (Full-Scale Span Relative to N ominal Output Voltage)	-14.5		+10	\%
Interchannel G ain M ismatch (Difference of G ain Errors)			± 0.6	dB
D AC Crosstalk* (Input L, Zero R, M easure R_OUT; Input R, Zero L, M easure L_OUT)			-80	dB
T otal Out-of-B and Energy (M easured from $0 . \overline{6} \times \mathrm{F}_{5}$ to 100 kHz)*			-50	dB
Audible O ut-of-Band Energy (M easured from $0.6 \times \mathrm{F}_{\mathrm{s}}$ to 20 kHz)*			-70	dB

DAC ATTENUATOR

	Min	Typ	Max	Units
Step Size $(0 \mathrm{~dB}$ to $-22.5 \mathrm{~dB})$	1.3	1.5	1.7	dB
Step Size $(-22.5 \mathrm{~dB} \text { to }-94.5 \mathrm{~dB})^{*}$	1.0	1.5	2.0	dB
O utput Attenuation Range Span*	93.5	94.5	95.5	dB

ANALOG OUTPUT

	Min	Typ	Max	Units
Full-Scale O utput Voltage				
OL = 0	1.7	2.0	2.2	$\checkmark \mathrm{p}-\mathrm{p}$
$\mathrm{OL}=1$	2.4	2.83	3.11	$\vee p-p$
Output Impedance*			600	Ω
External Load Impedance	10			$k \Omega$
Output C apacitance*			15	pF
External Load Capacitance			100	pF
$V_{\text {ReF }}$	2.05		2.60	V
$\mathrm{V}_{\text {REF }}$ Current D rive		100		$\mu \mathrm{A}$
$\mathrm{V}_{\text {Ref }}$ Output Impedance		4		k Ω
M ute Attenuation of 0 dB F undamental* (L_OUT, R_OUT, M_OUT)			-80	dB
M ute Click (M uted O utput M inus U nmuted ${ }^{\text {M idscale }}$ D AC Output)*			± 5	mV

[^1]SYSTEM SPECIFICATIONS

	Min	Typ
System Frequency Response R ipple (Line In to Line Out)*	Max	Units
Differential N onlinearity*	1.0	dB
Phase Linearity D eviation*	± 1	LSB

STATIC DIGITAL SPECIFICATIONS

	Min	Max	Units
High Level Input Voltage ($\mathrm{V}_{\text {IH }}$)			
Digital Inputs	2.4		V
XTALII	2.4		V
Low Level Input Voltage (V_{IL})		0.8	V
High Level Output Voltage (V_{OH}) $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4		V
L ow Level Output Voltage ($\mathrm{V}_{\text {OL }}$) $\mathrm{I}_{\text {OL }}=2 \mathrm{~mA}$		0.4	V
Input Leakage Current	-10	10	$\mu \mathrm{A}$
Output L eakage C urrent	-10	10	$\mu \mathrm{A}$

TIMING PARAMETERS (GUARANTEED OVER OPERATING TEMPERATURE RANGE, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

[^2]| | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: |
| Power Supply R ange-Digital and Analog | 4.75 | | 5.25 | V |
| Power Supply C urrent | | | 130 | mA |
| Analog Supply Current | | | 45 | mA |
| D igital Supply Current | | | 85 | mA |
| Power Dissipation | | | | |
| (Current \times N ominal Supplies) | | | 650 | mW |
| Power-D own Supply Current | | | 2 | mA |
| Reset Supply C urrent | | 2 | | mA |
| T otal Power-D own Supply Current | | | 30 | mA |
| Standby Supply Current | | 36 | | mA |
| M ixer Power-D own Supply Current | | | 70 | mA |
| M ixer Only Supply C urrent | | 52 | | mA |
| ADC Power-D own Supply Current | | | 80 | mA |
| DAC Power-D own Supply Current | | | 85 | mA |
| Power Supply Rejection (100 mV p-p Signal @ 1 kHz)* (At Both Analog and Digital Supply Pins, both ADCs and DACs) | 40 | | | dB |

CLOCK SPECIFICATIONS*

	Min	Max
Input C lock Frequency		Units
Recommended Clock D uty Cycle	10	93
Power Up Initialization T ime		50

*G uaranteed, not tested.
Specifications subject to change without notice.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option 1
AD 1845JP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	68 -L ead PLCC	P-68A
AD 1845JP-REEL ${ }^{2}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	68 -L ead PLCC	P-68A
AD 1845JST	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	100 -L ead TQFP	ST-100

NOTES

${ }^{1} \mathrm{P}=\mathrm{Plastic}$ Leaded Chip C arrier; ST $=\mathrm{T}$ hin Quad Flatpack.
${ }^{2} 13$ " Reel, multiples of 250 pcs.

ENVIRONMENTAL CONDITIONS

A mbient T emperature Rating:
$\mathrm{T}_{\text {AMB }}=\mathrm{T}_{\text {CASE }}-\left(\mathrm{PD} \times \theta_{C A}\right)$
$\mathrm{T}_{\text {CASE }}=\mathrm{C}$ ase T emperature in ${ }^{\circ} \mathrm{C}$
PD = Power Dissipation in W
$\theta_{C A}=$ Thermal Resistance (C ase-to-Ambient)
$\theta_{\mathrm{JA}}=$ Thermal Resistance (Junction-to-A mbient)
$\theta_{\mathrm{Jc}}=$ Thermal Resistance (Junction-to-C ase)

Package	$\boldsymbol{\theta}_{\text {JA }}$	$\boldsymbol{\theta}_{\mathbf{J}}$	$\boldsymbol{\theta}_{\mathbf{C A}}$
PLCC	$38^{\circ} \mathrm{C} / \mathrm{W}$	$8^{\circ} \mathrm{C} / \mathrm{W}$	$30^{\circ} \mathrm{C} / \mathrm{W}$
TQFP	$44^{\circ} \mathrm{C} / \mathrm{W}$	$8^{\circ} \mathrm{C} / \mathrm{W}$	$93^{\circ} \mathrm{C} / \mathrm{W}$

ABSOLUTE MAXIMUM RATINGS*

	Min	Max	Units
Power Supplies			
D igital (V_{DD})	-0.3	6.0	V
Analog (VCC)	-0.3	6.0	V
Input Current			
(Except Supply Pins)		± 10.0	mA
Analog Input Voltage (Signal Pins)	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Digital Input Voltage (Signal Pins)	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
Ambient Temperature (Operating)	0	+70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$

*Stresses greater than those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 1845 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN DESIGNATIONS

PIN FUNCTION DESCRIPTIONS

Parallel Interface

Pin Name	PLCC	TQFP	I/O	Description
CDRQ	12	7	0	C apture D ata Request. The assertion of this signal HI indicates that the codec has a captured audio sample from the ADC ready for transfer. T his signal will remain asserted until the internal capture FIF O is empty.
$\overline{\text { CDAK }}$	11	6	I	C apture D ata $A c k n o w l e d g e . ~ T h e ~ a s s e r t i o n ~ o f ~ t h i s ~ a c t i v e ~ L O ~ s i g n a l ~ i n d i c a t e s ~ t h a t ~ t h e ~ \overline{R D}$ cycle occurring is a DMA read from the capture buffer.
PDRQ	14	9	0	Playback D ata Request. The assertion of this signal HI indicates that the codec is ready for more DAC playback data. The signal will remain asserted until the internal playback FIFO is full.
$\overline{\text { PDAK }}$	13	8	1	Playback D ata Acknowledge. The assertion of this active LO signal indicates that the $\overline{\mathrm{WR}}$ cycle occurring is a DM A write to the playback buffer.
AD R1:0	$9 \& 10$	100 \& 1	1	C odec Addresses. These address pins are asserted by the codec interface logic during a control register/PIO access. The state of these address lines determine which direct register is accessed.
$\overline{\mathrm{RD}}$	60	75	I	Read Command Strobe. This active LO signal defines a read cycle from the codec. The cycle may be a read from the control/PIO registers, or the cycles could be a read from the codec's D M A sample registers.
$\overline{\mathrm{WR}}$	61	76	I	Write Command Strobe. This active LO signal indicates a write cycle to the codec. The cycle may be a write to the control/PIO registers, or the cycle could be a write to the codec's DM A sample registers.
$\overline{\mathrm{CS}}$	59	74	1	AD 1845 Chip Select. The codec will not respond to any control/PIO cycle accesses unless this active LO signal is LO. This signal is ignored during DM A transfers.
DATA7:0	$\begin{aligned} & 3-6 \& \\ & 65-68 \end{aligned}$	$\begin{aligned} & 84-87 \& \\ & 90-93 \end{aligned}$	1/0	D ata Bus. These pins transfer data and control information between the codec and the host.
$\overline{\text { DBEN }}$	63	78	0	D ata Bus Enable. This pin enables the external bus drivers. This signal is normally HI. For control register/PIO cycles, $\overline{\mathrm{DBEN}}=(\overline{\mathrm{WR}} \text { or } \overline{\mathrm{RD}}) \text { and } \overline{\mathrm{CS}}$ For DM A cycles, $\overline{\mathrm{DBEN}}=(\overline{\mathrm{WR}} \text { or } \overline{\mathrm{RD}}) \text { and }(\overline{\mathrm{PDAK}} \text { or } \overline{\mathrm{CDAK}}) \text {. }$
DBDIR	62	77	0	D ata Bus Direction. This pin controls the direction of the data bus transceiver. HI enables writes from the host bus to the AD 1845; LO enables reads from the AD 1845 to the host bus. This signal is normally HI . F or control register/PIO cycles, $\mathrm{DBDIR}=\overline{\mathrm{RD}} \text { and } \overline{\mathrm{CS}}$ For DMA cycles, DBDIR $=\overline{\mathrm{RD}}$ and ($\overline{\mathrm{PDAK}}$ or $\overline{\mathrm{CDAK}})$.

Analog Signals

Pin Name	PLCC	TQFP	I/O	Description
L_LINE	30	31	I	Left Line Input.
R_LINE	27	28	I	Right Line Input. Left M icrophone Input. T his signal can be either line level or -20 dB from line level L_MIC
29	30	I	(using the on-chip 20 dB gain block).	
R_M IC	28	29	I	Right M icrophone Input. T his signal can be either line level or -20 dB from line level (using the on-chip 20 dB gain block).
L_AUX1	39	45	I	Left Auxiliary \#1 Line Input.
R_AUX 1	42	48	I	Right Auxiliary \#1 Line Input.
L_AUX2	38	44	I	Left Auxiliary \#2 Line Input.
R_AUX2	43	49	I	Right Auxiliary \#2 Line Input.
L_OUT	40	46	0	Left Line Output.
R_OUT	41	47	0	Right Line Output.
M_IN	46	56	I	M ono Input.
M_OUT	47	57	0	M ono Output.

Miscellaneous

Pin Name	PLCC	TQFP	I/O	Description
XTALII	17	12	1	24.576 M Hz Crystal \#1 Input.
XTAL10	18	13	0	24.576 M Hz Crystal \#1 Output.
XTAL2I	21	16		N ot used on the AD 1845.
XTAL20	22	17		N ot used on the AD 1845.
PWRDWN	23	18	I	Power D own Signal. Active LO places the AD 1845 in its lowest power consumption mode. All sections of the AD 1845, including the digital interface, are shut down and consume minimal power.
INT	57	72	0	H ost Interrupt Pin. A host interrupt is generated to notify the host that a specified event has occurred.
XCTL1:0	$58 \& 56$	73 \& 71	0	External Control. These signals reflect the current status of register bits inside the AD 1845. They can be used for signaling or to control external logic.
$\overline{\text { RESET }}$	24	19	I	Reset. Active LO resets all digital registers and filters, and resets all analog filters. Active LO places the AD 1845 in the lowest power consumption mode. XTAL1 is required to be running during the minimum low pulsewidth of the reset signal.
$V_{\text {REF }}$	32	35	0	Voltage Reference. Nominal 2.25 volt reference available for dc-coupling and levelshifting. $\mathrm{V}_{\text {Ref }}$ should not be used to sink or source current.
$V_{\text {REF_F }}$	33	38	I	V oltage Reference F ilter. Voltage reference filter point for external bypassing only.
L_FILT	31	33	1	Left Channel Filter. This pin requires a $1.0 \mu \mathrm{~F}$ capacitor to analog ground for proper operation.
R_FILT	26	25	1	Right Channel Filter. This pin requires a $1.0 \mu \mathrm{~F}$ capacitor to analog ground for proper operation.
NC	$\begin{aligned} & 48-52, \\ & 55 \end{aligned}$	$\begin{aligned} & 2-5,21-2 \\ & 26,27,3 \\ & 36,37,3 \\ & 50-53,5 \\ & 69,70,8 \\ & 94-97 \end{aligned}$	$\begin{aligned} & 24 \\ & 2,34, \\ & 9, \\ & 8-66, \\ & 0-83, \end{aligned}$	N o Connect.

Power Supplies

Pin Name	PLCC	TQFP	I/O	Description
VCC $^{\text {GNDA }}$	$35 \& 36$	$41 \& 42$	I	Analog Supply Voltage (+5 V).
V $_{\text {DD }}$	$34 \& 37$	$40 \& 43$	I	Analog Ground.
	$1,7,15$,	10,14,	I	Digital Supply Voltage (+5 V).
	19,45,	55,68,		
GNDD	54	88,98		Digital Ground.
	$2,8,16$,	$11,15,20$,	I	
	20,25,	54,67,		
	44,53,	79,89,		
	64	99		

(Continued from page 1)

Figure 1. Interface to ISA Bus
External circuit requirements are limited to a minimal number of low cost support components. Anti-imaging DAC output filters are incorporated on-chip. Dynamic range exceeds 80 dB over the 20 kHz audio band. Sample rates from 4 kHz to 50 kHz are supported from a single external crystal or clock source.
The AD 1845 has built-in 8/16 mA (user selectable) bus drivers. If 24 mA drive capability is required, the AD 1845 generates enable and direction controls for IC bus buffers such as the 74 -245.

The codec includes a stereo pair of $\sum \Delta$ analog-to-digital converters and a stereo pair of $\sum \Delta$ digital-to-analog converters. The AD 1845 mixer surpasses M PC L evel- 2 recommendations. Inputs to the ADC can be selected from four stereo pairs of analog signals: line (LIN E), microphone (MIC), auxiliary line \#1 (AUX1), and post-mixed DAC output. A software-controlled programmable gain stage allows independent gain for each channel going into the ADC. In addition, the analog mixer allows the mono input (M_IN), MIC, AU X 1, LINE and auxiliary line \#2 ($A \cup \times 2$) signal̄s to be mixed with the DACs' output. The ADCs' output can be digitally mixed with the DACs' input.
The pair of 16 -bit outputs from the ADCs is available over a byte-wide bidirectional interface that also supports 16-bit digital input to the DAC s and control information. The AD 1845 can accept and generate 16 -bit twos complement PCM linear digital data in both little endian or big endian byte ordering, 8-bit
unsigned magnitude PCM linear data, and 8-bit μ-law or A-law companded digital data.
The $\sum \Delta$ DACs are preceded by a digital interpolation filter. An attenuator provides independent user volume control over each DAC channel. N yquist images and shaped quantized noise are removed from the DAC s' analog stereo output by on-chip switched-capacitor and continuous-time filters.
The AD 1845 supports multiple low power and power-down modes to support notebook and portable computing multimedia applications. The ADC, DAC, and mixer paths can be suspended independently allowing the AD 1845 to be used for capture-only or playback-only, lessening power consumption and extending battery life.
The AD 1845 includes a variable sample frequency generator, that allows the codec to instantaneously change sample rates with a resolution of 1 Hz without "clicks" and "pops." Additionally, $\sum \Delta$ quantization noise is kept out of the 20 kHz audio band regardless of the chosen sample rate. The codec uses the variable sample frequency generator to derive all internal clocks from a single external crystal or clock source.

Expanded Mode (MODE2)

M ODE1 is the initial state of the AD 1845. In this state the AD 1845 appears as an AD 1848 compatible device. To access the expanded modes of operation on the AD 1845, the M ODE2 bit should be set in the M iscellaneous Information C ontrol Register. When this bit is set to one, 16 additional indirect registers can be addressed allowing the user to access the AD 1845's expanded features. The AD 1845 can return to M ODE1 operation by clearing the M ODE2 bit. In both M ODE1 and M ODE2, the capture and playback FIF Os are active to prevent data loss.
The additional M ODE2 functions are:

1. Full-D uplex DM A support.
2. M IC input mixer, mute and volume control.
3. M ono output with mute control.
4. M ono input with mixer volume control.
5. Software controlled advanced power-down modes.
6. Programmable sample rates from 4 kHz to 50 kHz in 1 Hz increments.

AD1845

FUNCTIONAL DESCRIPTION

This section overviews the functionality of the AD 1845 and is intended as a general introduction to the capabilities of the device. As much as possible, detailed reference information has been placed in "C ontrol Registers" and other sections. The user is not expected to refer repeatedly to this section.

Analog Inputs

The AD 1845 SoundPort Stereo Codec accepts stereo line-level and microphone-level inputs. The LINE, MIC, AUX1, and post-mixed DAC output are available to the ADC multiplexer. The DAC output can be mixed with LINE, MIC, AU X1, AU X 2 and M_IN. Each channel of the M IC inputs can be amplified by +20 dB to compensate for the difference between line levels and typical condenser microphone levels.

Analog Mixing

The M_IN mono input signal, M IC, LINE, AU X1 and AU X2 analog stereo signals can be mixed in the analog domain with the DAC output. Each channel of each AUX, LINE and MIC analog input can be independently gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps or completely muted. M_IN can be attenuated from 0 dB to -45 dB in 3 dB steps or muted. The post-mixed DAC outputs are available on L_OUT and R_OUT and also to the ADC input multiplexer.
Even if the AD 1845 is not playing back data from its DACs, the analog mix function can still be active.

Analog-to-Digital Datapath

The PGA following the input multiplexer allows independent selectable gains for each channel from 0 dB to 22.5 dB in +1.5 dB steps. The codec can operate either in a global stereo mode or in a global mono mode with left-channel inputs appearing at both channel outputs.
The AD $1845 \sum \Delta$ ADCs incorporate a fourth-order modulator. A single pole of passive filtering is all that is required for antialiasing the analog input because of the ADC's high over sampling ratio. The ADCs include linear-phase digital decimation filters that low-pass filter the input to $0.4 \times \mathrm{F}_{\mathrm{s}}$. (" F_{s} " is the word rate or "sampling frequency.") ADC input over range conditions are reported on status bits in the T est and Initialization Register.

Digital-to-Analog D atapath

The $\sum \Delta$ DACs are preceded by a programmable attenuator and a low-pass digital interpolation filter. The anti-imaging interpolation filter over samples and digitally filters the higher frequency images. The attenuator allows independent control of each DAC channel from 0 dB to -94.5 dB in -1.5 dB steps plus full mute. The DAC s' $\sum \Delta$ noise shapers also over sample and convert the signal to a single-bit stream. The DAC outputs are then filtered in the analog domain by a combination of switchedcapacitor and continuous-time filters. They remove the very high frequency components of the DAC bit stream output. No external components are required.
Changes in DAC output attenuation take effect only on zero crossings, eliminating "zipper" noise on playback. Each channel has its own independent zero-crossing detector and attenuator change control circuitry. A timer guarantees that requested volume changes will occur even in the absence of a zero crossing. The time-out period is 8 milliseconds at a 48 kHz sampling rate and 48 milliseconds at an 8 kHz sampling rate. (T imeout [ms] $\approx 384 \div \mathrm{F}_{\mathrm{s}}[\mathrm{kHz}]$.)

Digital Mixing

Stereo digital output from the ADCs can be digitally mixed with the input to the DACs. Digital output from the ADCs going out of the data port is unaffected by the digital mix. Along the digital mix datapath, the 16-bit linear output from the ADC s is attenuated by an amount specified with control bits. Both channels of the digital mix datapath are attenuated by the same amount. (N ote that internally the AD 1845 always works with 16-bit PCM linear data, digital mixing included; format conversions take place at the input and output.)
Sixty-four steps of -1.5 dB attenuation are supported to -94.5 dB . The digital mix datapath can also be completely muted. N ote that the level of the mixed signal is also a function of the input PGA settings, since they affect the ADCs' output.
The attenuated digital mix data is digitally summed with the DAC input data prior to the DACs' datapath attenuators. The digital sum of digital mix data and DAC input data is clipped at plus or minus full scale and does not wrap around. Because both stereo signals are mixed before the output attenuators, mix data is attenuated a second time by the DAC s' datapath attenuators.
In case the AD 1845 is capturing data, but ADC output data is not removed in time ("ADC overrun"), the last sample captured before overrun will be used for the digital mix. In case the AD 1845 is playing back data, but input digital DAC data fails to arrive in time ("DAC underrun"), a midscale zero will be added to the digital mix data when the DACZ control bit is set to 0; otherwise, the DAC will output the previous valid sample in an underrun condition.

Analog Outputs

Stereo and mono line-level outputs are available at external pins. Each channel of this output can be independently muted. When muted, the outputs will settle to a dc value near $\mathrm{V}_{\text {REF }}$, the midscale reference voltage. The output is selectable for 2.0 V peak-to-peak or 2.8 V peak-to-peak. W hen selecting the LINE output as an input to the ADC, the ADC automatically compensates for the output level selection.

Digital Data Types

The AD 1845 supports five global data types: 16-bit twos complement linear PCM (little endian and big endian byte ordering), 8 -bit unsigned linear PCM , companded μ-law, and 8 -bit companded A-law, as specified by control register bits. D ata in all formats is always transferred M SB first. All data formats that are less than 16 bits are M SB-aligned to ensure the use of full system resolution.
The 16-bit PCM data format is capable of representing 96 dB of dynamic range. Eight-bit PCM can represent 48 dB of dynamic range. Companded μ-law and A -law data formats use nonlinear coding with less precision for large amplitude signals. The loss of precision is compensated for by an increase in dynamic range to 64 dB and 72 dB , respectively.
On input, 8-bit companded data is expanded to an internal linear representation, according to whether μ-law or A-law was specified in the codec's internal registers. N ote that when μ-law compressed data is expanded to a linear format, it requires 14 bits. A-law data expanded requires 13 bits.

Figure 2. μ-Law or A-Law Expansion
When 8-bit companding is specified, the ADCs' linear output is compressed to the format specified.

Figure 3. μ-Law or A-Law Compression
N ote that all format conversions take place at input or output. Internally, the AD 1845 always uses 16-bit linear PCM representations to maintain maximum precision.

Timer Registers

The timer registers are provided for system level synchronization, and for periodic interrupt generation. The 16-bit timer time base is determined by the frequency of the connected input clock source.

The timer is enabled by setting the Timer Enable bit, TE, in the Alternate F eature Enable register. To set the timer, load the U pper and Lower T imer Bits Registers. The timer value will then be loaded into an internal count register with a value of approximately 10μ (the exact timer value is listed in the register descriptions). T he internal count register will decrement until it reaches zero, then the T imer Interrupt bit, TI, is set and an interrupt will be sent to the host. The next timer clock will load the internal count register with the value of the T imer Register, and the timer will be reinitialized. T o clear the interrupt, write to the Status Register or write a " 0 " to T I.

Interrupts

The AD 1845 supports interrupt conditions generated by D M A playback count expiration, DMA capture count expiration, or timer expiration. The INT bit will remain set, HI , until a write has been completed to the Status Register or by clearing the TI, CI , or PI bit (depending on the existing condition) in the Capture Playback Timer Register. The IEN bit of the Pin Control Register determines whether the interrupt pin responds to an interrupt condition and reflects the interrupt state on the INT status bit.

Power Supplies and Voltage Reference

The AD 1845 operates from a +5 V power supply. Independent analog and digital supplies are recommended for optimal performance though excellent results can be obtained in single-supply systems. A voltage reference is included on the codec and its 2.25 V buffered output is available on an external pin ($\mathrm{V}_{\mathrm{REF}}$). The reference output can be used for biasing op amps used in dc coupling. The internal reference is externally bypassed to analog ground at the $\mathrm{V}_{\text {Ref_f }} \mathrm{pin}$.

Clocks and Sample Rates

The AD 1845 operates from a single external crystal or clock source. From a single input, a wide range of sample rates can be generated. The AD 1845 default frequency source is a 24.576 M Hz input. The AD 1845 can also be driven from a 14.31818 M Hz (OSC), $24 \mathrm{M} \mathrm{Hz}, 25 \mathrm{M} \mathrm{Hz}$ or 33 M Hz input frequency source. In M ODE 1, the input drives the internal variable sample frequency generator to derive the following AD 1848 compatible sample rates: $5.5125,6.615,8,9.6$, $11.025,16,18.9,22.05,27.42857,32,33.075,37.8,44.1$, 48 kHz . In M ODE2, the AD 1845 can be programmed to generate any sample frequency between 4 kHz and 50 kHz with 1 Hz resolution. N ote that it is no longer required to enter M ode C hange E nable (M CE) to change the sample rate. This feature allows the user to change the AD 1845's sample rate " on the fly."

CONTROL REGISTERS
 Control Register Architecture

The AD 1845 SoundPort Stereo C odec accepts both data and control information through its byte-wide parallel port. Indirect addressing minimizes the number of external pins required to access all 37 of its byte-wide internal registers. Only two external address pins, AD R 1:0, are required to accomplish all data and control transfers. These pins select one of five direct registers. (AD R 1:0 $=3$ addresses two registers, depending on whether the transfer is for a playback or capture.)

ADR1:0	Register Name
0	Index A ddress Register
1	Indexed D ata R egister
2	Status R egister
3	PIO D ata Register

Figure 4. Direct Register Map

AD1845

A write to or a read from the Indexed D ata Register will access the Indirect Register which is indexed by the value most recently written to the Index Address Register. The Status Register and the PIO D ata Register are always accessible directly, without indexing. The 32 Indirect Register indexes are shown in Figure 5:

Index	Register Name	Reset/Default State	
0	Left Input Control	000x	0000
1	Right Input C ontrol	000x	0000
2	Left Aux \#1 Input C ontrol	1xx0	1000
3	Right Aux \#1 Input Control	1xx0	1000
4	Left Aux \#2 Input Control	1xx0	1000
5	Right Aux \#2 Input C ontrol	1xx0	1000
6	Left Output Control	1×00	0000
7	Right Output C ontrol	1×00	0000
8	Clock and D ata Format	0000	0000
9	Interface C onfiguration	00xx	1000
10	Pin Control	00xx	xx00
11	T est and Initialization	0000	0000
12	M iscellaneous Information	10x0	1010
13	Digital M ix/Attenuation	0000	00x0
14	U pper Base Count	0000	0000
15	L ower Base Count	0000	0000
16	Alternate F eature E nable/L eft M IC Input C ontrol	0001	0001
17	M IC M ix Enable/Right M IC Input Control	0001	000x
18	Left Line G ain, Attenuate, M ute, M ix	1xx0	1000
19	Right Line Gain, Attenuate, M ute, M ix	1xx0	1000
20	Lower T imer	0000	0000
21	U pper Timer	0000	0000
22	U pper Frequency Select	0001	1111
23	L ower F requency Select	0100	0000
24	C apture Playback T imer	x000	0000
25	Revision ID	100x	x000
26	M ono Control	00xx	0011
27	Power-D own C ontrol	000x	$0 \times x x$
28	C apture D ata F ormat C ontrol	0000	xxxx
29	Crystal Clock Select/T otal Power-D own	000x	xxx0
30	C apture U pper B ase C ount	0000	0000
31	C apture L ower B ase C ount	0000	0000

Figure 5. Indirect Register Map and Reset/Default States
A detailed map of all direct and indirect register contents is summarized for reference as follows:

Direct Registers

ADRI:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
0	INIT	M CE	TRD	IXA4	IXA3	IXA2	IXA1	IXA0
1	IXD7	IXD6	IXD5	IXD 4	IXD 3	IXD2	IXD 1	IXD 0
2	CU/L	CL/R	CRDY	SOUR	PU/L	PL/R	PRDY	IN T
3	CD7	CD 6	CD 5	CD 4	CD 3	CD2	CD1	CDO
3	PD 7	PD 6	PD5	PD 4	PD 3	PD 2	PD 1	PD 0

Indirect Registers

Figure 6. Register Summary
N ote that the only sticky bit in any of the AD 1845 control registers is the interrupt (INT) bit. All other bits can change with every sample period.

DIRECT CONTROL REGISTER DEFINITIONS

Index Address Register (ADR1:0 = 0)

ADR1:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
0	IN IT	M CE	TRD	IXA4	IXA3	IXA2	IXA1	IXA0

IXA4:0 Index Address. These bits define the address of the AD 1845 register accessed by the Indexed D ata Register. These bits are read/write. IXA4 is not active in M ODE1. Always write 0 to this bit when using the AD 1845 in MODE1.
TRD Transfer Request Disable. This bit, when set, causes PIO and DM A transfers to cease when the Interrupt Status (INT) bit of the Status Register is set.
$0 \quad$ Transfers Enabled During Interrupt. PDRQ and CDRQ pin outputs are generated uninhibited by interrupts. D M A C urrent C ounter Register decrements with every sample transferred when either PEN or CEN are enabled.
1 Transfers D isabled By Interrupt. PDRQ and CDRQ pin outputs are generated only if INT bit is 0 (when either PEN or CEN, respectively are enabled). Any pending playback or capture requests are allowed to complete at the time when INT is set. After pending requests complete, the data in the FIFO will be consumed at the sample rate. Subsequently, the midscale inputs will be internally generated for the DACs if the DACZ bit is set, otherwise, the previous valid sample will be repeated, and the ADC output buffer will contain the last valid output. Clearing the sticky INT bit (or the TRD bit) will cause the resumption of playback and/or capture requests (presuming PEN and/or CEN are enabled). T he DM A Current Counter Register will not decrement while both the TRD bit is set and the INT bit is a one. No over run or under run error will be reported when transfers are disabled by INT.
M CE M ode Change Enable. This bit must be set whenever the current functional mode of the AD 1845 is changed where noted in the Indirect Control Registers $8,9,28$ and 29. M CE must be cleared at the completion of the desired register changes.
The DAC outputs are automatically muted when the M CE bit is set. After M CE is cleared, the DAC outputs will be restored to the state specified by the LDM and RDM mute bits.
Both ADCs and DACs are automatically muted for 32 sample cycles after exiting the M CE state to allow the reference and all filters to settle. The ADCs will produce midscale values; the DACs' analog output will be muted. All converters are internally operating during these 32 sample cycles, and the AD 1845 will expect playback data and will generate (midscale) capture data. N ote that the autocalibrate-in-progress (ACI) bit will be set on exiting from the M CE state only when ACAL is set. If ACAL bit is set, ACI will remain HI for these 384 sample cycles, allowing system software to poll this bit rather than count cycles.
Special sequences must be followed if autocalibrate (ACAL) is set during mode change enable. See the "Autocalibration" section.
INIT AD 1845 Initialization. This bit is set when the AD 1845 cannot respond to parallel bus cycles. This bit is read-only.

Immediately after reset and once the AD 1845 has left the IN IT state, the initial value of this register will be " 01000000 (40h)." D uring AD 1845 initialization, this register cannot be written and always reads " 10000000 (80h)."

Indexed Data Register (ADR 1:0 = 1)

ADR1:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
1	IXD7	IXD6	IXD5	IXD 4	IXD 3	IXD2	IXD1	IXD0

IXD 7:0 Indexed Register Data. These bits contain the contents of the AD 1845 register referenced by the Indexed D ata Register.
D uring AD 1845 initialization, this register cannot be written and always reads as " 10000000 (80h)."

Status Register (ADR 1:0 = 2)

ADR1:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
2	CU/L	CL/R	CRDY	SOUR	PU/L	PL/R	PRDY	INT

INT Interrupt Status. This sticky bit (the only one) indicates the status of the interrupt logic of the AD 1845. This bit is cleared by any host write of any value to this register. The IEN bit of the Pin Control Register determines whether the state of this bit is reflected on the INT pin of the AD 1845. The only interrupt conditions supported by the AD 1845 are generated by the underflow of the D M A Current C ount Register or the T imer Registers. The T imer Register operates at a $10 \mu \mathrm{~s}$ resolution. Clearing INT requires a $10 \mu \mathrm{~s}$ wait. If an immediate clearing of a TI condition is desired, clear the TE bit to remove the timer interrupt.
0 Interrupt pin inactive
1 Interrupt pin active
PRDY Playback D ata R egister Ready. The PIO or DM A Playback D ata Register is ready for more data. This bit is intended to be used when direct programmed I/O data transfers are desired; however, it is also valid for D M A transfers. This bit is read-only.
0 DAC data is still valid. D o not overwrite.
1 DAC data is stale. Ready for next host data write value.
PL/R Playback Left/Right Sample. This bit indicates whether the PIO or D M A playback data needed is for the right channel DAC or left channel DAC. This bit is read-only.
0 Right channel needed
1 Left channel or mono
PU/L Playback U pper/L ower Byte. This bit indicates whether the PIO or D M A playback data needed is for the upper or lower byte of the channel. T his bit is read-only.
$0 \quad$ Lower byte needed
1 Upper byte needed or any 8-bit mode
SOUR Sample Over/U nderrun. This bit indicates that the most recent sample was not serviced in time and therefore either a capture overrun (COR) or playback underrun (PUR) has occurred. The bit indicates an overrun for ADC capture and an underrun for DAC playback. If both capture and playback are enabled, the source that set this bit can be determined by reading COR and PUR. T his bit changes on a sample by sample basis. This bit is read-only.
CRDY Capture D ata Ready. The PIO C apture D ata R egister contains data ready for reading by the host. This bit should only be used when direct programmed I/O data transfers are desired. This bit is read-only.
$0 \quad$ ADC data is stale. D o not reread the information.
1 ADC data is fresh. Ready for next host data read.
$C L / R \quad$ Capture Left/Right Sample. This bit indicates whether the PIO capture data waiting is for the right channel ADC or left channel ADC. This bit is read-only.
0 Right channel
1 Left channel or mono
CU/L Capture U pper/L ower Byte. This bit indicates whether the PIO capture data ready is for the upper or lower byte of the channel. This bit is read-only.
0 Lower byte ready
1 Upper byte ready or any 8-bit mode
The PRDY, CRDY, and INT bits of this status register can change asynchronously to host accesses. The host may access this register while the bits are transitioning. The host read may return a zero value just as these bits are changing, for example. A one value would not be read until the next host access.

While the FIFO s have multiple samples available for transfer, the CRDY and PRDY status bits for consecutive samples are approximately 320 ns-600 ns apart.
This register's initial state after reset is "1100 1100."

PIO Data Registers (ADR1:0 = 3)

ADR1:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
	CD 7	CD 6	CD 5	CD 4	CD 3	CD 2	CD 1	CD 0
	PDD 7	PD 6	PD 5	PD 4	PD 3	PD 2	PD 1	PD 0

The PIO D ata Registers are two registers mapped to the same address. W rites send data to the PIO Playback D ata Register (PD 7:0). Reads will receive data from the PIO C apture D ata Register (CD 7:0).
D uring AD 1845 initialization, the PIO Playback D ata Register cannot be written to and the C apture D ata Register is always read as "1000 0000 (80h)."
CD 7:0 PIO C apture D ata Register. This is the control register where capture data is read during programmed I/O data transfers.
The reading of this register will increment the capture byte state machine so that the following read will be from the next appropriate byte in the sample. The exact byte which is next to be read can be determined by reading the Status Register. Once all relevant bytes have been read, the state machine will stay pointed to the last byte of the sample until a new sample is received from the ADC s. Once this has occurred, the state machine and Status Register will point to the first byte of the sample.
PD 7:0 PIO Playback D ata Register. This is the control register where playback data is written during programmed I/O data transfers.
Writing data to this register will increment the playback byte tracking state machine so that the following write will be to the correct byte of the sample. Once all bytes of a sample have been written, subsequent byte writes to this port are ignored. The state machine is reset when the current sample is sent to the DAC s.

INDIRECT CONTROL REGISTER DEFINITIONS

The following control registers are accessed by writing index values to IXA3:0 in the Index Address R egister (ADR1:0 $=0$) followed by a read/write to the Indexed D ata Register (AD R 1:0 = 1).

Left Input Control (IXA3:0 = 0)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
0	LSS1	LSS0	LM GE	res	LIG 3	LIG 2	LIG 1	LIG0

LIG3:0 Left input gain select. The least significant bit of this gain select represents +1.5 dB . M aximum gain is +22.5 dB .
res Reserved for future expansion. Always write a zero to this bit.
LM GE Left Input M icrophone Gain Enable. This bit will enable the +20 dB gain of the left MIC input signal.
LSS1:0 Left Input Source Select. These bits select the input source for the left gain stage preceding the left ADC.
LSS1 LSSO Left Input Source
$0 \quad 0 \quad$ Left Line Source Selected
$0 \quad 1 \quad$ Left Auxiliary 1 Source Selected
$1 \quad 0 \quad$ Left M icrophone Source Selected
11 Left Line Post-M ixed DAC Output Source Selected
This register's initial state after reset is "000x 0000."

Right Input Control (IXA3:0 = 1)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
1	RSS1	RSS0	RMGE	res	RIG3	RIG2	RIG 1	RIG0

RIG 3:0 Right Input Gain Select. The least significant bit of this gain select represents $+1.5 \mathrm{~dB} . \mathrm{M}$ aximum gain is +22.5 dB .
res
Reserved for future expansion. Always write a zero to this bit.
RM GE
Right Input M icrophone G ain Enable. This bit will enable the +20 dB gain of the right M IC input signal.
RSS1:0 Right Input Source Select. These bits select the input source for the right channel gain stage preceding the right ADC.

RSS1 RSSO Right Input Source

$0 \quad 0 \quad$ Right Line Source Selected
$0 \quad 1 \quad$ Right Auxiliary 1 Source Selected
$1 \quad 0 \quad$ Right M icrophone Source Selected
$1 \quad 1 \quad$ Right Post-M ixed D AC O utput Source Selected
This register's initial state after reset is "000x 0000."

Left Auxiliary \#1 Input Control (IXA3:0 = 2)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
2	LM X 1	res	res	LX 1A4	LX1A3	LX1A2	LX1A1	LX1A0

LX 1A 4:0 Left Auxiliary Input \#1 Attenuate Select. The least significant bit of this gain/attenuate select represents 1.5 dB . LX 1A 4:0 $=0$ produces $a+12 \mathrm{~dB}$ gain. LX 1A4:0 $=$ " 01000 " (8 decimal) produces 0 dB gain. M aximum attenuation is -34.5 dB . See Figure 10.
res Reserved for future expansion. Always write zeros to these bits.
LM X $1 \quad$ Left Auxiliary \#1 M ute. This bit, when set, will mute the left channel of the Auxiliary \#1 input source. This bit powers up set.
This register's initial state after reset is " $1 \times x 01000 . "$

Right Auxiliary \#1 Input Control (IXA3:0 = 3)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
3	RM X1	res	res	RX1A4	RX1A3	RX1A2	RX1A1	RX1A0

RX1A4:0	Right Auxiliary Input \#1 Attenuate Select. The least significant bit of this gain/attenuate select represents 1.5 dB . RX1A4:0 $=0$ produces $\mathrm{a}+12 \mathrm{~dB}$ gain. $\mathrm{RX} 1 \mathrm{~A} 4: 0=$ " 01000 " (8 decimal) produces 0 dB gain. M aximum attenuation is -34.5 dB . See Figure 10.
res	Reserved for future expansion. Always write zeros to these bits.
RM X 1	Right Auxiliary \#1 M ute. This bit, when set, will mute the right channel of the Auxiliary \#1 input source. This bit powers up set.

This register's initial state after reset is " $1 \times x 0$ 1000."

Left Auxiliary \#2 Input Control (IXA3:0 = 4)

IXA3:0	Data 7	Data 6	D ata 5	Data 4	Data 3	Data 2	Data 1	Data 0
4	LM X2	res	res	LX2A4	LX2A3	LX2A2	LX2A1	LX2A0

LX 2A 4:0 Left Auxiliary Input \#2 Attenuate Select. The least significant bit of this gain/attenuate select represents 1.5 dB . LX2A 4:0 $=0$ produces $a+12 \mathrm{~dB}$ gain. LX2A4:0 $=$ " 01000 " (8 decimal) produces 0 dB gain. M aximum attenuation is -34.5 dB . See Figure 10.
res Reserved for future expansion. Always write zeros to these bits.
LM X2 Left Auxiliary \#2 M ute. This bit, when set to 1 , will mute the left channel of the Auxiliary \#2 input source. This bit powers up set.

This register's initial state after reset is " $1 \times x 0$ 1000."
Right Auxiliary \#2 Input Control (IXA3:0 = 5)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
5	RM X2	res	res	RX2A4	R×2A3	R×2A2	RX2A1	RX2A0

RX 2A 4:0 Right Auxiliary Input \#2 Attenuate Select. The least significant bit of this gain/attenuate select represents 1.5 dB . RX2A4:0 $=0$ produces a +12 dB gain. $\mathrm{RX} 2 \mathrm{~A} 4: 0=$ " 01000 " (8 decimal) produces 0 dB gain. M aximum attenuation is -34.5 dB . See F igure 10.
res Reserved for future expansion. Always write zeros to these bits.
RM X 2 Right Auxiliary \#2 M ute. This bit, when set, will mute the right channel of the Auxiliary \#2 input source. This bit powers up set.
This register's initial state after reset is " $1 \times x 0$ 1000."
Left DAC Control (IXA3:0 = 6)

IXA3:0	Data 7		Data 6	Data 5	Data 4	Data 3	Data 2	Data 1
Data 0								
	LDM	res	LDA5	LDA4	LDA3	LDA2	LDA1	LDA0

LDA5:0 Left DAC Attenuate Select. The least significant bit of this gain/attenuate select represents 1.5 dB . M aximum attenuation is -94.5 dB . See Figure 7.
res Reserved for future expansion. Always write a zero to this bit.
LDM
Left DAC M ute. This bit, when set to 1 , will mute the left DAC output. This bit powers up active.
This register's initial state after reset is " 1×000000."
Right DAC Control (IXA3:0 = 7)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
7	RD M	res	RDA5	RDA4	RDA3	RDA2	RDA1	RDA0

RDA5:0
Right DAC Attenuate Select. The least significant bit of this gain/attenuate select represents $1.5 \mathrm{~dB} . \mathrm{M}$ aximum attenuation is -94.5 dB . See Figure 7 .
res Reserved for future expansion. Always write a zero to this bit.
RDM
Right DAC M ute. This bit, when set to 1 , will mute the right DAC output. This bit powers up active.
This register's initial state after reset is " 1×000000."

Figure 7. Mix Gain Level Setting: DAC

Clock and Data Format Register (IXA3:0 = 8)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
8	FM T 1	FM T0	C/L	S/M	CFS2	CFS1	CFS0	CSS

N OT E: Placing the AD 1845 in the M ode Change Enable (MCE) state is not required when changing the sample rate. H owever, changes to $\mathrm{FM} T[1: 0], \mathrm{C} / \mathrm{L}$, and S / M require MCE or setting $\mathrm{PEN}=0$.
CSS Clock Source Select. This bit in conjunction with CFS2:0 selects the audio sample rate frequency. See Figure 8 below. N ote: M ODE2 allows a wider range of sample rate frequencies to be selected by using the F requency Select Register (refer to R egisters 22 and 23).

CFS2:0 Clock Frequency Divide Select. These bits in conjunction with CSS select the audio sample frequency.

CFS2	CFS1		CFSO		CSS		Sample Rate	
0	0	0	0	8.0	kHz			
0	0	0	1	5.5125	kHz			
0	0	1	0	16.0	kHz			
0	0	1	1	11.025	kHz			
0	1	0	0	27.42857	kHz			
0	1	0	1	18.9	kHz			
0	1	1	0	32.0	kHz			
0	1	1	1	22.05	kHz			
1	0	0	0	Reserved				
1	0	0	1	37.8	kHz			
1	0	1	0	Reserved				
1	0	1	1	44.1	kHz			
1	1	0	0	48.0	kHz			
1	1	0	1	33.075	kHz			
1	1	1	0	9.6	kHz			
1	1	1	1	6.615	kHz			

Figure 8. MODE1 Audio Sample Frequency Select
S/M Stereo/M ono Select. This bit determines how the audio data streams are formatted. Selecting stereo will result with alternating samples representing left and right audio channels. M ono playback plays the same audio sample on both channels. M ono capture only captures data from the left audio channel.

0	M ono
1	Stereo

C/L Companded/L inear Select. This bit selects between a linear digital representation of the audio signal or a nonlinear, companded format for all input and output data. The type of linear PCM or the type of companded format is defined by the FM T bits.

```
O Linear PCM
1 Companded
```

FM T[1:0] Format Select. The bits define the format for all digital audio input and outputs based on the state of the C/L bit. See Figure 9 for FM T and C/L bit settings that determine the audio data type format.
res \quad Reserved for future expansion. Always write a zero to this bit.
This register's initial state after reset is "0000 0000."

FMT1	FMTO	C/L	Audio Data Type
0	0	0	Linear, 8-Bit Unsigned PCM
0	0	1	$\mu-L$ aw, 8-Bit Companded
0	1	0	Linear, 16-Bit T wos-Complement PCM Little Endian
0	1	1	A-Law, 8-Bit Companded
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Linear, 16-Bit Twos Complement Big Endian
1	1	1	Reserved

Figure 9. Digital Audio Data Type

AD1845

Interface Configuration Register (IXA3:0 = 9)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
9	CPIO	PPIO	res	res	ACAL	SDC	CEN	PEN

N OT E: Placing the AD 1845 in the M ode C hange Enable (MCE) state is not required when changing the CEN and PEN bits in this register.

PEN	Playback Enable. This bit will enable the playback of data in the format selected. The AD 1845 will generate PDRQ and respond to $\overline{\text { PDAK }}$ signals when this bit is enabled and $\mathrm{PPIO}=0$. If PPIO $=1$, this bit enables Programmed I/O (PIO) playback mode.
	$0 \quad$ Playback disabled (PDRQ and PIO Playback D ata Register inactive) 1 Playback enabled
CEN	Capture Enable. This bit will enable the capture of data in the format selected. The AD 1845 will generate $C D R Q$ and respond to $\overline{C D A K}$ signals when this bit is enabled and $C P I O=0$. If $C P I O=1$, this bit enables PIO capture mode.
	$\begin{array}{ll}0 & \text { C apture disable (CD RQ and PIO C apture D ata R egister inactive) } \\ 1 & \text { C apture enable }\end{array}$
SDC	Single DM A Channel. This bit will force both capture and playback DM A requests to occur on the Playback DM A channel. The C apture DM A CDRQ pin will be LO. This bit will allow the AD 1845 to be used with only one D M A channel. Simultaneous capture and playback cannot occur in this mode. Should both capture and playback be enabled ($C E N=P E N=1$) in the mode, only playback will occur. See "D ata and Control Transfers" for further explanation.
	0 Dual DM A channel mode 1 Single D M A channel mode
ACAL	Autocalibrate Enable. This bit determines whether the AD 1845 performs an autocalibration whenever the M ode C hange Enable (MCE) bit changes from HI to LO. See "Autocalibration" for a description of a complete autocalibration sequence. N ote that an autocalibration is forced whenever the $\overline{\text { RESET }}$ or PWRDWN pin is asserted LO then transitions HI regardless of the state of the ACAL bit.
	0 No autocalibration 1 Autocalibration after mode change
res	Reserved for future expansion. Always write zeros to these bits.
PPIO	Playback PIO Enable. This bit determines whether the playback data is transferred via DM A or PIO.
	DMA transfers only PIO transfers only
CPIO	C apture PIO Enable. This bit determines whether the capture data is transferred via DM A or PIO.
	0 DM A transfers only 1 PIO transfers only

This register's initial state after reset is "00xx 1000."

Pin Control Register (IXA3:0 = 10)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	D ata 0
10	XCTL1	XCTL0	res	res	res	res	IEN	INITD

INIT D Disable setting the INIT bit after changing the sample rate in M ODE1. Otherwise the INIT bit is set HI for approximately $200 \mu s$ after changing the sample rate.
$0 \quad$ INIT bit is enabled
1 INIT bit is disabled
IEN Interrupt Enable. This bit enables the interrupt pin. The Interrupt Pin will go active H I when the number of samples programmed in the Base C ount Register is reached.
$0 \quad$ Interrupt disabled
1 Interrupt enabled
res
Reserved for future expansion. Always write zeros to these bits.

| XCTL1:0 | External Control. The state of these bits is reflected on the XCTL 1:0 pins of the AD 1845. |
| :--- | :--- | :--- |
| 0 | Logic LO on XCTL1:0 pins |
| 1 | Logic HI on XCTL1:0 pins |

This register's initial state after reset is " $00 x x \times x 00$."
Test and Initialization Register (IXA3:0 = 11)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
11	COR	PUR	ACI	DRS	ORR1	ORR0	ORL1	ORL0

ORL 1:0 O verrange Left D etect. These bits indicate the overrange on the left capture channel. These bits change on a sample-by-sample basis, and are read-only.
ORL1 ORL0
$0 \quad 0 \quad$ Less than -1 dB underrange
$0 \quad 1 \quad$ Between -1 dB and 0 dB underrange
$1 \quad 0 \quad$ Between 0 dB and +1 dB overrange
$1 \quad 1 \quad$ Greater than +1 dB overrange
ORR 1:0 Overrange Right D etect. These bits indicate the overrange on the right capture channel. These bits change on a sample-by-sample basis, and are read-only.
ORR1 ORRO
$0 \quad 0 \quad$ Less than -1 dB underrange
$0 \quad 1 \quad$ Between -1 dB and 0 dB underrange
$1 \quad 0 \quad$ Between 0 dB and +1 dB overrange
$1 \quad 1 \quad$ Greater than +1 dB overrange
DRS Data Request Status. This bit indicates the current status of the PDRQ and CDRQ pins of the AD 1845.
$0 \quad C D R Q$ and $P D R Q$ are presently inactive (LO)
$1 \quad$ CDRQ or PDRQ are presently active (HI)
$\mathrm{ACI} \quad$ Autocalibrate-In-Progress. This bit indicates the state of autocalibration or a recent exit from M ode Change Enable (M CE). This bit is read-only.
$0 \quad$ Autocalibration is not in progress
1 Autocalibration is in progress or M CE was exited within the last 128 sample periods
PUR Playback Underrun. This bit is set when the playback FIFO is empty and after the next valid sample has been played back. If this condition exists, DACZ determines the DAC playback value. In MODE1, DACZ is always set and returns a midscale value.
COR Capture Overrun. This bit is set when the capture FIFO is full and an additional sample has been captured. The sample being read will not be overwritten by the new sample. The new sample will be ignored. This bit changes on a sample by sample basis.

The occurrence of a PUR and/or COR is designated in the Status Register's Sample O verrun/U nderrun (SOU R) bit. The SOU R bit is the logical OR of the COR and PUR bits. This enables a polling host CPU to detect an overrun/underrun condition while checking other status bits.
This register's initial state after reset is "0000 0000."
Miscellaneous Control Register (IXA3:0 = 12)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
12	MID	M ODE2	res	BUF8	ID 3	ID2	ID 1	ID0

ID 3:0	AD 1845 Revision ID. These four bits define the revision level of the AD 1845. The AD 1845 will have ID =
"1010." These bits are read-only.	
BU F 8	Parallel Interface Bus T ransceiver C urrent Buffer D rive. The AD 1845 can be programmed to provide a current drive of 16 mA or 8 mA.
0 16 mA current drive. res 8 mA current drive. Reserved for future expansion. Always write 0 s to these bits.	

M ODE2 When the AD 1845 is initialized, the M ODE2 bit is set to $0, L 0$, and the AD 1845 is register set compatible with the AD 1848 and the AD 1846. Setting the M ODE2 bit to $1, H$ I, enables access to the indirect registers 16 through 31 which controls the AD 1845 Expanded M ode of operation.
0 MODE1: AD 1848, AD 1846, and CS4248 mode
1 MODE2: AD 1845 enhanced feature mode
MID M anufacturer ID Bit. This bit is set to 1 .
This register's initial state after reset is " 10×0 1010."
Digital Mix/Attenuation Control Register (IXA3:0 = 13)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1		Data 0
13	DM A5	DM A4	DM A3	DMA2	DMA1	DMA0	res	DME	

DME	Digital M ix Enable. This bit will enable the digital mix of the ADC's output with the DAC's input. When enabled, the data from the ADCs are digitally mixed with other data being delivered to the DACs regardless of whether or not playback is enabled ($P E N=1$). If capture is enabled ($C E N=1$) and there is a capture overrun (COR), then the last sample captured before overrun will be used for the digital mix. If playback is enabled ($\mathrm{PEN}=1$) and there is a playback underrun (PUR), then a midscale zero will be added to the digital mix data if DACZ = 1, otherwise, the last valid sample will be repeated.
	0 D igital mix disabled (muted) 1 D igital mix enabled
res	Reserved for future expansion. Always write a zero to this bit.
DM A5:0	Digital M ix Attenuation. These bits determine the attenuation of the ADC data that is mixed with the DAC input. Each attenuate step is -1.5 dB ranging from 0 dB to -94.5 dB .

This register's initial state after reset is "0000 00x0."

DMA Playback Base Count Registers (IXA3:0 = 14 \& 15)

The D M A Base C ount Registers in the AD 1845 simplify integration of the AD 1845 in ISA systems. The ISA DM A controller requires an external count mechanism to notify the host CPU via interrupt of a full D M A buffer. The programmable DM A Base Count Registers will allow such interrupts to occur.
The Base C ount Registers contain the number of samples to be transferred before an interrupt is generated on the interrupt (INT) pin. To load, first write a value to the Lower B ase C ount Register. Writing a value to the U pper Base Register will cause both Base C ount Registers to load into the C urrent C ount Register. Once AD 1845 transfers are enabled, each sample transferred causes the Current C ount Register to decrement until zero count is reached. T he next sample after zero will generate the interrupt and reload the C urrent Count Register with the values in the Base C ount Registers. The interrupt is cleared by a write to the Status Register.

The H ost Interrupt Pin (INT) will go HI during the sample period in which the Current C ount Register underflows.
When using the AD 1845 in M ODE1 (AD 1848 compatible), the C urrent Count Register is decremented every sample period when either the PEN or CEN bit is enabled. The C urrent C ount Register is decremented in both PIO and DM A data transfer modes. Interrupt conditions are generated by Current C ount Register underflows in both PIO and DM A transfers.
Program maximum value to the U pper Base C ount Register to avoid receiving DM A count interrupts while operating in PIO mode. By enabling M ODE2, the AD 1845 Expanded M ode, the playback counter is only decremented when a playback sample transfer occurs

Upper Base Count Register (IXA3:0 = 14)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
14	UB7	U B6	U B5	U B4	UB3	U B2	UB1	U B0

U pper Base C ount. This byte is the upper byte of the base count register containing the eight most significant bits of the 16 -bit base register. Reads from this register return the same value which was written. The current count contained in the counters can not be read.

This register's initial state after reset is " 0000 0000."

Lower Base Count Register (IXA3:0 = 15)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
15	LB 7	LB 6	LB 5	LB 4	LB 3	LB 2	LB 1	LB 0

LB7:0 Lower Base C ount. This byte is the lower byte of the base count register containing the eight least significant bits of the 16 -bit base register. Reads from this register return the same value which was written. The current count contained in the counters cannot be read.

This register's initial state after reset is "0000 0000."

Expanded Modes (MODE2 = 1)

The following registers are enabled when the AD 1845 is operating in M ODE2 only.

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
16	OL	TE	LM G4	LM G3	LM G2	LM G1	LMG0	DACZ

DACZ DAC Zero. When an underrun error occurs, this bit will force the DAC output to midscale.
$0 \quad$ Output previous valid sample
1 Output to midscale value
LM G4:0 Left M IC Gain. The least significant bit of this gain/attenuate select represents 1.5 dB . LM G 4:0 $=0$ produces $a+12 \mathrm{~dB}$ gain. LM G4:0 = "01000" (8 decimal) produces 0 dB gain. M aximum attenuation is -34.5 dB . See Figure 10.
TE Timer Enable. Setting this bit enables the 16-bit programmable timer (see Registers 20 and 21). When the timer is enabled, the timer count is reloaded, and interrupts are generated at specified periods on the INT pin. When the timer is disabled, the timer stops counting and the INT pin and TI bit are cleared immediately.
OL Output Level. This bit sets the analog output level. The line output level may be attenuated by 3 dB .
$0 \quad$ Full scale of $2.0 \mathrm{~V} p-\mathrm{p}(-3 \mathrm{~dB})$
$1 \quad$ Full scale of $2.8 \mathrm{~V} p-\mathrm{p}(0 \mathrm{~dB})$
This register's initial state after reset is "0001 0001."
MIC Mix Enable/Right MIC Input Control Register (IXA3:0 = 17)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
17	LMME	RMME	RM G 4	RM G 3	RM G2	RM G 1	RM G 0	res

res Reserved for future expansion. Always write zero to this bit.
RM G4:0 Right MIC Gain. The least significant bit of this gain/attenuate select represents 1.5 dB . RM G 4:0 $=0$ produces a +12 dB gain. RM G4:0 $=$ " 01000 " (8 decimal) produces 0 dB gain. M aximum attenuation is -34.5 dB . See Figure 10.
RMME \quad Right M IC M ix Enable. Setting this bit enables the right microphone input to be mixed with the DAC output on R_OUT.
LMME Left MIC Mix Enable. Setting this bit enables the left microphone input to be mixed with the DAC output on L_OUT.
This register's initial state after reset is "0001 000x."
Left Line Gain, Attenuate, Mute Mix Register (IXA3:0 = 18)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
18	LLM	res	res	LLG4	LLG3	LLG2	LLG1	LLGO

LLG 4:0 Left Line M ix Gain. Allows setting the left line mix gain in thirty-two 1.5 dB steps. See Figure 10 for mix gain level setting.
res \quad Reserved for future expansion. Always write zeros to these bits.

AD1845

LLM Left Line M ute. Setting this bit to 1 mutes the left line input into the output mixer.
This register's initial state after reset is " $1 \times \times 0$ 1000."
Right Line Gain, Attenuate, Mute, Mix Register (IXA3:0 = 19)

| IXA 3:0 | Data 7 | Data 6 | Data 5 | Data 4 | Data 3 | Data 2 | Data 1 | Data 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | RLM | res | res | $R L G 4$ | $R L G 3$ | $R L G 2$ | $R L G 1$ | $R L G 0$ |

RLG4:0 Right Line Mix Gain. Allows setting the right line mix gain in thirty-two 1.5 dB steps. See Figure 10 for mix gain level setting.
res Reserved for future expansion. Always write zeros to these bits.
RLM Right Line M ute. Setting this bit to 1 mutes the right line input into the output mixer.
This register's initial state after reset is " $1 \times \times 0$ 1000."

A4/G4	A3/G3	A2/G2	A1/G1	A0/G0	Mix Gain
0	0	0	0	0	+12.0 dB
0	0	0	0	1	+10.5 dB
0	0	0	1	0	+9.0 dB
0	0	0	1	1	$+7.5 \mathrm{~dB}$
0	0	1	0	0	$+6.0 \mathrm{~dB}$
0	0	1	0	1	$+4.5 \mathrm{~dB}$
0	0	1	1	0	$+3.0 \mathrm{~dB}$
0	0	1	1	1	+1.5 dB
0	1	0	0	0	$+0.0 \mathrm{~dB}$
0	1	0	0	1	$-1.5 \mathrm{~dB}$
0	1	0	1	0	-3.0 dB
0	1	0	1	1	$-4.5 \mathrm{~dB}$
0	1	1	0	0	-6.0 dB
0	1	1	0	1	$-7.5 \mathrm{~dB}$
0	1	1	1	0	-9.0 dB
0	1	1	1	1	-10.5 dB
1	0	0	0	0	$-12.0 \mathrm{~dB}$
1	0	0	0	1	-13.5 dB
1	0	0	1	0	-15.0 dB
1	0	0	1	1	-16.5 dB
1	0	1	0	0	-18.0 dB
1	0	1	0	1	-19.5 dB
1	0	1	1	0	-21.0 dB
1	0	1	1	1	-22.5 dB
1	1	0	0	0	-24.0 dB
1	1	0	0	1	-25.5 dB
1	1	0	1	0	-27.0 dB
1	1	0	1	1	-28.5 dB
1	1	1	0	0	-30.0 dB
1	1	1	0	1	-31.5 dB
1	1	1	1	0	-33.0 dB
1	1	1	1	1	-34.5 dB

Figure 10. Mix Gain Level Setting: AUX1, AUX2, MIC and LINE

Lower Timer Bits Register (IXA3:0 = 20)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
20	TL7	TL6	TL5	TL4	TL3	TL2	TL1	TLO

TL7:0 Lower T imer Bits. This byte is the lower byte of the timer register containing the eight least significant bits of the 16 -bit register. Reads from this register return the same value which was written. The current timer value contained in the counters cannot be read.
This register's initial state after reset is "0000 0000."

Upper Timer Bits Register (IXA3:0 = 21)

IXA3:0	D ata 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
21	TU7	TU6	TU5	TU4	TU3	TU2	TU1	TU0

TU7:0 U pper Timer Bits. This byte is the upper byte of the timer register containing the eight most significant bits of the 16 -bit register. Reads from this register return the same value which was written. The current timer value contained in the counters cannot be read. The timer counter is determined by the clock source selected (see below).

Input Frequency	Divider	Timer C ounter
24.576 M Hz	247	$10.050 \mu \mathrm{~s}$
14.31818 M Hz	144	$10.057 \mu \mathrm{~s}$
24.000 M Hz	242	$10.083 \mu \mathrm{~S}$
25.000 M Hz	252	$10.080 \mu \mathrm{~s}$
33.000 M Hz	333	$10.091 \mu \mathrm{~s}$

T his register's initial state after reset is "0000 0000."
Upper Frequency Select Bits Register (IXA3:0 = 22)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
22	FU7	FU6	FU5	FU4	FU3	FU2	FU 1	FU0

FU 7:0 U pper F requency Select Bits. This register is accessible when FREN is 1. Writing to this register allows the user to program the sampling frequency from 4 kHz to 50 kHz in 1 Hz increments. Writing to the Lower and U pper Frequency Select Register allows the AD 1845 to process audio data using approximately 50,000 different audio sample rates. One LSB represents exactly one hertz. Selecting frequencies below 4 kHz or above 50 kHz will result in degraded audio performance. Some common sample rates are listed below:

Quality	Sampling Frequency	FU 7:0 (hex)	FL 7:0 (hex)	
Voice	8.0 kHz	00011111	01000000	default
Radio	11.025 kHz	00101011	00010001	
T ape	22.05 kHz	01010110	00100010	
CD	44.1 kHz	10101100	01000100	
DAT	48.0 kHz	10111011	10000000	

This register's initial state after reset is "0001 1111."
Lower Frequency Select Bits Register (IXA3:0 = 23)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
23	FL7	FL6	FL5	FL4	FL3	FL2	FL1	FL0

FL 7:0 Lower F requency Select Bits. Writing to the L ower F requency Select register updates the entire 16-bit frequency register.
This register's initial state after reset is "0100 0000."
Capture Playback Timer Register (IXA3:0 = 24)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
24	res	TI	Cl	PI	CU	CO	PO	PU

PU Playback U nderrun. This bit is set when the D AC runs out of data and a sample has been missed.

CO Capture O verrun. This bit is set when the ADC has a sample to load into the FIFO, and the data was ignored because the capture FIFO was full.
CU C apture U nderrun. This bit is set when the host attempts to read from the capture FIF O when it is empty. Under these circumstances, the last valid byte is sent to the host.
PI
Playback Interrupt. This bit indicates that there is an interrupt pending from the playback D M A count registers.
$\mathrm{Cl} \quad$ Capture Interrupt. This bit indicates that there is an interrupt pending from the capture D M A count registers.

AD1845

TI Timer Interrupt. This bit indicates that there is an interrupt pending from the timer count registers.
res Reserved for future expansion. Always write zero to this bit.
Playback, C apture and timer interrupts may be cleared simultaneously by writing to the Status Register. These interrupts may be cleared individually by writing a " 0 " to the corresponding bit. N ote that the timer interrupt requires a minimum wait period of $10 \mu \mathrm{~s}$ after the interrupt is set and before TI is recognized. U se TE to clear the timer interrupt immediately.
This register's initial state after reset is " $100 \mathrm{x} \times 000$."

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
25	V2	V1	V0	res	res	CID 2	CID 1	CID 0

V2:0 Version N umber. Indicates the version of the AD 1845.
res Reserved for future expansion. Always write zeros to these bits.
CID 2:0 Chip ID Number.
This register's initial state after reset is "x000 0000."
Mono Control Registers (IXA3:0 = 26)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
26	M IM	M OM	res	res	M IA3	MIA2	M IA1	MIA0

MIA3:0 M ono Input Attenuation. The least significant bit represents 3.0 dB attenuation. See Figure 11 to determine the attenuation.
res Reserved for future expansion. Always write zeros to these bits.
M OM M ono Output M ute. M_OUT is muted by setting M OM to 1 .
$0 \quad$ M ono output not muted
1 M ono output muted
M IM \quad M ono Input $M_{\text {ute. }} \mathrm{M}_{-} \mathrm{IN}$ is muted by setting M IM to 1 .
$0 \quad$ M ono input not muted
$1 \quad M$ ono input muted
This register's initial state after reset is "00xx 0011."

MIA3	MIA2	MIA1	MIAO	MONO Attenuation
0	0	0	0	0.0 dB
0	0	0	1	-3.0 dB
0	0	1	0	-6.0 dB
0	0	1	1	-9.0 dB
0	1	0	0	-12.0 dB
0	1	1	-15.0 dB	
0	1	1	0	-18.0 dB
0	1	0	1	-21.0 dB
1	0	1	1	-24.0 dB
1	0	1	0	-27.0 dB
1	0	0	1	-30.0 dB
1	0	0	1	-33.0 dB
1	1	1	0	-36.0 dB
1	1	1	-39.0 dB	
1	1		1	-42.0 dB
1	1		-45.0 dB	

Figure 11. Mono Attenuation

Power-Down Control Register (IXA3:0 = 27)

IXA3:0	D ata 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
27	ADCPWD	DACPWD	MIXPWD	res	FREN	res	res	res

res Reserved for future expansion. Always write zeros to these bits.
FREN Frequency Select Register Enable. In M ODE2, selecting this bit will turn on the F requency Select Registers (see indirect registers 22 and 23) and disable CF S2:0.
$0 \quad$ CFS Active.
1 Frequency Select Registers Active, CF S disabled.
MIXPWD M ixer Power Down. The DAC and the output mixer are powered down, and the DAC sample clock is turned off.
DACPWD DAC Power Down. The DAC is powered down and the DAC sample clock is turned off.
ADCPWD ADC Power Down. The ADC is powered down and the ADC sample clock is turned off.
This register's initial state after reset is "000x 0xxx."
Capture Data Format Control Register (IXA3:0 = 28)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
28	CFMT1	CFMT0	CC/L	CS/M	res	res	res	res

NOTE: Changing CFM T[1:0], CC/L, CS/M, requires the M ode Change Enable (MCE) state or setting CEN $=0$.
res Reserved for future expansion. Always write zeros to these bits.
CS/M Capture Stereo/M ono Select. Setting this bit determines how the captured audio data will be formatted. In the M ono mode, valid information is captured on the "left" channel, and the "right" channel data is not valid.
$0 \quad$ M ono Format
1 Stereo F ormat
$C C / L \quad$ C apture Companding/L inear Select. This bit is set to determine linear, $\mu-L$ aw or A-L aw companding. See Figure 12 for CFM T [1:0] and CC/L bit settings that determine the audio data type capture format.
CFM T [1:0] C apture D ata Format. This bit is set to format the data being captured in M ODE 2. See Figure 12 for CFM T and CC/L bit settings that determine the capture audio data type format.

This register's initial state after reset is "0000 xxxx."

CFMT1	CFMTO			Audio Data Type
0	0	0		L inear, 8-Bit U nsigned PCM
0	0	1		μ-Law, 8-Bit Companded
0	1	0		Linear, 16 -Bit T wos C omplement PCM Little Endian
0	1	1		A-L aw, 8-Bit Companded
1	0	0		Reserved
1	0	1		R eserved
1	1	0		L inear, 16-Bit T wos-C omplement Big Endian
1	1	1		R eserved

Figure 12. Capture Audio Data Type
Crystal, Clock Select/Total Power-Down Register (IXA3:0 = 29)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
29	$X F S 2$	$X F S 1$	$X F S 0$	res	res	res	res	TOTPWD

TOTPWD T otal Power Down. When TOTPWD = HI, the ADC, DAC, mixer, and voltage reference are powered down, and the ADC and DAC sample clocks are turned off. Only the digital interface remains active to allow the host to exit the AD 1845 from the total power-down state.
res
Reserved for future expansion. Always write zeros to these bits.

XFS2:0 Crystal/Clock Input F requency Select. On power up or reset, the AD 1845 expects a 24.576 M Hz input clock. If the clock source connected to the AD 1845 is different from the default condition, then the clock input must be selected using this register. For a detailed explanation see the Power Up and Reset section of the data sheet. Figure 13 summarizes the valid input clock frequencies. Clock sources with excessive jitter may not yield optimal analog performance.

This register's initial state after reset is " $000 \mathrm{x} x \mathrm{xx} 0$."

XFS2	XFS1	XFSO		Input Frequency	
0	0	0	24.576	MHz	
0	0	1	14.31818	MHz	
0	1	0	24.000	MHz	
0	1	1	25.000	M Hz	
1	0	0	33.000	MHz	
1	0	1	Reserved		
1	1	0	Reserved		
1	1	1	Reserved		

Figure 13. Input Frequency Selection

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	D ata 2	Data 1	Data 0
30	CUB7	CUB6	CUB5	CUB4	CUB3	CUB2	CUB1	CUB0

CU B7:0 Capture U pper B ase Count. This byte is the upper byte of the base count register containing the eight most significant bits of the second 16 -bit base register. Reads from this register return the same value that was written. The current count contained in the counters cannot be read.
This register's initial state after reset is "0000 0000."
Capture Lower Base Count Register (IXA3:0 = 31)

IXA3:0	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0
31	CLB7	CLB6	CLB5	CLB4	CLB3	CLB2	CLB1	CLB0

CLB7:0 Capture L ower Base C ount. This byte is the lower byte of the base count register containing the eight least significant bits of the second 16 -bit base register. Reads from this register return the same value that was written. The current count contained in the counters cannot be read.
This register's initial state after reset is "0000 0000."

DATA AND CONTROL TRANSFERS

The AD 1845 SoundPort Stereo Codec supports a D M A request/grant architecture for transferring data with the host computer bus. One or two DM A channels can be supported. Programmed I/O (PIO) mode is also supported for control register accesses and for applications lacking DMA control. PIO transfers can be made on one channel while the other is performing DMA. Transfers to and from the AD 1845 SoundPort Codec are asynchronous relative to the internal data conversion clock. T ransfers are buffered by FIFO s located in the capture and playback paths.

Data Ordering

The number of byte-wide transfers required depends on the data format selected. The AD 1845 is designed for "little and big endian" formats. In little endian format, the least significant byte (i.e., occupying the lowest memory address) gets transferred first. Therefore, 16 -bit data transfers require first transferring the least significant bits [7:0] and then transferring the most significant bits [15:8], where B it 15 is the most significant bit in the word. In big endian format, byte ordering for the most significant (M S) byte and least significant (LS) byte are swapped.
In addition, left channel data is always transferred before right channel data with the AD 1845. The following figures should make these requirements clear.

Figure 14. 8-Bit Mono Data Stream Sequencing

Figure 15. 8-Bit Stereo Data Stream Sequencing

Figure 16. 16-Bit Mono Data Stream Sequencing, Little Endian

Figure 17. 16-Bit Stereo Data Stream Sequencing, Little Endian

Figure 18. 16-Bit Mono Data Stream Sequencing, Big Endian

Figure 19. 16-Bit Stereo Data Stream Sequencing, Big Endian

FIFO

The AD 1845 includes two 16-sample deep FIF Os. The FIF Os are built into the capture and playback paths and are completely transparent to the user and require no programming. The FIFOs are active in M ODE1 and M ODE2.
The AD 1845 maintains a continuous playback stream by requesting data from the host until the FIFO located in the playback path is full. As the FIFO empties, new samples are requested to keep the playback FIFO full. In the event that the FIFO runs out of data and DACZ is reset to " 0 ," the last valid sample will be continuously played back. If DACZ is " 1, " the AD 1845 will output a midscale value.
The FIF O located in the capture data path attempts to stay empty by making requests of the host every sample period that it contains valid data. When the host system cannot respond during the same sample period, the capture FIFO starts filling, and avoids a loss of data in the audio data stream.

Data Bus Drivers

The AD 1845 has built-in 8 or 16 mA bus drivers for interfacing to the ISA bus. The drivers reduce the need for the off-chip $74 _245$ bus transceiver buffers in many applications. If higher drive capability is required, 24 mA for example, the AD 1845 generates the appropriate direction and enable signals. See Figure 1 and refer to the Applications Circuits section of the data sheet.

Control and Programmed I/O (PIO) Transfers

This simpler mode of transfers is used both for control register accesses and programmed I/O. The 37 control and PIO data registers cannot be accessed via DM A transfers. Playback PIO

AD1845

is activated when both Playback Enable (PEN) is set and Playback PIO (PPIO) is set. C apture PIO is activated when both C apture Enable (CEN) is set and C apture PIO (CPIO) is set. See Figures 20 and 21 for the detailed timing of the control register/PIO transfers. The $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals are used to define the actual read and write cycles, respectively. The host holds $\overline{C S}$ LO during these transfers. The DM A C apture D ata Acknowledge ($\overline{\mathrm{CDAK}}$) and Playback D ata Acknowledge ($\overline{\text { PDAK }})$ must be held inactive, i.e., H I.
For read/capture cycles, the AD 1845 will place data on the D AT A 7:0 lines while the host is asserting the read strobe, $\overline{\mathrm{RD}}$, by holding it LO. For write/playback, the host must place data on the DAT A7:0 pins while strobing the $\overline{\mathrm{WR}}$ signal LO. The AD 1845 latches the write/playback data on the rising edge of the $\overline{\mathrm{WR}}$ strobe.
When using PIO data transfers, the Status Register must be polled to determine when data should be transferred. N ote that the ADC capture data will be ready (CRDY HI) from the previous sample period shortly before the DAC playback data is ready (PRDY HI) for the next sample period. The user should not wait for both ADCs and DACs to become ready before initiating data transfers. Instead, as soon as capture data is ready, it should be read; as soon as the D ACs are ready, playback data should be written.
Values written to the XCT L1:0 bits in the Pin C ontrol R egister $(I X A 3: 0=10)$ will be reflected in the state of the XCT L 1:0 external output pins. This feature allows a simple method for signaling or software control of external logic. Changes in state of the external XCTL pins will occur within one sample period. Because their change is referenced to the internal sample clock, no useful timing diagram can be constructed.

DIRECT MEMORY ACCESS (DMA) TRANSFERS

The second type of bus cycle supported by the AD 1845 are DM A transfers. Both dual channel and single channel DMA operations are supported. T o enable Playback D M A transfers, playback enable (PEN) must be set and PPIO cleared. To enable C apture DM A transfers, capture enable (CEN) must be set and CPIO cleared. D uring DM A transfers, the AD 1845 asserts HI the C apture D ata Request (CDRQ) or the Playback D ata Request (PDRQ) followed by the host's asserting LO the DM A C apture D ata Acknowledge ($\overline{\mathrm{CDAK}})$ or Playback D ata Acknowledge ($\overline{\mathrm{PDAK}})$, respectively. The host's asserted

Figure 20. Control Register/PIO Read Cycle

Figure 21. Control Register/PIO Write Cycle
Acknowledge signals cause the AD 1845 to perform D M A transfers. The input address lines, AD R 1:0, are ignored. D ata is transferred between the proper internal sample registers.
The read strobe ($\overline{\mathrm{RD}})$ and write strobe ($\overline{\mathrm{WR}}$) delimit valid data for D M A transfers. Chip select ($\overline{\mathrm{CS}}$) is a "don't care"; its state is ignored by the AD 1845.
The AD 1845 may assert the D ata Request signals, CDRQ and PDRQ, at any time. Once asserted, these signals will remain active HI until the corresponding DM A cycle occurs with the host's D ata Acknowledge signals. The D ata Request signals will be deasserted after the falling edge of the final $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ strobe in the transfer of a sample, which typically consists of multiple bytes. See "D ata Ordering" above for a definition of "sample."
D M A transfers may be independently aborted by resetting the C apture Enable (CEN) and/or Playback Enable (PEN) bits in the Interface C onfiguration Register. The current capture sample transfer will be completed if a capture DM A is terminated. The current playback sample transfer must be completed if a playback DMA is terminated. If CDRQ and/or PDRQ are asserted HI while the host is resetting CEN and/or PEN, the request must be acknowledged. The host must assert $\overline{\text { CDAK }}$ and/or PDAK LO and complete a final sample transfer.

Single-Channel DMA

Single-C hannel D M A mode allows the AD 1845 to be used in systems with only a single D M A channel. It is enabled by setting the SDC bit in the Interface Configuration Register. All captures and playbacks take place on the playback channel. Obviously, the AD 1845 cannot perform a simultaneous capture and playback in Single-C hannel D M A mode.
Playback will occur in Single-C hannel DM A mode exactly as it does in T wo-C hannel mode. C apture, however, is diverted to the playback channel which means that the capture data request occurs on the PDRQ pin and the capture data acknowledge must be received on the $\overline{\text { PDAK }}$ pin. The CDRQ pin will remain inactive LO. Any inputs to $\overline{\mathrm{CDAK}}$ will be ignored.
Playback and capture are distinguished in Single-C hannel DM A mode by the state of the playback enable (PEN) or capture enable (CEN) control bits. If both PEN and CEN are set in Single-C hannel DM A mode, playback will be presumed.
To avoid confusion of the origin of a request when switching between playback and capture in Single-C hannel DM A mode, both CEN and PEN should be disabled and all pending requests serviced before enabling the alternative enable bit.

Switching between playback and capture in Single-C hannel DM A mode does not require changing the PPIO and CPIO bits or passing through the M ode C hange Enable state except for initial setup. For setup, assign zeros to both PPIO and CPIO. This configures both playback and capture for DMA. Following setup, switching between playback and capture can be effected entirely by setting and clearing the PEN and CEN control bits, a technique which avoids having to enter M ode C hange Enable.

Dual-Channel DMA

The AD 1845 is designed to support full duplex DM A operation by allowing simultaneous capture and playback. The DualChannel DM A feature enables playback and capture D M A requests and acknowledges to occur on separate DM A channels. C apture and playback are enabled and set for DM A transfers. In addition, Dual-Channel DM A must be set ($S D C=0$). It is not necessary to enter M CE (M ode Change Enable) to change PEN and CEN (Playback and Capture Enable).

DMA Timing

Below, timing parameters are shown for 8 -Bit M ono Sample Read/C apture and Write/Playback DM A transfers in Figures 22 and 23. The same timing parameters apply to multi-byte transfers. The relationship between timing signals is shown in Figures 24 and 25 .
The H ost Interrupt Pin (INT) will go HI after a sample transfer in which the Current C ount Register underflows.

Figure 22. 8-Bit Mono DMA Read/Capture Cycle

Figure 23. 8-Bit Mono DMA Write/Playback Cycle

Figure 24. 8-Bit Stereo or 16-Bit Mono DMA Cycle

Figure 25. 16-Bit Stereo DMA Interrupt

DMA Interrupt

Writing to the internal 16 -bit Base Count Register sets up the count value for the number of samples to be transferred. N ote that the number of bytes transferred for a given count will be a function of the selected global data format. The internal Current C ount Register is updated with the current contents of the U pper and Lower B ase C ount Registers when a write occurs to the U pper Base C ount Register.
The Current Count Register cannot be read by the host. Reading the B ase C ount Registers will only read back the initialization values written to them.
The C urrent C ount Register decrements by one after every sample transferred. A n interrupt event is generated after the Current Count Register is zero and an additional playback sample is transferred. The IN T bit in the Status Register always reflects the current internal interrupt state defined above. The external INT pin will only go active HI if the Interrupt Enable (wIEN) bit in the Interface C onfiguration Register is set. If the IEN bit is zero, the external INT pin will always stay LO, even though the Status Register's IN T bit may be set.

AD1845

POWER-UP AND RESET

The PWRDWN and $\overline{\text { RESET }}$ pin should be held in the active LO state when power is first applied to the AD 1845. The AD 1845's initialization commences when PWRDWN and RESET have both been deasserted (HI). While initializing, the AD 1845 ignores all writes and all reads will yield "1000 0000 (80h)." At the conclusion of initialization, all registers will be set to their default values as listed in Figure 5. When CDAK and PDAK are inactive during power-up or reset, the conclusion of the initialization period, after approximately 512 ms , can be detected by polling the index register for some value other than " 10000000 (80h)."
U pon power-up the AD 1845 enters the M ode Change Enable (M CE) state. In the default condition, the AD 1845 expects to receive a 24.576 M H z input clock source. T o change the selection of the current or default input clock source, follow the steps listed below:

- W ait for the AD 1845 to initialize.
- Set the M ODE2 bit to 1 .
- Enter the M CE state, write to the Crystal/Clock Input Frequency Select bits (XFS2:0) to select the desired frequency.
- The AD 1845 will now resynchronize its internal states to the new clock. W rites to the AD 1845 will be ignored. Poll the index register for some value other than "1000 0000 (80h)."
- Clear the M CE bit.

ADVANCED POWER-DOWN MODES

The AD 1845 has eight Advanced Power-D own M odes available at any time. The user can control these power-down modes through hardware by asserting the PWRDWN and RESET pins or through software by writing to the Power-D own and the T otal Power-D own C ontrol Registers. Figure 26 summarizes the power-down delay, power-up delay, and power dissipation for each power-down mode. A priority listing and description of the power-down modes follows. N ote that the hardware controlled Power-D own and Reset modes take precedence over the software controlled power-down states.

Hardware Controlled States

T he hardware power-down states are accessed by bringing the PWRDWN or RESET pin LO. Either of these signals place the AD 1845 into the maximum power conservation mode. Bringing the $\overline{\text { PWRDWN }}$ or $\overline{\text { RESET }}$ pin HI will power-up the codec in approximately 512 ms (see the Power-U p and Reset section of this data sheet).

- Power-D own: $\overline{\text { PWRDWN }}$ immediately puts the AD 1845 into its lowest power-down state. The AD 1845's parallel interface will not function and all bidirectional signal lines will be in a high-impedance state.
- Reset: $\overline{\text { RESET }}$ powers down the AD 1845 gradually to its lowest power-down state. The AD 1845 performs a sequenced power-down that eliminates audible effects from the DAC's output. The XTAL 1 input must be clocked for the minimum duration of the RESET pulsewidth. The AD 1845's parallel interface will not function and all bidirectional signal lines will be in a high-impedance state. N ote: the clock must operate during the software or hardware power-down process.

Software C ontrolled States

To enter the Total Power-D own mode requires entering the M ode C hange E nable (M CE) state. A fter entering M CE, the T otal Power-D own mode can be accessed by writing a " 1 " to the TOTPWD bit in the T otal Power-D own Register. Exiting the T otal Power-D own mode (writing a " 0 " to the TOT PWD bit in the T otal Power-D own Register) will initialize the AD 1845 in approximately 512 ms (see the Power-U p and Reset section of this data sheet).

- Total Power-D own: In the T otal Power-D own mode the ADC, DAC, M ixer, and voltage reference are turned off, but the digital interface remains active awaiting power-up. AII ADC and DAC data is flushed including data in the capture and playback FIF Os.
To enter the software controlled power-down states in the Power-D own Control Register, write a " 1 " to the control bits.

Advanced Power-Down Mode	PWRDWN Pin	RESET Pin	TOTPWD Bit	ADCPWD Bit	DACPWD Bit	MIXPWD Bit	Power-Down Delay*	Power-Up Delay*	Power Dissipation
Operating	HI	HI	0	0	0	0	x	x	600 mW
1. Power-D own	LO	x	x	x	x	x	0 s	512 ms	10 mW
2. Reset	HI	LO	x	x	x	x	3 ms	512 ms	10 mW
3. Total Power-D own	HI	HI	1	x	x	x	3 ms	512 ms	150 mW
4. Standby	HI	HI	0	1	x	1	$1 / \mathrm{F}_{\mathrm{s}}$	$1 / \mathrm{F}_{\mathrm{s}}$	180 mW
5. M ixer Power-Down	HI	HI	0	0	x	1	$1 / \mathrm{F}_{\mathrm{s}}$	$1 / \mathrm{F}_{\mathrm{s}}$	350 mW
6. M ixer Only	HI	HI	0	1	1	0	$1 / \mathrm{F}_{\mathrm{s}}$	$1 / \mathrm{F}_{\mathrm{s}}$	260 mW
7. ADC Power-Down	HI	HI	0	1	0	0	$1 / \mathrm{F}_{\mathrm{s}}$	$1 / \mathrm{F}_{\mathrm{s}}$	400 mW
8. DAC Power-Down	HI	HI	0	0	1	$1 / \mathrm{F}_{\mathrm{s}}$	$1 / \mathrm{F}_{\mathrm{s}}$	425 mW	

"x" = D on't C are
*V alues shown are derived using a 24.576 M Hz input clock source.
All values are proportional to the input clock source.
Figure 26. Advanced Power-Down Mode Summary

The AD 1845 performs a sequenced power-down that eliminates audible effects from the DAC's output, and saves the codec's internal operating state. Clearing the bits (writing a " 0 " to the control bits) returns the AD 1845 from the power-down state and begins the initialization sequence. The AD 1845 exits the power-down mode within 1 sample period. H owever, an additional 128 sample periods are required to unmute the outputs and restore the internal settings to the pre-Power-D own operating state.

- Standby: Entering the Standby mode places the ADC , DAC and the M ixer into a low power state, and forces all outputs to be muted. Standby turns off all internal digital and analog circuitry with the exception of the digital interface and the voltage reference. All ADC and D AC data is flushed including data in the capture and playback FIF Os.
- M ixer Power-D own: Entering the M ixer Power-D own mode, causes both the mixer and the DAC circuitry to be turned off. All DAC data is flushed including data in the playback FIFO. In this mode the mixer is off and the AD 1845 is muted, but the ADC remains functional.
- M ixer Only: The M ixer Only mode is initiated by powering down both the ADC and DAC, leaving the analog mixer and the digital interface active. MIC, LINE, AU X 1, AU X 2, and M_IN can be mixed in the analog domain on the AD 1845 outputs. AII ADC and DAC data is flushed including data in the capture and playback FIFOs.
- ADC Power-Down: Entering the ADC Power-D own mode, causes the ADC digital and analog engines to be turned off. All ADC data is flushed including data in the capture FIF 0 and the AD 1845 is rendered deaf. The input programmable gain amplifier (PGA) is also shut down. The DAC and mixer remain active allowing the AD 1845 to continue to playback and mix samples.
- DAC Power-Down: Entering the DAC Power-D own mode suspends the DAC digital and analog engines, and all DAC data is flushed including data in the playback FIF O. H owever, the mixer and ADC are functional allowing the AD 1845 to continue to capture and mix samples.

AUTOCALIBRATION

The AD 1845 calibrates the ADC s and DACs for greater accuracy by minimizing dc offsets. U pon power-up or after RESET, the AD 1845 automatically performs an autocalibration after the first return from the M ode C hange E nable state, regardless of the state of the ACAL bit. Autocalibration can be forced when the AD 1845 returns from the M ode C hange Enable state and the ACAL bit in the Interface C onfiguration register has been set. If the ACAL bit is not set, the RAM normally containing ADC and DAC offset compensations will be saved, retaining the offsets of the most recent autocalibration.
The completion of autocalibration can be determined by polling the Autocalibrate-In-Progress (ACI) bit in the T est and Initialization Register, which will be set during autocalibration. T ransfers enabled during autocalibration do not begin until the completion of autocalibration.
The following summarizes the procedure for autocalibration:

- Set the M ode C hange Enable (M CE) bit.
- Set the Autocalibration (ACAL) bit.
- Clear the M ode C hange Enable (MCE) bit.
- The Autocalibrate-In-Progress (ACI) bit will remain HI for 384 sample periods. Poll the ACI bit until it transitions from HI to LO .
- Set desired gain/attenuation/mute and digital mix values.

D uring the autocalibration sequence, data output from the ADCs is meaningless. Inputs to the DACs are ignored. Even if the user specified the muting of all analog outputs, near the end of the autocalibration sequence, dc analog outputs very close to $\mathrm{V}_{\text {REF }}$ will be produced at the line output.

CHANGING SAMPLE RATES

In M ODE 1 the AD 1845 can change sample rates by entering the M ode C hange Enable state or writing directly to the Clock and D ata Format Register. In M ODE2, the AD 1845 changes sample rates by writing directly to the U pper and Lower Frequency Select Register. Please refer to the following examples for changing the sample rate.
To change the selection of the current sample rate by entering the M ode C hange E nable state requires the sequence which is summarized as follows (this is the same sequence used by the AD 1848, AD 1846, CS4248, and CS4231):

- Set the M ode Change Enable (MCE) bit.
- In a single write cycle, change the C lock Frequency D ivide Select (CFS2:0) and/or the Clock Source Select (CSS).
- The AD 1845 now needs to resynchronize its internal states to the new clock. Writes to the AD 1845 will be ignored. Reads will produce " 10000000 (80h)" until the resynchronization is complete. Poll the Index Register until something other than this value is returned.
- Clear the M ode C hange Enable (MCE) bit.
- If ACAL is set, follow the procedure described in "Autocalibration" above.
- W ait 128 sample cycles or poll the ACI bit until it transitions LO.
- Set to desired gain/attenuation values, and unmute DAC outputs (if muted).
Alternatively, the AD 1845 can be programmed to change the sample rate selection "on the fly" without entering the M ode Change Enable Sequence. The following sequence applies to the AD 1845 operating in M ODE1 or M ODE2.
- In a single write cycle, change the C lock Frequency Divide Select (CFS2:0) and/or the Clock Source Select (CSS). For compatibility reasons, the AD 1845 will send out "1000 0000 (80h)" for approximately 200μ. Even this short wait can be disabled by setting the IN IT D bit. When the IN IT D bit is set, the AD 1845 is ready immediately after changing the sample rate using CFS and CSS.
- The AD 1845 now needs to resynchronize its internal states to the new clock. Writes to the AD 1845 will be ignored. Reads will produce " 10000000 (80h)" until the resynchronization is complete. Poll the Index Register until something other than this value is returned.
- Set to desired gain/attenuation values, and unmute DAC outputs (if muted).

AD1845

In the Expanded M ode, M ODE2, the AD 1845 can be programmed to change the sample rate selection in 1 Hz increments "on the fly" and without entering the M ode C hange Enable Sequence. The following sequence applies to the AD 1845 in M ODE2 only:

- Enable the F requency Select Register by setting FREN to 1.
- C hange the L ower and U pper Frequency Select Register, FU 7:0 and FL7:0.

APPLICATIONS CIRCUITS

The AD 1845 Stereo Codec has been designed to require a minimum of external circuitry. The recommended circuits are shown in Figures 27 through 35.
See Figure 1 for an illustration of the connection between the AD 1845 SoundPort Codec and the Industry Standard Architecture (ISA) computer bus, also known as the "PC-AT bus." N ote that the 74_245 transceiver receives its enable and direction signals directly from the C odec. Analog D evices recommends using the "slowest" 74_245 adequately fast to meet all AD 1845 and computer bus timing and drive requirements. So doing will minimize switching transients of the 74_245. This in turn will minimize the digital feed through effects of the transceiver when driving the AD 1845, which can cause the audio noise floor to rise. In most applications, the 74_245 can be omitted and the AD 1845 connected directly ISA bus taking advantage of the AD 1845's built-in 16 mA drivers.
Industry-standard compact disc "line-levels" are 2 V rms centered around analog ground. (For other audio equipment, "line level" is much more loosely defined.) The AD 1845 SoundPort is a +5 V only powered device. Line level voltage swings for the AD 1845 are defined to be 1 V rms for a sine wave ADC input and user selectable 0.707 V rms or 1 V rms for a sine wave DAC output. Thus, 2 V rms input analog signals must be attenuated and either centered around the reference voltage intermediate between 0 V and +5 V or ac coupled. T he $\mathrm{V}_{\text {REF }}$ pin will be at this intermediate voltage, nominally 2.25 V . It has limited drive but can be used as a voltage datum to an op amp input. N ote, however, that dc-coupled inputs are not recommended, as they provide no performance benefits with the AD 1845 architecture. Furthermore, dc offset differences between multiple dc-coupled inputs create the potential for "clicks" when changing the input mixer selection.
A circuit for 2 V rms mono, line-level inputs and auxiliaries is shown in Figure 27 and Figure 28. N ote that this is a divide-by-two resistive dividers considering the codec input impedance. The input resistor and 560 pF (1000 pF) capacitor provides the single-pole of antialias filtering required for the ADC s. If line-level inputs are already at the 1 V rms levels expected by the AD 1845, the resistors in parallel with the $560 \mathrm{pF}(1000 \mathrm{pF})$ capacitors can be omitted. If the application does not route the AU X 2 inputs to the ADCs, then no antialias filtering is required (only the $1 \mu \mathrm{~F}$ ac coupling capacitor).

Figure 27. 2 V rms Line-Level Input Circuit for LINE Inputs

Figure 28. 2 Vrms Line-Level Input Circuit for M_IN and AUX Inputs

The AD 1845 codec contains an optional +20 dB gain block to accommodate condenser microphones. Particular system requirements will depend upon the characteristics of the intended microphone. Figure 29 illustrates one example of how an electret condenser mike requiring phantom power could be connected to the AD 1845. $\mathrm{V}_{\text {ref }}$ is shown buffered by an op amp; a transistor like a 2N 4124 will also work fine for this purpose. N ote that if a battery-powered microphone is used, the buffer and $R 2 s$ are not needed. T he values of R 1, R2, and C should be chosen in light of the mic characteristics and intended gain. Typical values for these might be R1 $=20 \mathrm{k} \Omega, \mathrm{R} 2=2 \mathrm{k} \Omega$, and $\mathrm{C}=220 \mathrm{pF}$.

Figure 29. "Phantom-Powered" Microphone Input Circuit

Figure 30 shows ac-coupled line outputs. The resistors are used to center the output signals around analog ground. If dc-coupling is desired, $\mathrm{V}_{\text {REF }}$ could be used with op amps as mentioned above, if desired.

Figure 30. Line Output Connections
A circuit for headphone drive is illustrated in Figure 31. Drive is supplied by +5 V operational amps. The circuit shown ac couples the headphones to the line output.

Figure 31. Headphone Drive Connections
Figure 32 illustrates reference bypassing. $\mathrm{V}_{\text {REF_F }}$ should only be connected to its bypass capacitors.

Figure 32. Voltage Reference Bypassing
Figure 33 illustrates signal-path filtering capacitors, L_FILT and R_FILT. The AD 1845 must use $1.0 \mu \mathrm{~F}$ capacitors; the AD 1845 will not perform properly with 1000 pF capacitors. The $1.0 \mu \mathrm{~F}$ capacitors required by the AD 1845 can be of any type.

$$
1.0 \mu \mathrm{~F}{\underset{\sim}{\square}}_{\text {L_FILT }}^{\text {R }}
$$

Figure 33. External Filter Capacitor Connections The crystal shown in the crystal connection circuitry of Figure 34 should be 24.576 M Hz , fundamental-mode and paralleltuned. N ote that using the exact data sheet frequencies is not required and that external clock sources can be used to overdrive the AD 1845's internal oscillators. (See the description of the CFS2:0 control bits above.) If using an external clock source, apply it to the crystal input pins while leaving the crystal output pins unconnected. Attention should be paid to providing low jitter external input clocks.

Figure 34. Crystal Connections
N ote: XTAL2I and XTAL20, are not used in the AD 1845.
Analog D evices also recommends a pull-down resistor for PWRDWN.
Good, standard engineering practices should be applied for power-supply decoupling. D ecoupling capacitors should be placed as close as possible to package pins. If a separate analog power supply is not available, we recommend the circuit shown in Figure 35 for using a single +5 V supply. F errite beads suffice for the inductors shown (typically 600Ω at 100 M Hz). This circuitry should be as close to the supply pins as is practical.

Figure 35. Recommended Power Supply Bypassing

GROUNDING AND LAYOUT

Analog D evices recommends a split ground plane as shown in Figure 36. The analog plane and the digital plane are connected directly under the AD 1845. Splitting the ground plane directly under the SoundPort Codec is optimal because analog pins will be located above the analog ground plane and digital pins will be located directly above the digital ground plane for the best isolation.
Other schemes may also yield satisfactory results. If the split ground plane recommended here is not possible, the AD 1845 should be entirely over the analog ground plane with the optional 74 _245 transceiver over the digital plane.
Some manufacturers of compatible devices differentiate between digital supply pins used to power internal logic and digital supply pins used to power the ISA bus driver. Their recommended layout suggests connecting the internal logic supply pins to the analog supply. A potential problem can occur if the layout connects digital supply pins to the analog supply. Connecting some of the digital supply pins to one supply and some of the digital supply pins to a different supply can create an internal short between the two different +5 V supplies.

AD1845

Analog D evices recommends that all digital pins be driven from the same supply. A common technique to achieve maximum performance is to use a +5 V regulator to power the analog side of the codec from the PCs +12 V supply line, while the standard $P C+5 \mathrm{~V}$ supply line powers the entire digital side of the codec. The separate supplies provide noise isolation for the analog side of the codec, and maximize performance of the AD 1845.

Figure 36. Recommended Ground Plane

COMPATIBILITY WITH CS4231

1. The CS4231 requires a 1000 pF N PO type capacitor on Pins 26 and 31 . The AD 1845 requires a $1 \mu \mathrm{~F}$ capacitor on filter Pins 26 and 31 . To achieve compatibility with the AD 1845, use pad spacing that will accommodate either 1000 pF N PO capacitors for the CS4231 and the CS4248 or the $1 \mu \mathrm{~F}$ capacitors for the AD 1845.
2. The AD 1845 requires the input antialiasing filters for the AD C s (refer to Figures 27 and 28). The CS4231 can use the same filters with no degradation in performance. For compatibility it is suggested that the filters be added.
3. The C S4231 does not require the power pins $\left(\mathrm{V}_{\mathrm{DD}}\right) 24$, 45 , and 54 , or the ground pins (GNDD) 25 , and 44 . It is suggested that the appropriate power/ground pin connections be made. T his will not affect the performance of the CS4231.
4. The CS4231 does not provide software programmable power-down modes.
5. The CS4231 does not have the ability to mix the M IC input with the DAC output.
6. The CS4231 does not contain a Variable Sample Frequency Generator and cannot change sample rates "on the fly." The CS4231 and CS4248 require entering M CE to change the sample rate. The AD 1845 can change the sample rate without entering M CE. T he AD 1845's 50,000 selectable sample rates are not available on the CS4231. The V ariable Sample F requency G enerator reduces clicks and pops encountered in many game applications.
7. The CS4231 requires two crystal inputs, 24.575 M Hz and 16.9344 M Hz . The AD 1845 requires only one input of 24.576 M Hz or can be driven from OSC or other external clocks.
8. The CS4231 does not contain the INITD bit.
9. The C S4231 minimum $\mathrm{R}_{\mathrm{IN}}=20 \mathrm{k} \Omega$. The AD 1845 minimum input resistance is $10 \mathrm{k} \Omega$.
10. The AD 1845 does not include hardware for compressing and decompressing ADPCM data. Analog Devices offers W indows based software applets for using ADPCM formats with the AD 1845.

FREQUENCY RESPONSE PLOTS

Figure 37. Analog-to-Digital Frequency Response to F_{s} (Full-Scale Line-Level Inputs, 0 dB)

Figure 38. Analog-to-Digital Frequency Response -Transition Band (Full-Scale Line-Level Inputs, 0 dB)

Figure 39. Digital-to-Analog Frequency Response to F_{S} (Full-Scale Inputs, 0 dB)

Figure 40. Digital-to-Analog Frequency Response -Transition Band (Full-Scale Inputs, $0 d B$)

APPENDIX

EXTENDED TEMPERATURE SPECIFICATIONS

Test Conditions
The AD 1845 has been tested over the industrial temperature range. The typical values represent the limits that change with temperature. All other limits remain unchanged.

Temperature
Digital Supply (VDD)
Analog Supply (V_{CC})
Sample Rate (F_{s})
Input Signal
Analog Output Passband
$V_{\text {IH }}$
$V_{\text {IL }}$
V_{OH}
$V_{O L}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
5.0 V
5.0 V

48 kHz
1008 Hz
20 Hz to 20 kHz
2.0 V
0.8 V
2.4 V
0.4 V
DAC T est Conditions
C alibrated
0 dB Attenuation
16 -Bit Linear M ode
M ute $\mathrm{Off}, \mathrm{OL}=0$
ADC Input Conditions
C alibrated
0 dB Gain

- 1.0 dB Relative to Full Scale
Line Input
16-Bit Linear M ode

PROGRAMMABLE GAIN AMPLIFIER-ADC

Parameter	Min	Typ	Max
Step Size (All Steps T ested) (0 dB to 22.5 dB$)$	1.75	Units	
PGA Gain Range Span		dB	

AUXILIARY, LINE, MONO, AND MICROPHONE INPUT ANALOG GAIN/AMPLIFIERS/ATTENUATORS

Parameter	Min	Typ
Step Size AU X1, AU X2, LINE, M IC (All Steps T ested):		Max
\quad (+12 dB to -34.5 dB, Referenced to D AC Full Scale)		
Step Size: M IN (All Steps T ested) (0 dB to -45 dB)	1.5	
Input Gain/Attenuation Range: AUX1, AU X2, LIN E, M IC	3.0	dB
Input Gain/Attenuation Range: M_IN	46.2	dB

ANALOG-TO-DIGITAL CONVERTERS

Parameter	Min	Typ
Dynamic Range (-60 dB Input THD +N Referenced to		Max
Full Scale, A-W eighted)		
THD +N (Referenced to Full Scale)	-81	$d B$

DIGITAL-TO -ANALOG CONVERTERS

Parameter	Min	Typ
Dynamic Range (-60 dB Input THD +N Referenced to		Max
Full Scale, A-W eighted)	-82	Units
H +N (Referenced to Full Scale)	-78	$d B$

DAC ATTENUATOR

Parameter	Min	Typ	Max
Step Size $(0 \mathrm{~dB}$ to $-22.5 \mathrm{~dB})$	-1.5	Units	

ANALOG OUTPUT

Parameter	Min	Typ \quad Max	Units
$V_{\text {REF }}$		2.36	V

TABLE OF CONTENTSPRODUCT OVERVIEW1
Expanded M ode (MODE2) 9
SPECIFICATIONS 2
ORDERING GUIDE 5
PIN DESIGNATIONS 6
PIN FUNCTION DESCRIPTIONS 7
FUNCTIONAL DESCRIPTION 10
Analog Inputs 10
Analog Mixing 10
Analog-to-D igital D atapath 10
Digital-to-A nalog D atapath 10
Digital M ixing 10
Analog Outputs 10
Digital Data Types 10
Timer Registers 11
Interrupts 11
Power Supplies and Voltage Reference 11
Clocks and Sample Rates 11
CONTROL REGISTERS 11
C ontrol Register Architecture 11
D irect C ontrol Register Definitions 14
Index Address Register (AD R1:0 = 0) 14
Indexed D ata Register (ADR1:0 = 1) 14
Status Register (AD R1:0 = 2) 15
PIO D ata Registers (AD R1:0 = 3) 16
Indirect C ontrol Register D efinitions 16
Left Input C ontrol (IXA3:0 $=0$) 16
Right Input C ontrol (IXA3:0 = 1) 16
Left Aux \#1 Input C ontrol (IXA3:0 = 2) 17
Right Aux \#1 Input C ontrol ($1 \times$ A 3:0 = 3) 17
Left Aux \#2 Input C ontrol (IXA3:0 = 4) 17
Right Aux \#2 Input C ontrol (IXA3:0 = 5) 17
Left DAC C ontrol (IXA3:0 = 6) 18
Right DAC C ontrol (IXA3:0 = 7) 18
Clock and D ata Format (IXA3:0 $=8$) 19
Interface C onfiguration (IXA 3:0 = 9) 20
Pin Control (IXA3:0 = 10) 20
T est and Initialization (IXA3:0 = 11) 21
M iscellaneous C ontrol (IXA3:0 = 12) 21
Digital $\mathrm{M} \mathrm{ix} / \mathrm{A}$ ttenuation Control $(I X A 3: 0=13)$ 22
D M A Playback Base C ount 22
U pper Base Count (IXA3:0 = 14) 22
Lower Base Count (IXA3:0 = 15) 23
Alternate F eature E nable /L eft M IC Input C ontrol (IXA 3:0 = 16) 23
M IC M ix Enable/Right M IC Input Control (IXA3:0 = 17) 23
L eft Line Gain, A ttenuate, M ute, $\mathrm{M} \mathrm{ix} \mathrm{(IXA} \mathrm{3:0} \mathrm{=} \mathrm{18)}$ 23
Right Line Gain, Attenuate, M ute, $\mathrm{M} \mathrm{ix}(I X A 3: 0=19)$ 24
Lower Timer Bits (IXA3:0 = 20) 24
U pper Timer Bits (IXA3:0 $=21$) 25
U pper F requency Select (IXA3:0 $=22$) 25
Lower Frequency Select (IXA3:0 = 23) 25
C apture Playback Timer (IXA3:0 $=24$) 25
Revision ID (IXA3:0 = 25) 26
M ono Control (IXA3:0 $=26$) 26
Power-D own Control (IXA3:0 = 27) 27
C apture D ata F ormat Control (IXA3:0 = 28) 27
C rystal, Clock Select/T otal Power-D own (IXA3:0 = 29) 27
C apture U pper Base Count (IXA3:0 = 30) 28
C apture L ower Base C ount (IXA 3:0 = 31) 28
DATA AND CONTROL TRANSFERS 29
D ata Ordering 29
FIFO 29
D ata Bus D rivers 29
Control and Programmed I/O (PIO) T ransfers 29
DIRECT MEMORY ACCESS (DMA) TRANSFERS 30
Single-Channel DM A 30
Dual-C hannel DMA 31
DM A Timing 31
DM A Interrupt 31
POWER-UP AND RESET 32
ADVANCED POWER-DOWN MODES 32
AUTOCALIBRATION 33
CHANGING SAM PLE RATES 33
APPLICATIONS CIRCUITS 34
GROUNDING AND LAYOUT 35
COMPATIBILITY WITH CS4231 36
FREQUENCY RESPONSE PLOTS 37
APPENDIX-EXTENDED TEMPERATURE SPECIFICATIONS 38
PACKAGE OUTLINE DIMENSIONS 40
FIGURES TABLE OF CONTENTS

1. Interface to ISA Bus 9
2. μ-Law or A-Law Expansion 11
3. μ-Law or A-Law Compression 11
4. Direct Register M ap 11
5. Indirect Register M ap and Reset/D efault States 12
6. Register Summary 13
7. M ix Gain Level Setting: DAC 18
8. MODE1 Audio Sample F requency Select 19
9. Digital Audio Data Type 19
10. M ix Gain Level Setting: AUX1, AUX2, M IC, LINE 24
11. M ono Attenuation 26
12. C apture Audio D ata T ype 27
13. Input Frequency Selection 28
14. 8-Bit M ono D ata Stream Sequencing 29
15. 8-Bit Stereo D ata Stream Sequencing 29
16. 16-Bit M ono D ata Stream Sequencing, Little Endian 29
17. 16-Bit Stereo D ata Stream Sequencing, Little Endian 29
18. 16-Bit M ono Data Stream Sequencing, Big Endian 29
19. 16 -Bit Stereo D ata Stream Sequencing, Big Endian 29
20. Control Register/PIO Read Cycle 30
21. C ontrol Register/PIO W rite Cycle 30
22. 8-Bit M ono DMA Read/C apture Cycle 31
23. 8-Bit M ono DM A W rite/Playback Cycle 31
24. 8 -Bit Stereo or 16 -Bit M ono D M A Cycle 31
25. 16-Bit Stereo D M A Interrupt 31
26. Advanced Power-D own M ode Summary 32
27. 2 V rms Line-L evel Input Circuit for LINE Inputs 34
28. 2 V rms Line-Level Input Circuit for $\mathrm{M}_{2} \mathrm{IN}$ and AUX Inputs 34
29. "Phantom Powered" M icrophone Input Circuit 34
30. Line Output Connections 35
31. H eadphone D rive C onnections 35
32. Voltage Reference Bypassing 35
33. External Filter C apacitor C onnections 35
34. Crystal C onnections 35
35. Recommended Power Supply Bypassing 35
36. Recommended Ground Plane 36
37. Analog-to-D igital F requency Response to F_{S} (Full-Scale Line-L evel Inputs, 0 dB) 37
38. Analog-to-D igital Frequency Response-T ransition Band (Full-Scale Line-L evel Inputs, 0 dB) 37
39. Digital-to-A nalog F requency Response to F_{S} (Full-Scale Inputs, 0 dB) 37
40. Digital-to-Analog F requency Response-T ransition Band (Full-Scale Inputs, 0 dB) 37

OUTLINE DIMENSIONS

Dimensions shown in inches and（mm）．

68－Lead Plastic Leaded Chip Carrier （P－68A）

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力 电子（深圳）86－755－83298787
Http：／／www．100y．com．tw

[^0]: *Guaranteed, not tested.

[^1]: *G uaranteed, not tested.

[^2]: *Guaranteed, not tested.

