Low Noise，High Throughput 24－Bit Sigma－Delta ADC

AD7731

FEATURES

24－Bit Sigma－Delta ADC
16 Bits p－p Resolution at 800 Hz Output Rate
Programmable Output Rates up to $\mathbf{6 . 4} \mathbf{~ k H z}$
Programmable Gain Front End
$\pm 0.0015 \%$ Nonlinearity
Buffered Differential Inputs
Programmable Filter Cutoffs
FASTStep ${ }^{\text {TM }} *$ Mode for Channel Sequencing
Single Supply Operation

APPLICATIONS
 Process Control
 PLCs／DCS

Industrial Instrumentation

勝 特 力材 料 886－3－5753170胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www．100y．com．tw

GENERAL DESCRIPTION

The AD 7731 is a complete analog front－end for process control applications．The device has a proprietary programmable gain front end that allows it to accept a range of input signal ranges， including low level signals，directly from a transducer．The sigma－ delta architecture of the part consists of an analog modulator and a low pass programmable digital filter，allowing adjustment of filter cutoff，output rate and settling time．
The part features three buffered differential programmable gain analog inputs（which can be configured as five pseudo－differential inputs），as well as a differential reference input．The part oper－ ates from a single +5 V supply and accepts seven unipolar ana－ log input ranges： 0 to $+20 \mathrm{mV},+40 \mathrm{mV},+80 \mathrm{mV},+160 \mathrm{mV}$ ， $+320 \mathrm{mV},+640 \mathrm{mV}$ and +1.28 V ，and seven bipolar ranges： $\pm 20 \mathrm{mV}, \pm 40 \mathrm{mV}, \pm 80 \mathrm{mV}, \pm 160 \mathrm{mV}, \pm 320 \mathrm{mV}, \pm 640 \mathrm{mV}$ and $\pm 1.28 \mathrm{~V}$ ．T he peak－to－peak resolution achievable directly from the part is 16 bits at an 800 Hz output rate．The part can switch between channels with 1 ms settling time and maintain a perfor－ mance level of 13 bits of peak－to－peak resolution．
The serial interface on the part can be configured for three－wire operation and is compatible with microcontrollers and digital signal processors．The AD 7731 contains self－calibration and system calibration options and features an offset drift of less than $5 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ and a gain drift of less than $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．
The part is available in a 24－lead plastic DIP，a 24 －lead SOIC and 24－lead TSSOP package．

FUNCTIONAL BLOCK DIAGRAM

＊FA ST Step is a trademark of Analog Devices，Inc．
REV．A

Information furnished by Analog Devices is believed to be accurate and reliable．However，no responsibility is assumed by Analog Devices for its use，nor for any infringements of patents or other rights of third parties which may result from its use．No license is granted by implication or otherwise under any patent or patent rights of Analog Devices．

One Technology Way，P．O．Box 9106，Norwood，MA 02062－9106，U．S．A． Tel：617／329－4700 World Wide Web Site：http：／／www．analog．com Fax：617／326－8703
 DGND $=0 \mathrm{~V}$; $\mathrm{f}_{\text {CLIIN }}=4.9152 \mathrm{MHz}$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

Parameter	B Version ${ }^{1}$	Units	Conditions/Comments
STATIC PERFORMANCE ($\mathrm{CHP}=0$)			
No M issing Codes ${ }^{2}$		Bits min	SKIP $=0^{3}$
Output N oise and U pdate Rates ${ }^{2}$	See Tables I and II		
Integral N onlinearity		ppm of FSR max	
Offset Error ${ }^{2}$	See N ote 4		Offset Error and Offset Drift Refer to Both
Offset Drift vs. T emperature ${ }^{2}$	0.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ typ	$\text { Input Range }=20 \mathrm{mV}, 40 \mathrm{mV}, 80 \mathrm{mV}, 160 \mathrm{mV}$
Offset Drift vs. Time ${ }^{5}$	$1 / 2 / 5$ 2.5	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \text { typ } \\ & \mu \mathrm{V} / 1000 \mathrm{Hr} \end{aligned}$	Input Range $=320 \mathrm{mV} / 640 \mathrm{mV} / 1.28 \mathrm{~V}$
Positive Full-Scale Error ${ }^{2,6}$	See N ote 4		
Positive Full-Scale Drift vs. Temp ${ }^{2,7,8}$	$\begin{aligned} & 0.6 \\ & 1.5 / 3 / 6 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ typ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ typ	$\begin{aligned} & \text { Input Range }=20 \mathrm{mV}, 40 \mathrm{mV}, 80 \mathrm{mV}, 160 \mathrm{mV} \\ & \text { Input Range }=320 \mathrm{mV} / 640 \mathrm{mV} / 1.28 \mathrm{~V} \end{aligned}$
Positive Full-Scale D rift vs. Time ${ }^{5}$	3	$\mu \mathrm{V} / 1000 \mathrm{Hr}$	
G ain Drift vs. Temperature ${ }^{2,7,10}$		ppm/ ${ }^{\circ} \mathrm{C}$ typ	
Gain Drift vs. Time ${ }^{5}$	10	ppm/ 1000 Hr	
Bipolar N egative Full-Scale Error ${ }^{2}$	See N ote 4		
N egative Full-Scale Drift vs. Temp ${ }^{2,7}$	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ typ	
Power Supply Rejection ${ }^{11}$	90	dB typ	Input Range $=20 \mathrm{mV}$
Power Supply Rejection ${ }^{11}$	60	dB typ	$\text { Input Range }=1.28 \mathrm{~V}$
Common-M ode Rejection (CM R) On AIN	95	dB typ	At DC. Input Range $=20 \mathrm{mV}$
On AIN	85	dB typ	At DC. Input Range $=1.28 \mathrm{~V}$
OnREF IN	120	dB typ	
Analog Input DC B ias Current ${ }^{2}$	60	$n A \max$	
Analog Input DC Bias Current Drift ${ }^{2}$	150	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ typ	
A nalog Input DC Offset C urrent ${ }^{2}$	30	nA max	
Analog Input DC Offset Current Drift ${ }^{2}$	100	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ typ	
STATIC PERFORMANCE (CHP=1) ${ }^{2}$			
No M issing Codes		Bits min	
Output N oise and U pdate R ates	See T ables III and IV		
Integral N onlinearity		ppm of FSR max	
Offset Error	See N ote 4		Offset Error and Offset Drift Refer to Both
Offset Drift vs. Temperature Offset D rift vs. Time	5	$n \mathrm{n} /{ }^{\circ} \mathrm{C}$ typ	Unipolar Offset and Bipolar Zero Errors
Offset Drift vs. Time ${ }^{5}$	25	nV/1000 Hr typ	
Positive Full-Scale Error ${ }^{6}$	See N ote 4		
Positive Full-Scale Drift vs. Temp ${ }^{\text {7, }} 8$	2	ppm of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ max	
Positive Full-Scale D rift vs. Time ${ }^{5}$	10	ppm of FS/1000 Hr	
Gain Error ${ }^{9}$	See N ote 4		
Gain Drift vs. Temperature7, 10	2	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max	
Gain Drift vs. Time ${ }^{5}$	10	ppm/1000 Hr	
Bipolar N egative Full-Scale Error	See N ote 4		
N egative Full-Scale D rift vs. Temp	2	ppm of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ max	
Power Supply Rejection ${ }^{11}$	110	dB typ	Input Range $=20 \mathrm{mV}$
Power Supply Rejection ${ }^{11}$	85	dB typ	Input Range $=1.28 \mathrm{~V}$
Common-M ode Rejection (CMR) ${ }^{11}$			
On AIN	110	dB typ	At DC. Input Range $=20 \mathrm{mV}$
On AIN	85	dB typ	At DC. Input Range $=1.28 \mathrm{~V}$
OnREF IN	120	dB typ	
Analog Input DC B ias Current	50	$n A$ max	
Analog Input DC Bias Current Drift	100	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ typ	
Analog Input DC Offset C urrent	10	nA max	
Analog Input DC Offset Current Drift	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ typ	
ANALOG INPUTS/REFERENCE INPUTS			
N ormal M ode $50 \mathrm{Hz/60} \mathrm{~Hz} \mathrm{Rejection}{ }^{2}$	88	$d B$ min	$50 \mathrm{~Hz} / 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$. SKIP $=0$
Common-M ode $50 \mathrm{Hz/60} \mathrm{~Hz} \mathrm{Rejection}{ }^{2}$	120	$d B \mathrm{~min}$	$50 \mathrm{Hz/} / 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$. SKIP $=0$
Differential Input Voltage Ranges ${ }^{12}$			Assuming 2.5 V or 5 V Reference with HIREF Bit Set Appropriately
	0 to +20 or ± 20	mV nom	RN 2, RN 1, RN 0 of M ode Register $=0,0,1$
	0 to +40 or ± 40	mV nom	RN 2, RN 1, RN 0 of M ode Register $=0,1,0$
	0 to +80 or ± 80	mV nom	RN 2, RN 1, R N 0 of M ode Register $=0,1,1$
	0 to +160 or ± 160	mV nom	RN 2, RN 1, RN 0 of M ode Register $=1,0,0$
	0 to +320 or ± 320	mV nom	RN 2, RN 1, RN 0 of M ode Register $=1,0,1$
	0 to +640 or ± 640	mV nom	RN 2, RN 1, R N 0 of M ode Register =1, 1, 0
	0 to +1.28 or ± 1.28	V nom	RN 2, RN 1, R N 0 of M ode Register $=1,1,1$

NOTES
${ }^{1}$ T emperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
${ }^{2}$ Sample tested during initial release.
${ }^{3} \mathrm{No}$ missing codes performance with $\mathrm{CHP}=0$ and $\mathrm{SKIP}=1$ is 22 bits.
${ }^{4}$ The offset (or zero) numbers with CHP = 0 can be up to 1 mV precalibration. Internal zero-scale calibration reduces this to $2 \mu \mathrm{~V}$ typical. Offset numbers with CHP=1 are typically
$3 \mu \mathrm{~V}$ precalibration. Internal zero-scale calibration reduces this by about $1 \mu \mathrm{~V}$. System zero-scale calibration reduces offset numbers with $\mathrm{CHP}=0$ and CH P $=1$ to the order of the noise. Gain errors can be up to 3000 ppm precalibration with $\mathrm{CHP}=0$ and $\mathrm{CHP}=1$. Performing internal full-scale calibrations on all input ranges except the 20 mV and 40 mV input range reduces the gain error to less than 100 ppm . When operating on the 20 mV or 40 mV range, an internal full-scale calibration should be performed on the 80 mV input range with a resulting gain error of less than 250 ppm . System full-scale calibration reduces the gain error on all input ranges to the order of the noise. Positive and N egative Full-Scale Errors can be calculated from the offset and gain errors.
${ }^{5}$ T hese numbers are generated during life testing of the part.
${ }^{6}$ Positive F ull-Scale Error includes Zero-Scale Errors (Unipolar Offset Error or Bipolar Zero Error) and applies to both unipolar and bipolar input ranges. See Terminology.
${ }^{7}$ Recalibration at any temperature will remove these errors.
${ }^{8}$ Full-scale drift includes Zero-Scale D rift (U nipolar Offset Drift or Bipolar Zero Drift) and applies to both unipolar and bipolar input ranges.
${ }^{9} \mathrm{G}$ ain Error is a measure of the difference between the measured and the ideal span between any two points in the transfer function. The two points use to calculate the gain error are positive full-scale and negative full-scale. See T erminology.
${ }^{10} \mathrm{G}$ ain Error D rift is a span drift and is effectively the drift of the part if zero-scale calibrations only were performed.
${ }^{11}$ Power Supply Rejection and Common-M ode Rejection are given here for the upper and lower input voltage ranges. The rejection can be approximated to varying linearly (in dBs) between these values for the other input ranges.
${ }^{12}$ The analog input voltage range on the AIN (+) inputs is given here with respect to the voltage on the respective AIN (-) input.
${ }^{13}$ T he common-mode voltage range on the input pairs applies provided the absolute input voltage specification is obeyed.
${ }^{14}$ The common-mode voltage range on the reference input pair (REF IN $(+)$ and REF IN (-)) applies provided the absolute input voltage specification is obeyed.
${ }^{15}$ T hese logic output levels apply to the M CLK OUT output only when it is loaded with a single CM OS load.
${ }^{16} V_{D D}$ refers to $D V_{D D}$ for all logic outputs expect $D 0$ and $D 1$ where it refers to $A V_{D D}$. In other words, the output logic high for these two outputs is determined by $A V_{D D}$.
${ }^{17}$ See Burnout Current section.
${ }^{18}$ After calibration, if the input voltage exceeds positive full scale, the converter will output all 1 s . If the input is less than negative full scale, then the device outputs all 0 s.
${ }^{19}$ These calibration and span limits apply provided the absolute input voltage specification is obeyed. The offset calibration limit applies to both the unipolar zero point and the bipolar zero point.
Specifications subject to change without notice.

Parameter	Limit at $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ (B Version)	Units	Conditions/Comments
M aster Clock Range	1	M Hz min	For Specified Performance
	5	M Hz max	
t_{1}	50	$n s$ min	SYNC Pulse Width
t_{2}	50	$n \mathrm{n}$ min	RESET Pulse Width
Read Operation			
t_{3}	0	$n s$ min	$\overline{\mathrm{RDY}}$ to $\overline{\mathrm{CS}}$ Setup Time
t_{4}	0	$n s$ min	$\overline{\mathrm{CS}}$ F alling Edge to SCLK Active Edge Setup Time^{3}
$t_{5}{ }^{4}$	0	ns min	SCLK Active Edge to D ata Valid D elay ${ }^{3}$
	60	ns max	DV $\mathrm{DD}=+4.75 \mathrm{~V}$ to +5.25 V
$t_{5 A}{ }^{4,5}$	80	ns max	$\underline{\mathrm{DV}} \mathrm{DD}=+2.7 \mathrm{~V}$ to +3.3 V
	0	ns min	$\overline{\mathrm{CS}}$ F alling Edge to D ata Valid D elay ${ }^{3}$
	60	ns max	$\mathrm{DV}_{\mathrm{DD}}=+4.75 \mathrm{~V}$ to +5.25 V
	80	ns max	$D V_{D D}=+2.7 \mathrm{~V}$ to +3.3 V
t_{6}	100	$n s$ min	SCLK High Pulse Width
t_{7}	100	ns min	SCLK Low Pulse Width
	0	$n s$ min	$\overline{C S}$ R ising Edge to SCLK Inactive Edge Hold Time ${ }^{3}$
$\mathrm{t}_{9}{ }^{6}$	10	ns min	Bus Relinquish Time after SCLK Inactive Edge ${ }^{3}$
	80	ns max	SCLK Active Edge to $\overline{\text { RDY }}$ High 3,7
t_{10}	100	ns max	SCLK Active Edge to RDY High ${ }^{3,7}$
Write Operation			
t_{11}	0	$n s$ min	$\overline{\mathrm{CS}}$ F alling Edge to SCLK Active Edge Setup Time^{3}
t_{12}	30	$n s$ min	D ata Valid to SCLK Edge Setup T ime
t_{13}	25	$n s$ min	D ata Valid to SCLK Edge Hold T ime
t_{14}	100	$n s$ min	SCLK High Pulse Width
t_{15}	100	$n s$ min	SCLK Low Pulse Width
t_{16}	0	$n s$ min	$\overline{C S}$ R ising Edge to SCLK Edge H old Time

NOTES
${ }^{1}$ Sample tested during initial release to ensure compliance. All input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}(10 \%$ to 90% of DV DD) and timed from a voltage level of 1.6 V .
${ }^{2}$ See Figures 15 and 16.
${ }^{3}$ SCLK active edge is falling edge of SCLK with POL $=1$; SCLK active edge is rising edge of SCLK with POL $=0$.
${ }^{4}$ These numbers are measured with the load circuit of F igure 1 and defined as the time required for the output to cross the $V_{O L}$ or $V_{O H}$ limits.
${ }^{5}$ This specification only comes into play if $\overline{C S}$ goes low while SCLK is low ($\mathrm{POL}=1$) or if $\overline{\mathrm{CS}}$ goes low while SCLK is high ($\mathrm{POL}=0$). It is required primarily for interfacing to DSP machines.
${ }^{6} \mathrm{~T}$ hese numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit of F igure 1 . The measured number is then extrapolated back to remove effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus relinquish times of the part and as such are independent of external bus loading capacitances.
${ }^{7} \overline{\mathrm{RDY}}$ returns high after the first read from the device after an output update. The same data can be read again, if required, while $\overline{\mathrm{RDY}}$ is high, although care should be taken that subsequent reads do not occur close to the next output update.

Plastic DIP Package, Power Dissipation 450 mW
θ_{JA} Thermal Impedance $105^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature (Soldering, 10 sec) $+260^{\circ} \mathrm{C}$
TSSOP Package, Power Dissipation 450 mW
Jja Thermal Impedance 2 $128^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, SolderingVapor Phase (60 sec)$+215^{\circ} \mathrm{C}$
Infrared (15 sec) $+220^{\circ} \mathrm{C}$
SOIC Package, Power Dissipation 450 mW
$\theta_{\text {JA }}$ Thermal Impedance $75^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, SolderingVapor Phase (60 sec)$+215^{\circ} \mathrm{C}$
Infrared (15 sec) $+220^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute Maximum Ratings may causepermanent damage to the device. This is a stress rating only; functionaloperation of the device at these or any other conditions above those listed in theoperational sections of this specification is not implied. Exposure to absolutemaximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

Model ($\mathrm{Z}=$ RoHS)	Temperature Range	Package Description	Package Option	RoHS Compliant
AD7731BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead PDIP	N-24-1	No
AD7731BNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead PDIP	N-24-1	Yes
AD7731BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC_W	RW-24	No
AD7731BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC_W	RW-24	No
AD7731BR-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC_W	RW-24	No
AD7731BRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC_W	RW-24	Yes
AD7731BRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC_W	RW-24	Yes
AD7731BRZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC_W	RW-24	Yes
AD7731BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	RU-24	No
AD7731BRU-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	RU-24	No
AD7731BRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	RU-24	No
AD7731BRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	RU-24	Yes
AD7731BRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	RU-24	Yes
AD7731BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	RU-24	Yes
EVAL-AD7731EBZ		Evaluation Board		Yes

Figure 1. Load Circuit for Access Time and Bus Relinquish Time

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

*SPI IS A TRADEMARK OF MOTOROLA, INC.
Figure 2. Detailed Functional Block Diagram

Figure 3. Signal Processing Chain

PIN CONFIGURATION

PIN FUNCTION DESCRIPTIONS

Pin No.	Pin Mnemonic	Function
1	SCLK	Serial Clock. Schmitt-T riggered L ogic Input. An external serial clock is applied to this input to transfer serial data to or from the AD 7731. This serial clock can be a continuous clock with all data transmitted in a continuous train of pulses. Alternatively, it can be a noncontinuous clock with the information being trans- mitted to or from the AD 7731 in smaller batches of data.
2	MCLK IN	M aster Clock signal for the device. This can be provided in the form of a crystal/resonator or external clock. A crystal/resonator can be tied across the M CLK IN and M CLK OUT pins. Alternatively, the M CLK IN pin can be driven with a CM O S-compatible clock and M CLK OUT left unconnected. The part is specified with a clock input frequency of 4.9152 M Hz.

Pin No.	Pin Mnemonic	Function
3	MCLK OUT	When the master clock for the device is a crystal/resonator, the crystal/resonator is connected between M CLK IN and MCLK OUT. If an external clock is applied to the MCLK IN, MCLK OUT provides an inverted clock signal. This clock can be used to provide a clock source for external circuits and M CLK OUT is capable of driving one CM OS load.
4	POL	Clock Polarity. Logic Input. This determines the polarity of the serial clock. If the active edge for the processor is a high-to-low SCLK transition, this input should be low. In this mode, the AD 7731 puts out data on the DATA OUT line in a read operation on a low-to-high transition of SCLK and clocks in data from the DATA IN line in a write operation on a high-to-low transition of SCLK. In applications with a noncontinuous serial clock (such as most microcontroller applications), this means that the serial clock should idle low between data transfers. If the active edge for the processor is a low-to-high SCLK transition, this input should be high. In this mode, the AD 7731 puts out data on the DAT A OUT line in a read operation on a high-to-low transition of SCLK and clocks in data from the DATA IN line in a write operation on a low-tohigh transition of SCLK. In applications with a noncontinuous serial clock (such as most microcontroller applications), this means that the serial clock should idle high between data transfers.
5	$\overline{\text { SY }}$	Logic Input that allows for synchronization of the digital filters and analog modulators when using a number of AD 7731s. While SYNC is low, the nodes of the digital filter, the filter control logic and the calibration control logic are reset and the analog modulator is also held in its reset state. SYNC does not affect the digital interface but does reset $\overline{\text { RDY }}$ to a high state if it is low. While $\overline{\text { SYNC }}$ is asserted, the M ode Bits may be set up for a subsequent operation that will commence when the $\overline{\text { SYNC }}$ pin is deasserted.
6	RES	Logic Input. Active low input that resets the control logic, interface logic, digital filter, analog modulator and all on-chip registers of the part to power-on status. Effectively, everything on the part except for the clock oscillator is reset when the $\overline{\mathrm{RESET}}$ pin is exercised.
7	NC	No Connect. The user is advised not to connect anything to this pin.
8	AGND	Ground reference point for analog circuitry.
9	AV	Analog Positive Supply Voltage. The $\mathrm{AV}_{\text {DD }}$ to $A G N D$ differential is 5 V nominal.
10	AIN 1	Analog Input Channel 1. Programmable-gain analog input that can be used as a pseudo-differential input when used with AIN 6 or as the positive input of a differential pair when used with AIN 2.
11	AIN 2	Analog Input Channel 2. Programmable-gain analog input that can be used as a pseudo-differential input when used with AIN 6 or as the negative input of a differential pair when used with AIN 1.
12	AIN 3/D 1	Analog Input Channel 3 or Digital Output 1. This pin can be used as either an analog input or a digital output bit as determined by the DEN bit of the M ode Register. When selected as a programmable-gain analog input, it can be used as a pseudo-differential input when used with AIN 6 or as the positive input of a differential pair when used with AIN 4. When selected as a digital output, this output can be programmed over the serial interface using bit D 1 of the M ode Register.
13	AIN 4/D 0	Analog Input Channel 4 or Digital Output 0 . This pin can be used as either an analog input or a digital output bit as determined by the DEN bit of the M ode Register. When selected as a programmable-gain analog input, it can be used as a pseudo-differential input when used with AIN 6 or as the negative input of a differential pair when used with AIN 3. When selected as a digital output, this output can be programmed over the serial interface using bit D 0 of the M ode Register.
14	REF IN (+)	Reference Input. Positive terminal of the differential reference input to the AD7731. REF IN (+) can lie anywhere between $A V_{D D}$ and $A G N D$. The nominal reference voltage (i.e., the differential voltage between REF IN (+) and REF IN(-)) should be +2.5 V when the HIREF bit of the M ode R egister is 0 and is +5 V when the HIREF bit of the M ode R egister is 1 .
15	REF IN	Reference Input. N egative terminal of the differential reference input to the AD 7731. The REF IN (-) can lie anywhere between $A V_{D D}$ and $A G N D$.
16	AIN 5	Analog Input Channel 5. Programmable-gain analog input which can be used is the positive input of a differential pair when used with AIN 6 .
17	AIN 6	Analog Input Channel 6. Reference point for AIN 1 through AIN 4 in pseudo-differential mode or as the negative input of a differential input pair when used with AIN 5.
18	$\overline{\text { STANDBY }}$	Logic Input. Taking this pin low shuts down the analog and digital circuitry, reducing current consumption to the $10 \mu \mathrm{~A}$ range. T he on-chip registers retain all their values when the part is in standby mode.
19	$\overline{\mathrm{CS}}$	Chip Select. Active low L ogic Input used to select the AD7731. With this input hardwired low, the AD 7731 can operate in its three-wire interface mode with SCLK, DIN and DOUT used to interface to the device. $\overline{\mathrm{CS}}$ can be used to select the device in systems with more than one device on the serial bus or as a frame synchronization signal in communicating with the AD 7731.

PIN FUNCTION DESCRIPTIONS (Continued)

Pin No.	Pin Mnemonic	Function
20	$\overline{\mathrm{RDY}}$	Logic output. U sed as a status output in both conversion mode and calibration mode. In conversion mode, a logic low on this output indicates that a new output word is available from the AD 7731 data register. The $\overline{\mathrm{RDY}}$ pin will return high upon completion of a read operation of a full output word. If no data read has taken place after an output update, the $\overline{\mathrm{RDY}}$ line will return high prior to the next output update, remain high while the update is taking place and return low again. This gives an indication of when a read operation should not be initiated to avoid initiating a read from the data register as it is being updated. In calibration mode, $\overline{\text { RDY }}$ goes high when calibration is initiated and returns low to indicate that calibration is complete. A number of different events on the AD 7731 set the $\overline{\text { RDY }}$ high and these are outlined in T able XVII.
21	DOUT	Serial Data O utput with serial data being read from the output shift register on the part. This output shift register can contain information from the calibration registers, mode register, status register, filter register or data register depending on the register selection bits of the Communications Register.
22	DIN	Serial D ata Input with serial data being written to the input shift register on the part. D ata from this input shift register is transferred to the calibration registers, mode register, communications register or filter register depending on the register selection bits of the Communications Register.
23	DV ${ }_{\text {D }}$	Digital Supply Voltage, +3 V or +5 V nominal.
24	DGND	Ground reference point for digital circuitry.

TERMINOLOGY

INTEGRAL NONLINEARITY

This is the maximum deviation of any code from a straight line passing through the endpoints of the transfer function. The endpoints of the transfer function are zero scale (not to be confused with bipolar zero), a point 0.5 LSB below the first code transition (000 ... 000 to $000 \ldots 001$) and full scale, a point 0.5 LSB above the last code transition (111 . . . 110 to 111 . . . 111). T he error is expressed as a percentage of full scale.

POSITIVE FULL-SCALE ERROR

Positive F ull-Scale Error is the deviation of the last code transition (111 . . 110 to $111 \ldots$. 111) from the ideal $\operatorname{AIN}(+)$ voltage (AIN (-) + V REF $^{\text {R }}$ GAIN $-3 / 2$ LSBs). It applies to both unipolar and bipolar analog input ranges.

UNIPOLAR OFFSET ERROR

U nipolar Offset Error is the deviation of the first code transition from the ideal AIN (+) voltage (AIN (-) + 0.5 LSB) when operating in the unipolar mode.

BIPOLAR ZERO ERROR

T his is the deviation of the midscale transition (0111 . . . 111 to $1000 \ldots$. 000) from the ideal AIN (+) voltage (AIN (-) 0.5 LSB) when operating in the bipolar mode.

GAIN ERROR

This is a measure of the span error of the ADC. It is a measure of the difference between the measured and the ideal span between any two points in the transfer function. The two points used to calculate the gain error are positive full scale and negative full scale.

BIPOLAR NEGATIVE FULL-SCALE ERROR

This is the deviation of the first code transition from the ideal AIN (+) voltage (AIN (-) - $\mathrm{V}_{\text {REF }} / \mathrm{GAIN}+0.5 \mathrm{LSB}$) when operating in the bipolar mode. N egative full-scale error is a summation of zero error and gain error.

POSITIVE FULL-SCALE OVERRANGE

Positive F ull-Scale O verrange is the amount of overhead available to handle input voltages on AIN (+) input greater than AIN (-) $+\mathrm{V}_{\text {REF }} / \mathrm{GAIN}$ (for example, noise peaks or excess voltages due to system gain errors in system calibration routines) without introducing errors due to overloading the analog modulator or overflowing the digital filter.

NEGATIVE FULL-SCALE OVERRANGE

This is the amount of overhead available to handle voltages on AIN (+) below AIN (-) - $\mathrm{V}_{\text {REF }} / \mathrm{GAIN}$ without overloading the analog modulator or overflowing the digital filter.

OFFSET CALIBRATION RANGE

In the system calibration modes, the AD 7731 calibrates its offset with respect to the analog input. The Offset C alibration Range specification defines the range of voltages the AD 7731 can accept and still accurately calibrate offset.

FULL-SCALE CALIBRATION RANGE

This is the range of voltages that the AD 7731 can accept in the system calibration mode and still accurately calibrate full scale.

INPUT SPAN

In system calibration schemes, two voltages applied in sequence to the AD 7731's analog input define the analog input range. The input span specification defines the minimum and maximum input voltages from zero to full scale that the AD 7731 can accept and still accurately calibrate gain.

AD7731

OUTPUT NOISE AND RESOLUTION SPECIFICATION

The AD 7731 has a number of different modes of operation of the on-chip filter and chopping features. These options are discussed in more detail in later sections. T he part can be programmed either to optimize the throughput rate and settling time or to optimize noise and drift performance. N oise tables for two of the primary modes of operation of the part are outlined below for a selection of output rates and settling times. The first mode, where the AD 7731 is configured with CHP = 0 and SKIP mode enabled, provides fast settling time while still maintaining high resolution. T he second mode, where CHP=1 and the full second filter is included, provides very low noise numbers with lower output rates. Settling time refers to the time taken to get an output that is 100% settled to the new value after a channel change or exercising SYNC.

Output Noise (CHP = 0, SKIP = 1)

T able I shows the output rms noise for some typical output update rates and -3 dB frequencies for the AD 7731 when used in nonchop mode (CHP of Filter Register $=0$) and with the second filter bypassed (SKIP of Filter Register $=1$). The table is generated with a master clock frequency of 4.9152 M Hz . These numbers are typical and generated at a differential analog input voltage of 0 V . The output update rate is selected via the SF 0 to SF 11 bits of the Filter Register. T able II, meanwhile, shows the output peak-topeak resolution in bits (rounded to the nearest 0.5 LSB) for the same output update rates. It is important to note that the numbers in T able II represent the resolution for which there will be no code flicker within a six-sigma limit. They are not calculated based on rms noise but on peak-to-peak noise.

The numbers are generated for the bipolar input ranges. When the part is operated in unipolar mode, the output noise will be the same as the equivalent bipolar input range. As a result, the numbers in Table I will remain the same for unipolar ranges. To calculate the numbers for T able II for unipolar input ranges simply subtract one from the peak-to-peak resolution number in bits.

Table I. Output Noise vs. Input Range and Update Rate (CHP = 0, SKIP =1)
Typical Output RMS Noise in $\mu \mathrm{V}$

Output Data Rate	$\begin{aligned} & \hline-3 \mathrm{~dB} \\ & \text { Frequency } \\ & \hline \end{aligned}$	SF Word	Settling Time	$\pm 1.28 \mathrm{~V}$	$\pm 640 \mathrm{mV}$	$\pm 320 \mathrm{mV}$	Input Range $\pm 160 \mathrm{mV}$	$\pm 80 \mathrm{mV}$	$\pm \mathbf{4 0 ~ m V}$	$\pm \mathbf{2 0} \mathrm{mV}$
150 Hz	39.3 Hz	2048	20 ms	2.6	1.45	0.87	0.6	0.43	0.28	0.2
200 Hz	52.4 Hz	1536	15 ms	3.0	1.66	1.02	0.69	0.48	0.32	0.22
300 Hz	78.6 H z	1024	10 ms	3.7	2	1.26	0.84	0.58	0.41	0.28
400 Hz	104.8 Hz	768	7.5 ms	4.2	2.3	1.46	1.0	0.69	0.46	0.32
600 Hz	157 Hz	512	5 ms	5.2	2.9	1.78	1.2	0.85	0.58	0.41
800 Hz	209.6 Hz	384	3.75 ms	6	3.3	2.1	1.4	0.98	0.66	0.47
1200 Hz	314 Hz	256	2.5 ms	7.8	4.3	2.6	1.8	1.27	0.82	0.57
1600 Hz	419.2 Hz	192	1.87 ms	10.9	5.4	3.5	2.18	1.51	0.94	0.64
2400 Hz	629 Hz	128	1.25 ms	27.1	13.9	7.3	3.5	2.22	1.24	0.83
3200 Hz	838.4 Hz	96	0.94 ms	47	24.4	11.4	5.3	3.1	1.9	1.0
4800 Hz	1260 Hz	64	0.625 ms	99	50.3	24.5	12.5	6.5	3.3	1.7
6400 Hz	1676 Hz	48	0.47 ms	193	97	48	24	11.8	6.6	3.0

Table II. Peak-to-Peak Resolution vs. Input Range and Update Rate (CHP = 0, SKIP =1)
Peak-to-Peak Resolution in Bits

Output Data Rate	$\begin{aligned} & -3 \mathrm{~dB} \\ & \text { Frequency } \end{aligned}$	SF Word	Settling Time	$\pm 1.28 \mathrm{~V}$	$\pm \mathbf{6 4 0} \mathrm{mV}$	$\pm 320 \mathrm{mV}$	nput Rang $\pm 160 \mathrm{mV}$	$\pm 80 \mathrm{mV}$	$\pm 40 \mathrm{mV}$	$\pm \mathbf{2 0 m V}$
150 Hz	39.3 Hz	2048	20 ms	17.5	17	17	16.5	16	15.5	15
200 Hz	52.4 Hz	1536	15 ms	17	17	16.5	16.5	16	15.5	15
300 Hz	78.6 H z	1024	10 ms	17	16.5	16.5	16	15.5	15	14.5
400 Hz	104.8 Hz	768	7.5 ms	16.5	16.5	16	15.5	15.5	15	14.5
600 Hz	157 Hz	512	5 ms	16.5	16	16	15.5	15	14.5	14
800 Hz	209.6 H z	384	3.75 ms	16	16	15.5	15	14.5	14.5	14
1200 Hz	314 Hz	256	2.5 ms	15.5	15.5	15.5	15	14.5	14	13.5
1600 Hz	419.2 Hz	192	1.87 ms	15	15.5	15	14.5	14	14	13.5
2400 Hz	629 Hz	128	1.25 ms	14	14	14	14	13.5	13.5	13
3200 Hz	838.4 Hz	96	0.94 ms	13	13	13	13	13	13	12.5
4800 Hz	1260 Hz	64	0.625 ms	12	12	12	12	12	11.5	12
6400 Hz	1676 Hz	48	0.47 ms	11	11	11	11	11	11	11

Output Noise (CHP = 1, SKIP = 0)

T able III shows the output rms noise for some typical output update rates and -3 dB frequencies for the AD 7731 when used in chopping mode (CHP of Filter Register $=1$) and with the second filter included in the loop. T he numbers are generated with a master clock frequency of 4.9152 M Hz . T hese numbers are typical and generated at a differential analog input voltage of 0 V . The output update rate is selected via the SF 0 to SF 11 bits of the Filter Register. T able IV, meanwhile, shows the output peak-to-peak resolution in bits (rounded to the nearest 0.5 LSB) for the same output update rates. It is important to note that the numbers in T able IV represent the resolution for which there will be no code flicker within a six-sigma limit. They are not calculated based on rms noise but on peak-to-peak noise.

The numbers are generated for the bipolar input ranges. When the part is operated in unipolar mode, the output noise will be the same as the equivalent bipolar input range. As a result, the numbers in T able III will remain the same for unipolar ranges. T o calculate the number for T able IV for unipolar input ranges simply subtract one from the peak-to-peak resolution number in bits.

Table III. Output Noise vs. Input Range and Update Rate (CHP = 1, SKIP = 0)
Typical Output RMS Noise in nV

Output Data Rate	$\begin{array}{\|l\|} \hline-3 \mathrm{~dB} \\ \text { Frequency } \end{array}$	SF Word	Setting Time		$\pm 1.28 \mathrm{~V}$	$\pm 640 \mathrm{mV}$	$\pm 320 \mathrm{mV}$	Input Range		$\pm 40 \mathrm{mV}$	$\pm \mathbf{2 0 ~ m V}$
			Normal	Fast Step				$\pm \mathbf{1 6 0 ~ m V}$	$\pm 80 \mathrm{mV}$		
50 Hz	1.97 Hz	2048	440 ms	40 ms	700	425	265	170	120	85	55
100 Hz	3.95 Hz	1024	220 ms	20 ms	980	550	330	230	190	115	90
150 Hz	5.92 Hz	683	147 ms	13.3 ms	1230	700	445	270	210	140	100
200 Hz	7.9 Hz	512	110 ms	10 ms	1260	840	500	340	245	170	105
400 Hz	15.8 Hz	256	55 ms	5 ms	2000	1230	690	430	335	215	160
800 Hz	31.6 Hz	128	27.5 ms	2.5 ms	3800	2100	1400	760	590	345	220

Table IV. Peak-to-Peak Resolution vs. Input Range and Update Rate ($\mathrm{CHP}=1$, SKIP $=0$)
Peak-to-Peak Resolution in Bits

Output Data Rate	$-3 \mathrm{~dB}$ Frequency	SF Word	Settling Time		$\pm 1.28 \mathrm{~V}$	$\pm 640 \mathrm{mV}$	Input Range			$\pm \mathbf{4 0 ~ m V}$	$\pm \mathbf{2 0 ~ m V}$
			Normal	Fast Step			$\pm 320 \mathrm{mV}$	$\pm \mathbf{1 6 0 ~ m V}$	$\pm 80 \mathrm{mV}$		
50 Hz	1.97 Hz	2048	440 ms	40 ms	19	19	18.5	18.5	18	17.5	17
100 Hz	3.95 Hz	1024	230 ms	30 ms	19	18.5	18.5	18	17	17	16
150 Hz	5.92 Hz	683	147 ms	13.3 ms	18.5	18	18	17.5	17	16.5	16
200 Hz	7.9 Hz	512	110 ms	10 ms	18.5	18	17.5	17.5	17	16.5	16
400 Hz	15.8 Hz	256	55 ms	5 ms	17.5	17.5	17	17	16.5	16	15.5
800 Hz	31.6 Hz	128	27.5 ms	2.5 ms	17	16.5	16	16	15.5	15	15

ON-CHIP REGISTERS

The AD 7731 contains 12 on-chip registers that can be accessed via the serial port of the part. T hese registers are summarized in Figure 4 and in Table V, and described in detail in the following sections.

Figure 4. Register Overview

Table V. Summary of On-Chip Registers

Communications Register ($\mathbf{R S 2}-\mathrm{RSO}=\mathbf{0}, \mathbf{0}, \mathbf{0}$)

The C ommunications Register is an 8 -bit write-only register. All communications to the part must start with a write operation to the Communications Register. The data written to the Communications Register determines whether the next operation is a read or write operation, the type of read operation and to which register this operation takes place. For single-shot read or write operations, once the subsequent read or write operation to the selected register is complete, the interface returns to where it expects a write operation to the C ommunications Register. This is the default state of the interface, and on power-up or after a $\overline{\text { RESET, the AD } 7731 \text { is }}$ in this default state waiting for a write operation to the Communications Register. In situations where the interface sequence is lost, a write operation of at least 32 serial clock cycles with DIN high, returns the AD 7731 to this default state by resetting the part. T able VI outlines the bit designations for the Communications Register. CR0 through CR7 indicate the bit location, CR denoting the bits are in the Communications Register. CR7 denotes the first bit of the data stream.

Table VI. Communications Register

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
$\overline{\text { WEN }}$	ZERO	RW1	RW0	ZERO	RS2	RS1	RS0

| Bit
 Location | Bit
 Mnemonic | Description |
| :--- | :--- | :--- | | CR7 | $\overline{\text { WEN }}$ | Write Enable Bit. A 0 must be written to this bit so the write operation to the Communica-
 tions Register actually takes place. If a 1 is written to this bit, the part will not clock on to
 subsequent bits in the register. It will stay at this bit location until a 0 is written to this bit.
 Once a 0 is written to the $\overline{\text { WEN }}$ bit, the next seven bits will be loaded to the Communica-
 tions Register. |
| :--- | :--- | :--- |
| CR6 | ZERO | A zero must be written to this bit to ensure correct operation of the AD 7731.
 Read Write M ode Bits. These two bits determine the nature of the subsequent read/write
 operation. Table VII outlines the four options. |

Table VII. Read/Write Mode

RW1	RW0	Read/Write Mode
0	0	Single Write to Specified Register
0	1	Single R ead of Specified R egister
1	0	Start Continuous Read of Specified Register
1	1	Stop Continuous Read M ode

With 0,0 written to these two bits, the next operation is a write operation to the register specified by bits RS2, RS1, RS0. Once the subsequent write operation to the specified register has been completed, the part returns to where it is expecting a write operation to the C ommunications Register.
With 0,1 written to these two bits, the next operation is a read operation of the register specified by bits RS2, RS1, RS0. Once the subsequent read operation to the specified register has been completed, the part returns to where it is expecting a write operation to the C ommunications Register.
W riting 1, 0 to these bits, sets the part into a mode of continuous reads from the register specified by bits RS2, RS1, RS0. The most likely registers which the user will want to use this function with are the D ata Register and the Status Register. Subsequent operations to the part will consist of read operations to the specified register without any intermediate writes to the Communications Register. This means that once the next read operation to the specified register has taken place, the part will be in a mode where it is expecting another read from that specified register. The part will remain in this continuous read mode until 30 Hex has been written to bits RW 1 and RW 0 .
When 1,1 is written to these bits (and 0 written to bits CR3 through CR0), the continuous read mode is stopped and the part returns to where it is expecting a write operation to the C ommunications Register. N ote, the part continues to look at the DIN line on each SCLK edge during the continuous read mode so that it can determine when to stop the continuous read mode. Therefore, the user must be careful not to inadvertently exit the continuous read mode or reset the part by writing a series of 1 s to the part. The easiest way to avoid this is to place a logic 0 on the DIN line while the part is in continuous read mode.

Bit Location	Bit Mnemonic	Description			
CR3	ZERO	A zero must be written to this bit to ensure correct operation of the AD 7731.			
CR2-CRO	RS2-RS0	Register Selection Bits. RS2 is the M SB of the three selection bits. The three bits select to which one of eight on-chip registers the next read or write operation takes place as shown in T able VIII.			
		Table VIII. Register Selection			
		RS2	RS1	RSO	Register
		0	0	0	Communications Register (Write O peration)
		0	0	0	Status Register (Read O peration)
		0	0	1	D ata R egister
		0	1	0	M ode Register
		0	1	1	Filter Register
		1	0	0	No Register Access
		1	0	1	Offset Register
		1	1	0	G ain Register
		1	1	1	T est R egister

Status Register (RS2-RS0 = 0, 0, 0); Power-On/Reset Status: CX Hex

The Status Register is an 8-bit read-only register. To access the Status Register, the user must write to the C ommunications Register selecting either a single-shot read or continuous read mode and load bits RS2, RS1, RS0 with $0,0,0$. T able IX outlines the bit designations for the Status Register. SR0 through SR 7 indicate the bit location, SR denoting the bits are in the Status Register. SR 7 denotes the first bit of the data stream. Figure 5 shows a flowchart for reading from the registers on the AD 7731. The number in brackets indicates the power-on/reset default status of that bit.

Table IX. Status Register

Data Register (RS2-RS0 = 0, 0, 1); Power On/Reset Status: $\mathbf{0 0 0 0 0 0}$ Hex

The D ata Register on the part is a read-only register that contains the most up-to-date conversion result from the AD 7731. Figure 5 shows a flowchart for reading from the registers on the AD 7731. The register can be programmed to be either 16 or 24 bits wide, determined by the status of the WL bit of the M ode R egister. The $\overline{\mathrm{RDY}}$ output and $\overline{\mathrm{RDY}}$ bit of the Status R egister are set low when the D ata Register is updated. T he $\overline{\mathrm{RDY}}$ pin and $\overline{\mathrm{RDY}}$ bit will return high once the full contents of the register (either 16 or 24 bits) have been read. If the D ata Register has not been read by the time the next output update occurs, the $\overline{\mathrm{RDY}}$ pin and $\overline{\mathrm{RDY}}$ bit will go high for at least $158.5 \times \mathrm{t}_{\text {CLK IN }}$ indicating when a read from the D ata R egister should not be initiated to avoid a transfer from the D ata Register as it is being updated. Once the updating of the D ata Register has taken place, $\overline{R D Y}$ returns low.
If the Communications Register data sets up the part for a write operation to this register, a write operation must actually take place in order to return the part to where it is expecting a write operation to the Communications Register (the default state of the interface). H owever, the 16 or 24 bits of data written to the part will be ignored by the AD 7731.

Mode Register (RS2-RS0 = 0, 1, 0); Power-On/Reset Status: 0174 Hex

The M ode Register is a 16-bit register from which data can either be read or to which data can be written. This register configures the operating modes of the AD 7731, the input range selection, the channel selection and the word length of the D ata Register. Table X outlines the bit designations for the M ode Register. M R 0 through M R15 indicate the bit location, M R denoting the bits are in the M ode R egister. M R15 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit. Figure 5 shows a flowchart for reading from the registers on the AD 7731 and Figure 6 shows a flowchart for writing to the registers on the part.

Table X. Mode Register

M R15	M R 14	M R13	M R12	M R11	M R 10	M R9	M R8
M D2 (0)	M D 1 (0)	M D 0 (0)	$\overline{\mathrm{B}} / \mathrm{U}(0)$	DEN (0)	D 1 (0)	D 0 (0)	WL (1)
M R 7	M R6	M R 5		M R 3	M R2	M R 1	M RO
HIREF (0)	RN 2 (1)	RN 1 (1)	RN 0 (1)	BO (0)	CH2 (1)	CHI (0)	CHO(0)

| Bit
 Location | Bit
 Mnemonic | Description |
| :--- | :--- | :--- | | M R15-M R13 | M D 2-M D0 | M ode Bits. These three bits determine the mode of operation of the AD 7731 as outlined in
 T able XI. The modes are independent, such that writing new mode bits to the M ode Regis-
 ter will exit the part from the mode in which it is operating and place it in the new requested
 mode immediately after the M ode Register write. The function of the mode bits is described
 in more detail below. |
| :--- | :--- | :--- |

Table XI. Operating Modes

MD2	MD1	MD0	Mode of Operation	
0	0	0	Sync (Idle) M ode	Power-O n/Reset D efault
0	0	1	C ontinuous Conversion M ode	
0	1	0	Single Conversion M ode	
0	1	1	Power-D own (Standby) M ode	
1	0	0	Internal Zero-Scale Calibration	
1	0	1	Internal Full-Scale Calibration	
1	1	0	System Zero-Scale Calibration	
1	1	1	System Full-Scale Calibration	

MD2	MD1	MDO	Operating Mode
0	0	0	Sync (Idle) M ode. In this mode, the modulator and filter are held in reset mode and the AD 7731 is not processing any new samples or data. Placing the part in this mode is equivalent to exerting the $\overline{\text { SYNC }}$ input pin. H owever, exerting the $\overline{\text { SYNC }}$ does not actually force these mode bits to $0,0,0$. T he part returns to this mode after a calibration or after a conversion in Single C onversion M ode. This is the default condition of these bits after Power-O n / R eset.
0	0	1	Continuous Conversion M ode. In this mode, the AD7731 is continuously processing data and providing conversion results to the D ata Register at the programmed output update rate (as determined by the Filter Register). For most applications, this would be the normal operating mode of the AD7731.
0	1	0	Single C onversion M ode. In this mode, the AD 7731 performs a single conversion, updates the D ata Register, returns to the Sync M ode and resets the mode bits to $0,0,0$. The result of the single conversion on the AD 7731 in this mode will not be provided until the full settling-time of the filter has elapsed.
0	1	1	Power-D own (Standby) M ode. In this mode, the AD7731 goes into its power-down or standby state. Placing the part in this mode is equivalent to exerting the STANDBY input pin. H owever, exerting STANDBY does not actually force these mode bits to $0,1,1$.
1	0	0	Zero-Scale Self-C alibration M ode. This activates zero-scale self-calibration on the channel selected by the $\mathrm{CH} 2, \mathrm{CH} 1$ and CH 0 bits of the M ode Register. This zero-scale self-calibration is performed at the selected gain on internally shorted (zeroed) inputs. When this zero-scale self-calibration is complete, the part updates the contents of the Offset Calibration Register and returns to Sync M ode with M D 2, M D 1 and $M D 0$ returning to $0,0,0$. The $\overline{\mathrm{RDY}}$ output and bit go high when calibration is initiated and return Iow when this zero-scale self-calibration is complete to indicate that the part is back in Sync M ode and ready for further operations.
1	0	1	Full-Scale Self-C alibration M ode. This activates full-scale self-calibration on the channel selected by the $\mathrm{CH} 2, \mathrm{CH} 1$ and CH 0 bits of the M ode Register. This full-scale self-calibration is performed at the selected gain on an internally-generated full-scale signal. When this full-scale self-calibration is complete, the part updates the contents of the Gain Calibration Register and returns to Sync M ode with M D2, M D 1 and MD 0 returning to $0,0,0$. The $\overline{\mathrm{RDY}}$ output and bit go high when calibration is initiated and return low when this full-scale self-calibration is complete to indicate that the part is back in Sync M ode and ready for further operations.
1	1	0	Zero-Scale System Calibration M ode. This activates zero scale system calibration on the channel selected by the CH2, CH 1 and CH 0 bits of the M ode Register. C alibration is performed at the selected gain on the input voltage provided at the analog input during this calibration sequence. This input voltage should remain stable for the duration of the calibration. When this zero-scale system calibration is complete, the part updates the contents of the Offset Calibration Register and returns to Sync M ode with M D2, M D 1 and MD 0 returning to $0,0,0$. The $\overline{\mathrm{RDY}}$ output and bit go high when calibration is initiated and return low when this zero-scale calibration is complete to indicate that the part is back in Sync M ode and ready for further operations.
1		1	Full-Scale System Calibration M ode. This activates full-scale system calibration on the selected input channel. C alibration is performed at the selected gain on the input voltage provided at the analog input during this calibration sequence. This input voltage should remain stable for the duration of the calibration. When this full-scale system calibration is complete, the part updates the contents of the G ain C alibration Register and returns to Sync M ode with MD2, M D 1 and MD0 returning to $0,0,0$. The $\overline{\text { RDY }}$ output and bit go high when calibration is initiated and return low when this full-scale calibration is complete to indicate that the part is back in Sync M ode and ready for further operations.

Bit Location	Bit Mnemonic	Description
M R 12	$\overline{\mathrm{B}} / \mathrm{U}$	Bipolar/U nipolar Bit. A 0 in this bit selects bipolar operation and the output coding is $00 . . .000$ for negative full-scale input, $10 \ldots 000$ for zero input and $11 \ldots . .111$ for positive fullscale input. A 1 in this bit selects unipolar operation and the output coding is $00 . . .000$ for zero input and $11 . . .111$ for positive full-scale input.
M R11	DEN	Digital Output Enable Bit. With this bit at 1, the AIN 3/D 1 and AIN 4/D 0 pins assume their digital output functions and the output drivers connected to these pins are enabled. In this mode, the user effectively has two port bits which can be programmed over the serial interface.
M R10-M R9	D 1-D 0	Digital O utput Bits. These bits determine the digital outputs on the AIN 3/D 1 and AIN 4/D 0 pins respectively when the DEN bit is a 1 . For example, a 1 written to the $D 1$ bit of the M ode Register (with the DEN bit also a 1) will put a logic 1 on the AIN 3/D 1 pin. This logic 1 will remain on this pin until a 0 is written to the D 1 bit (in which case, the AIN 3/D 1 pin goes to a logic 0) or the digital output function is disabled by writing a 0 to the DEN bit.
M R 8	WL	D ata W ord Length Bit. This bit determines the word length of the D ata Register. A 0 in this bit selects 16 -bit word length when reading from the data register (i.e., $\overline{\mathrm{RDY}}$ returns high after 16 serial clock cycles in the read operation). A 1 in this bit selects 24-bit word length for the D ata Register.
M R 7	HIREF	High Reference Bit. T his bit should be set in accordance with the reference voltage which is being used on the part. If the reference voltage is 2.5 V , the HIREF bit should be set to 0 . If the reference voltage is 5 V , the HIREF bit should be set to a 1 . With the HIREF bit set correctly for the appropriate applied reference voltage, the input ranges are 0 mV to +20 mV , $+40 \mathrm{mV},+80 \mathrm{mV},+160 \mathrm{mV},+320 \mathrm{mV},+640 \mathrm{mV}$ and +1.28 V for unipolar operation and $\pm 20 \mathrm{mV}, \pm 40 \mathrm{mV}, \pm 80 \mathrm{mV}, \pm 160 \mathrm{mV}, \pm 320 \mathrm{mV}, \pm 640 \mathrm{mV}$ and $\pm 1.28 \mathrm{~V}$ for bipolar operation.
		It is possible for a user with a 2.5 V reference to set the H IREF bit to a 1 . In this case, the part is operating with a 2.5 V reference but assumes it has a 5 V reference. As a result, the input ranges on the part become 0 mV to +10 mV through 0 mV to +640 mV for unipolar operation and $\pm 10 \mathrm{mV}$ through $\pm 640 \mathrm{mV}$ for bipolar operation. However, the output noise from the part (in nV) will remain unchanged so the resolution of the part (in LSBs) will reduce by 1.
M R6-M R 4	RN 2-RN0	Input Range Bits. These bits determine the analog input range for the selected analog input. The different input ranges are outlined in T able XII. The table is valid for a reference voltage of 2.5 V with the HIREF bit at 0 or for a reference voltage of 5 V with the HIREF bit at a logic 1.

Table XII. Input Range Selection

			Input Range		
RN2	RN1	RNO	$\overline{\mathbf{B}} / \mathbf{U}$ Bit $=\mathbf{0}$	$\overline{\mathbf{B}} / \mathbf{U}$ Bit $=\mathbf{1}$	
0	0	0	-20 mV to +20 mV	0 mV to +20 mV	
0	0	1	-20 mV to +20 mV	0 mV to +20 mV	
0	1	0	-40 mV to +40 mV	0 mV to +40 mV	
0	1	1	-80 mV to +80 mV	0 mV to +80 mV	
1	0	0	-160 mV to +160 mV	0 mV to +160 mV	
1	0	1	-320 mV to +320 mV	0 mV to +320 mV	
1	1	0	-640 mV to +640 mV	0 mV to +640 mV	
1	1	1	-1.28 V to +1.28 V	0 mV to $+1.28 \mathrm{~V} \quad$ Power-On/Reset D efault	

Bit Location	Bit Mnemonic	Description
M R3	BO	Burnout Current Bit. A 1 in this bit activates the burnout currents. When active, the burnout currents connect to the selected analog input pair, one source current to the AIN (+) input and one sink current to the AIN (-) input. A 0 in this bit turns off the on-chip burnout currents.
M R2-M R 0	$\mathrm{CH} 2-\mathrm{CHO}$	C hannel Select. These three bits select a channel either for conversion or for access to calibration coefficients as outlined in T able XIII. There are three pairs of calibration registers on the part. In fully differential mode, the part has three input channels so each channel has its own pair of calibration registers. In pseudo-differential mode, the AD 7731 has five input channels with some of the input channel combinations sharing calibration registers. With $\mathrm{CH} 2, \mathrm{CH} 1$ and CH 0 at a logic 1, the part looks at the AIN 6 input internally shorted to itself. This can be used as a test method to evaluate the noise performance of the part with no external noise sources. In this mode, the AIN 6 input should be connected to an external voltage within the allowable common-mode range for the part. The power-on/default status of these bits is $1,0,0$.

Table XIII. Channel Selection

CH2	CH1	CH0	AIN(+)	AIN(-)	Type	Calibration Register Pair
0	0	0	AIN 1	AIN 6	Pseudo D ifferential	Register Pair 0
0	0	1	AIN 2	AIN 6	Pseudo D ifferential	Register Pair 1
0	1	0	AIN 3	AIN 6	Pseudo D ifferential	Register Pair 2
0	1	1	AIN 4	AIN 6	Pseudo D ifferential	Register Pair 2
1	0	0	AIN 1	AIN 2	Fully D ifferential	Register Pair 0
1	0	1	AIN 3	AIN 4	Fully Differential	Register Pair 1
1	1	0	AIN 5	AIN 6	Fully Differential	Register Pair 2
1	1	1	AIN 6	AIN 6	Test M ode	Register Pair 2

Filter Register (RS2-RS0 = 0, 1, 1); Power-On/Reset Status: 2002 Hex

The Filter R egister is a 16-bit register from which data can either be read or to which data can be written. This register determines the amount of averaging performed by the filter and the mode of operation of the filter. It also sets the chopping mode. T able XIV outlines the bit designations for the Filter Register. F R 0 through F R 15 indicate the bit location, F R denoting the bits are in the Filter Register. FR15 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit. Figure 5 shows a flowchart for reading from the registers on the AD 7731 and Figure 6 shows a flowchart for writing to the registers on the part.

Table XIV. Filter Register

FR15	FR14	FR13	FR12	FR11	FR10	FR9	FR8
SF11 (0)	SF10 (0)	SF9 (1)	SF8 (0)	SF7 (0)	SF6 (0)	SF5 (0)	SF4 (0)

FR7	FR6	FR5	FR4	FR3	FR2	FR1	FR0
SF3 (0)	SF2 (0)	SF1 (0)	SF0 (0)	ZERO (0)	CHP (0)	SKIP (1)	FAST (0)

| Bit
 Location | Bit
 Mnemonic | Description |
| :--- | :--- | :--- | | FR15-F R4 | SF 11-SF0 | Sinc ${ }^{3}$ Filter Selection Bits. The AD 7731 contains two filters, a Sinc ${ }^{3}$ filter and an FIR filter.
 The 12 bits programmed to SF 11 through SF0 sets the amount of averaging which the Sinc |
| :--- | :--- | :--- |
| | | filter performs. As a result, the number programmed to these 12 bits affects the -3 dB fre-
 quency and output update rate from the part (see Filter Architecture section). The allowable
 range for SF words depends on whether the part is operated with CH P on or off and SK IP
 on or off. T able XV outlines the SF ranges for different setups. |

Table XV. SF Ranges

CHOP	SKIP	SF Range	Output Update Rate Range (Assuming 4.9152 MHz Clock)
0	0	2048 to 150	150 Hz to 2.048 kHz
1	0	2048 to 75	50 Hz to 1.365 kHz
0	1	2048 to 40	150 Hz to 7.6 kHz
1	1	2048 to 20	50 Hz to 5.12 kHz

Bit Location	Bit Mnemonic	Description
FR3	ZERO	A zero must be written to this bit to ensure correct operation of the AD 7731.
FR2	CHP	Chop Enable Bit. This bit determines if the chopping mode on the part is enabled. A 1 in this bit location enables chopping on the part. When the chop mode is enabled, the part is effectively chopped at its input and output to remove all offset and offset drift errors on the part. If offset performance with time and temperature are important parameters in the design, it is recommended that the user enable chopping on the part.
FR1	SKIP	FIR Filter Skip Bit. With a 0 in this bit, the AD 7731 performs two stages of filtering before shipping a result out of the filter. The first is a Sinc ${ }^{3}$ filter followed by a 22-tap FIR filter. With a 1 in this bit, the FIR filter on the part is bypassed and the output of the Sinc ${ }^{3}$ is fed directly as the output result of the AD 7731's filter (see Filter Architecture for more details on the filter implementation).
FRO	FAST	FASTStep ${ }^{T M}$ M ode Enable Bit. A 1 in this bit enables theFASTStep ${ }^{T M}$ mode on the AD7731. In this mode, if a step change on the input is detected, the FIR calculation portion of the filter is suspended and replaced by a simple moving average on the output of the Sinc ${ }^{3}$ filter. Initially, two outputs from the sinc ${ }^{3}$ filter are used to calculate an AD 7731 output. The number of sinc^{3} outputs used to calculate the moving average output is increased (from 2 to 4 to 8 to
		16) until the $\overline{\text { STDY }}$ bit goes low. When the FIR filter has fully settled after a step, the $\overline{\text { STDY }}$ bit will become active and the FIR filter is switched back into the processing loop (see Filter Architecture section for more details on the FAST Step ${ }^{T M}$ mode).

Offset Calibration Register (RS2-RSO = 1, 0, 1)

The AD 7731 contains three 24-bit Offset C alibration Registers, labeled Offset C alibration Register 0 to Offset Calibration Register 2, to which data can be written and from which data can be read. The three registers are totally independent of each other such that in fully-differential mode there is an offset register for each of the input channels. This register is used in conjunction with the associated Gain Calibration Register to form a register pair. The calibration register pair used to scale the output of the filter is as outlined in T able XIII. T o access the appropriate Offset Calibration Register the user should write first to the M ode Register setting up the appropriate address in the CH 2 to CH 0 bits.
The Offset Calibration Register is updated after an offset calibration routine (1, 0,0 or $1,1,0$ loaded to the M D 2, M D 1, M D 0 bits of the M ode Register). D uring subsequent conversions, the contents of this register are subtracted from the filter output prior to gain scaling being performed on the word. Figure 5 shows a flowchart for reading from the registers on the AD 7731 and Figure 6 shows a flowchart for writing to the registers on the part.

Gain Calibration Register (RS2-RS0 = 1, 1, 0)

The AD 7731 contains three 24 -bit G ain C alibration Registers to which data can be written and from which data can be read. The three registers are totally independent of each other such that in fully-differential mode there is a gain register for each of the input channels. This register is used in conjunction with the associated Offset Calibration Register to form a register pair which scale the output of the filter before it is loaded to the D ata Register. T hese register pairs are associated with input channel pairs as outlined in T able XIII. T o access the appropriate Gain Calibration R egister the user should write first to the M ode R egister setting up the appropriate address in the CH 2 to CH 0 bits.
The G ain C alibration Register is updated after a gain calibration routine ($1,0,1$ or $1,1,1$ loaded to the M D 2, M D 1, M D 0 bits of the M ode Register). D uring subsequent conversions, the contents of this register are used to scale the number which has already been offset corrected with the Offset C alibration Register contents. Figure 5 shows a flowchart for reading from the registers on the AD 7731 and Figure 6 shows a flowchart for writing to the registers on the part.

Test Register (RS2-RS0 = 1, 1, 1); Power On/Reset Status: 000000H ex

The AD 7731 contains a 24 -bit T est Register to which data can be written and from which data can be read. The contents of this register are used in testing the device. The user is advised not to change the status of any of the bits in this register from the default (Power-On or RESET) status of all 0 s as the part will be placed in one of its test modes and will not operate correctly. If the part enters one of its test modes, exercising RESET or writing 32 successive 1s to the part will exit the part from the mode and return all register contents to their power-on/reset status. Note, if the part is placed in one of its test modes, it may not be possible to read back the contents of the T est Register depending on the test mode which the part has been placed.

READING FROM AND WRITING TO THE ON-CHIP REGISTERS

The AD 7731 contains a total of twelve on-chip registers. These registers are all accessed over a three-wire interface. As a result, addressing of registers is via a write operation to the topmost register on the part, the C ommunications Register. Figure 5 shows a flowchart for reading from the different registers on the part summarizing the sequence and the words to be written to access each of the registers. Figure 6 gives a flowchart for writing to the different registers on the part, again summarizing the sequence and words to be written to the AD 7731.

Register	Byte W (Hex)	Byte Y (Hex)	Byte Z (Hex)
Status Register	10	20	30
D ata Register	11	21	30
M ode Register	12	22	30
Filter Register	13	N /A*	N /A*
Offset Register	15	N/A*	N /A*
G ain R egister	16	N/A*	N /A*

* $\mathrm{N} / \mathrm{A}=\mathrm{N}$ ot Applicable. Continuous reads of these registers does not make sense as the register contents would remain the same since they are only changed by a write operation.

Figure 5. Flowchart for Reading from the AD7731 Registers

Register	Byte Y (Hex)
Communications Register	00
D ata Register	Read O nly Register.
M ode Register	02
Filter Register	03
Offset R egister	05
G ain R egister	06
T est Register	U ser is advised not
	to change contents of
	Test Register

Figure 6. Flowchart for Writing to the AD7731 Registers

CALIBRATION OPERATION SUMMARY

The AD 7731 contains a number of calibration options as outlined previously. Table XVI summarizes the calibration types, the operations involved and the duration of the operations. There are two methods of determining the end of calibration. The first is to monitor the hardware RDY pin using either interrupt-driven or polling routines. The second method is to do a software poll of the $\overline{\text { RDY }}$ bit in the Status Register. T his can be achieved by setting up the part for continuous reads of the Status Register once a calibration has been initiated. The $\overline{\mathrm{RDY}}$ pin and $\overline{\mathrm{RDY}}$ bit go high on initiating a calibration and return low at the end of the calibration routine. At this time, the M D 2, M D 1, M D 0 bits of the M ode Register have returned to $0,0,0$. The FAST and SK IP bits are treated as 0 for the calibration sequence so the full filter is always used for the calibration routines. See Calibration section for full details.

Table XVI. Calibration Operations

Calibration Type	$\begin{aligned} & \text { MD2, MD1, } \\ & \text { MD0 } \end{aligned}$	Duration to $\overline{\text { RDY }}$ Low (CHP = 1)	Duration to $\overline{\text { RDY }}$ Low (CHP = 0)	Calibration Sequence
Internal Zero-Scale	1, 0, 0	$22 \times 1 / 0$ utput Rate	24×1 /Output Rate	Calibration on internal shorted input with PGA set for selected input range. The Offset C alibration Register for the selected channel is updated at the end of this calibration sequence. F or full self-calibration, this calibration should be preceded by an Internal Full-Scale calibration. For applications which require an Internal Zero-Scale and System Full Scale calibration, this Internal Zero-Scale calibration should be performed first.
Internal F ull-Scale	1, 0, 1	$44 \times 1 / 0$ utput Rate	48×1 /Output Rate	C alibration on internally-generated input full-scale with PGA set for selected input range. The G ain C alibration Register for the selected channel is updated at the end of this calibration sequence. It is recommended that internal full-scale calibrations are performed on the operating input range except for the 20 mV and 40 mV input ranges where optimum results are achieved by calibrating on the 80 mV range. This calibration should be followed by either an Internal Zero-Scale or System ZeroScale calibration. This calibration should be followed by either an Internal Zero-Scale or System Zero-Scale calibration. This zero-scale calibration should be performed at the operating input range.
System Zero-Scale	1, 1, 0	$22 \times 1 / 0$ utput Rate	$24 \times 1 / 0$ utput Rate	Calibration on externally-applied input voltage with PGA set for selected input range. The input applied is assumed to be the zero-scale of the system. For full system calibration, this System Zero-Scale calibration should be performed first. F or applications which require a System Zero-Scale and Internal Full Scale calibration, this calibration should be preceded by the Internal Full-Scale calibration. The Offset C alibration Register for the selected channel is updated at the end of this calibration sequence.
System Full-Scale	1, 1, 1	$22 \times 1 / 0$ utput Rate	24×1 /Output Rate	Calibration on externally-applied input voltage with PGA set for selected input range. The input applied is assumed to be the full-scale of the system. T his calibration should be preceded by a System ZeroScale or Internal Zero-Scale calibration. The Gain C alibration Register for the selected channel is updated at the end of this calibration sequence.

AD7731

CIRCUIT DESCRIPTION

The AD 7731 is a sigma-delta A/D converter with on-chip digital filtering, intended for the measurement of wide dynamic range, low-frequency signals such as those in strain-gage, pressure transducer, temperature measurement, industrial control or process control applications. It contains a sigma-delta (or chargebalancing) ADC, a calibration microcontroller with on-chip static RAM, a clock oscillator, a digital filter and a bidirectional serial communications port. The part consumes 13.5 mA of power supply current with a standby mode which consumes only $20 \mu \mathrm{~A}$. T he part operates from a single +5 V supply. T he clock source for the part can be provided via an external clock or by connecting a crystal oscillator or ceramic resonator across the MCLK IN or MCLK OUT pins.
The part contains three programmable-gain fully differential analog input channels which can be reconfigured as five pseudodifferential inputs. The part handles a total of seven different input ranges on all channels which are programmed via the onchip registers. The differential unipolar ranges are: 0 mV to +20 mV through 0 V to +1.28 V and the differential bipolar ranges are: $\pm 20 \mathrm{mV}$ through $\pm 1.28 \mathrm{~V}$.
T he AD 7731 employs a sigma-delta conversion technique to realize up to 24 bits of no missing codes performance. The
sigma-delta modulator converts the sampled input signal into a digital pulse train whose duty cycle contains the digital information. A digital low-pass filter processes the output of the sigmadelta modulator and updates the data register at a rate that can be programmed over the serial interface. The output data from the part is accessed over this serial interface. T he cutoff frequency and output rate of this filter can be programmed via onchip registers. The output noise performance and peak-to-peak resolution of the part varies with gain and with the output rate as shown in T ables I to IV.

The analog inputs are buffered on-chip, allowing the part to handle significant source impedances on the analog input. This means that external R, C filtering (for noise rejection or RFI interference reduction) can be placed on the analog inputs if required. The common-mode voltage range for the analog inputs comes within 1.2 V of $A G N D$ and 0.95 V of $A V_{D D}$. The reference input is also differential and the common-mode range here is from $A G N D$ to $A V_{D D}$.
The AD 7731 contains a number of hardware and software events that set or reset status flags and bits in registers. T able X VII summarizes which blocks and flags are affected by the different events.

Table XVII. Reset Events

Event	Set Registers to Default	Mode Bits	Filter Reset	Analog Power-Down	Reset Serial Interface	$\begin{aligned} & \text { Set } \overline{\text { RDY }} \\ & \text { Pin/Bit } \end{aligned}$	$\begin{aligned} & \text { Set } \overline{\text { STDY }} \\ & \text { Bit } \end{aligned}$
Power-On R eset	Yes	000	Y es	Yes	Y es	Y es	Y es
RESET Pin	Y es	000	Y es	No	Y es	Yes	Yes
STANDBY Pin	No	Asis	Yes	Yes	No	Y es	Y es
M ode 011 Write	No	011	Yes	Yes	No	Y es	Y es
SYNC Pin	No	Asls	Y es	No	No	Y es	Y es
M ode 000 Write	No	000	Yes	No	No	Y es	Y es
C onversion or	No	N ew	Initial	No	No	Yes	Yes
C al M ode W rite		Value	R eset				
C lock 32 1s	No	AsIs	No	No	Y es	Y es	Y es
D ata Register R ead	No	AsIs	No	No	No	Yes	No

ANALOG INPUT

Analog Input Channels

The AD 7731 has six analog input pins (labelled AIN 1 to AIN 6) which can be configured as either three fully differential input channels or five pseudo-differential input channels. Bits CH 0 , CH 1 and CH 2 of the M ode Register configure the input channel arrangement and the channel selection is as outlined previously in T able XIII. The input pairs (either differential or pseudo-differential) provide programmable-gain, input channels which can handle either unipolar or bipolar input signals. It should be noted that the bipolar input signals are referenced to the respective AIN (-) input of the input pair. The AIN 3 and AIN 4 pins can also be reconfigured as two digital output port bits, also controlled by the M ode Register.
A differential multiplexer switches one of the two input channels to the on-chip buffer amplifier. When the analog input channel is switched, the $\overline{\text { RDY }}$ output goes high and the settling time of the part must elapse before a valid word from the new channel is available in the D ata Register (indicated by $\overline{R D Y}$ going low).

Buffered Inputs

The output of the multiplexer feeds into a high impedance input stage of the buffer amplifier. As a result, the analog inputs can handle significant source impedances. This buffer amplifier has an input bias current of $50 \mathrm{nA}(\mathrm{CHP}=1)$ and $60 \mathrm{nA}(\mathrm{CHP}=0)$. This current flows in each leg of the analog input pair. T he offset current on the part is the difference between the input bias on the legs of the input pair. This offset current is less than $10 \mathrm{nA}(\mathrm{CHP}=1)$ and $25 \mathrm{nA}(\mathrm{CHP}=0)$. Large source resistances result in a dc offset voltage developed across the source resistance on each leg but matched impedances on the analog input legs will reduce the offset voltage to that generated by the input offset current.

Analog Input Ranges

The absolute input voltage range is restricted to between AGND +1.2 V to $\mathrm{AV}_{\mathrm{DD}}-0.95 \mathrm{~V}$ which also places restrictions on the common-mode range. Care must be taken in setting up the common-mode voltage and input voltage range so that these limits are not exceeded, otherwise there will be a degradation in linearity performance.
In some applications, the analog input range may be biased either around system ground or slightly below system ground. In such cases, the AGND of the AD 7731 must be biased negative with respect to system ground such that the analog input voltage does not go within 1.2 V of $A G N D$. Care should taken to ensure that the differential between either $A V_{D D}$ or $D V_{D D}$ and this biased AGND does not exceed 5.5 V. This is discussed in more detail in the Applications section.

Programmable Gain Amplifier

The output from the buffer amplifier is applied to the input of the on-chip programmable gain amplifier (PGA). The PGA can handle seven different unipolar input ranges and seven bipolar ranges. With the HIREF bit of the M ode R egister at 0 and a +2.5 V reference (or the HIREF bit at 1 and $\mathrm{a}+5 \mathrm{~V}$ reference), the unipolar ranges are 0 mV to $+20 \mathrm{mV}, 0 \mathrm{mV}$ to +40 mV ,

0 mV to $+80 \mathrm{mV}, 0 \mathrm{mV}$ to $+160 \mathrm{mV}, 0 \mathrm{mV}$ to $+320 \mathrm{mV}, 0 \mathrm{mV}$ to +640 mV and 0 V to +1.28 V while the bipolar ranges are $\pm 20 \mathrm{mV}, \pm 40 \mathrm{mV}, \pm 80 \mathrm{mV}, \pm 160 \mathrm{mV}, \pm 320 \mathrm{mV}, \pm 640 \mathrm{mV}$, $\pm 1.28 \mathrm{~V}$. These are the nominal ranges which should appear at the input to the on-chip PGA.

Bipolar/Unipolar Inputs

The analog inputs on the AD 7731 can accept either unipolar or bipolar input voltage ranges. Bipolar input ranges do not imply that the part can handle negative voltages with respect to system ground on its analog inputs unless the AGND of the part is also biased below system ground. Unipolar and bipolar signals on the AIN $(+)$ input are referenced to the voltage on the respective AIN (-) input. F or example, if AIN (-) is +2.5 V and the AD 7731 is configured for an analog input range of 0 mV to +20 mV , the input voltage range on the $\operatorname{AIN}(+)$ input is +2.5 V to +2.52 V . If AIN (-) is +2.5 V and the AD 7731 is configured for an analog input range of $\pm 1.28 \mathrm{~V}$, the analog input range on the $\mathrm{AIN}(+$) input is +1.22 V to +3.78 V (i.e., $2.5 \mathrm{~V} \pm 1.28 \mathrm{~V}$).
Bipolar or unipolar options are chosen by programming the $\overline{\mathrm{B}} / \mathrm{U}$ bit of the M ode Register. T his programs the selected channel for either unipolar or bipolar operation. Programming the channel for either unipolar or bipolar operation does not change any of the input signal conditioning; it simply changes the data output coding and the points on the transfer function where calibrations occur. When the AD 7731 is configured for unipolar operation, the output coding is natural (straight) binary with a zero differential voltage resulting in a code of 000...000, a midscale voltage resulting in a code of $100 . .000$ and a full-scale input voltage resulting in a code of $111 . . .111$. When the AD 7731 is configured for bipolar operation, the coding is offset binary with a negative full-scale voltage resulting in a code of 000...000, a zero differential voltage resulting in a code of $100 . . .000$ and a positive full-scale voltage resulting in a code of $111 . . .111$.

Burnout Currents

The AD 7731 contains two 100 nA constant current generators, one source current from $A V_{D D}$ to $\operatorname{AIN}(+)$ and one sink from AIN 1(-) to AGND. The currents are switched to the selected analog input pair. Both currents are either on or off depending on the BO bit of the M ode R egister. These currents can be used in checking that a transducer is still operational before attempting to take measurements on that channel. If the currents are turned on, allowed flow in the transducer, a measurement of the input voltage on the analog input taken and the voltage measured is full scale then it indicates that the transducer has gone open-circuit. If the voltage measured is 0 V , it indicates that the transducer has gone open-circuit. F or normal operation, these burnout currents are turned off by writing a 0 to the BO bit. The current sources work over the normal absolute input voltage range specifications.

AD7731

REFERENCE INPUT

The AD 7731's reference inputs, REF IN (+) and REF IN(-), provide a differential reference input capability. The commonmode range for these differential inputs is from AGND to $A V_{D D}$. The nominal reference voltage, $\mathrm{V}_{\text {REF }}(\operatorname{REF} \operatorname{IN}(+)-\operatorname{REF} \operatorname{IN}(-))$, for specified operation is +2.5 V with the HIREF bit at 0 and +5 V with the HIREF bit at 1 . The part is also functional with $\mathrm{V}_{\text {REF }}$ of +2.5 V with the HIREF bit at 1 . This results in a halving of all input ranges. The resolution in nV will be unaltered, but will be reduced by 1 bit in terms of peak-to-peak resolution.
Both reference inputs provide a high impedance, dynamic load. The typical average dc input leakage current is over temperature is $4.5 \mu \mathrm{~A}$ with $\mathrm{HIREF}=0$ and $8 \mu \mathrm{~A}$ with $\mathrm{HIREF}=1$. Because the input impedance on each reference input is dynamic, external resistance/capacitance combinations may result in gain errors on the part.
The output noise performance outlined in Tables I through IV is for an analog input of 0 V and is unaffected by noise on the reference. To obtain the same noise performance as shown in the noise tables over the full input range requires a low noise reference source for the AD 7731. If the reference noise in the bandwidth of interest is excessive, it will degrade the performance of the AD 7731. In applications where the excitation voltage for the transducer on the analog input also drives the reference voltage for the part, the effect of the low-frequency noise in the excitation voltage will be removed as the application is ratiometric. In this case, the reference voltage for the AD 7731 and the excitation voltage for the transducer are the same. T he HIREF bit of the M ode Register should be set to 1 .
If the AD 7731 is not used in a ratiometric application, a low noise reference should be used. Recommended reference voltage sources for the AD 7731 include the AD 780, REF43 and REF 192. If any of these references are used as the reference source for the AD 7731, the HIREF bit should be set to 0 . It is generally recommended to decouple the output of these references to further reduce the noise level.

Reference Detect

The AD 7731 includes on-chip circuitry to detect if the part has a valid reference for conversions or calibrations. If the voltage between the REF IN (+) and REF IN (-) pins goes below 0.3 V or either the REF IN (+) or REF IN (-) inputs is open circuit, the AD 7731 detects that it no longer has a valid reference. In this case, the N OREF bit of the Status Register is set to a 1.
If the AD 7731 is performing normal conversions and the NOREF bit becomes active, the part places all 1 s in the D ata Register.
Therefore, it is not necessary to continuously monitor the status of the NOREF bit when performing conversions. It is only necessary to verify its status if the conversion result read from the D ata Register is all 1 s .
If the AD 7731 is performing either an offset or gain calibration and the NOREF bit becomes active, the updating of the respective calibration register is inhibited to avoid loading incorrect coefficients to this register. If the user is concerned about verifying that a valid reference is in place every time a calibration is performed, then the status of the NOREF bit should be checked at the end of the calibration cycle.

SIGMA-DELTA MODULATOR

A sigma-delta ADC generally consists of two main blocks, an analog modulator and a digital filter. In the case of the AD 7731, the analog modulator consists of a difference amplifier, an integrator block, a comparator and a feedback D AC as illustrated in Figure 7. In operation, the analog signal sample is fed to the difference amplifier along with the output of the feedback DAC. The difference between these two signals is integrated and fed to the comparator. The output of the comparator provides the input to the feedback D AC so the system functions as a negative feedback loop that tries to minimize the difference signal. The digital data that represents the analog input voltage is contained in the duty cycle of the pulse train appearing at the output of the comparator. This duty cycle data can be recovered as a data word using the digital filter. T he sampling frequency of the modulator loop is many times higher than the bandwidth of the input signal. T he integrator in the modulator shapes the quantization noise (which results from the analog to digital conversion) so that the noise is pushed towards one half of the modulator frequency. The digital filter then bandlimits the response to a frequency significantly lower than one half of the modulator frequency. In this manner, the 1-bit output of the comparator is translated into a bandlimited, low noise output from the AD 7731.

Figure 7. Sigma-Delta Modulator Block Diagram

DIGITAL FILTERING

Filter Architecture

The output of the modulator feeds directly into the digital filter. This digital filter consists of two portions, a first stage filter and a second stage filter. The cutoff frequency and output rate of the filter are programmable. The first stage filter is a low-pass, $\sin c^{3}$ or $(\sin x / x)^{3}$ filter whose primary function is to remove the quantization noise introduced at the modulator. T he second stage filter has three distinct modes of operation. The first option is where it is bypassed completely such that the only filtering provided on the AD 7731 is performed by the first stage sinc ${ }^{3}$ filter. The second is where it provides a low-pass 22-tap FIR filter which processes the output of the first stage filter. The third option is to enable FASTStep ${ }^{T M}$ mode. In this mode, when a step change is detected on the analog input or the analog input channel switched, the second stage filter enters a mode where it performs a variable number of averages for some time after the step change and then the second stage filter switches back to the FIR filter.
The AD 7731 has two primary modes of operation, chop mode ($\mathrm{CHP}=1$) and nonchop mode ($\mathrm{CHP}=0$). T he AD 7731 alternatively reverses its inputs with $\mathrm{CH} P=1$, and alternate outputs from the first stage filter have a positive offset and negative offset term included. With CHP $=0$, the input is never reversed and the output of the first stage filter includes an offset which is always of the same polarity.

The operation mode can be changed to achieve optimum performance in various applications. The CH P bit should generally be set to 0 when using the AD 7731 in applications where higher throughput rates are a concern or in applications where the reduced rejection at the chopping frequency in chop mode is an issue. The part should be operated with CHP=1 when drift, noise rejection and optimum EMI rejection are important criteria in the application.
T he output update rate of the AD 7731 is programmed using the SF bits of the Filter Register. With CHP =0, the output update is determined by the relationship:

$$
\text { O utput Rate }=\mathrm{f}_{\text {MOD }} \times \frac{1}{\mathrm{SF}} \quad(\mathrm{CHP}=0)
$$

where $S F$ is the decimal equivalent of the data loaded to the SF bits of the Filter Register and $\mathrm{f}_{\text {MOD }}$ is the modulator frequency and is $1 / 16$ th of the master clock frequency.
W ith CHP = 1, the output update is determined by the relationship:

$$
\text { O utput Rate }=\mathrm{f}_{\text {MOD }} \times \frac{1}{3 \times S F} \quad(\mathrm{CHP}=1)
$$

where $S F$ is the decimal equivalent of the data loaded to the SF bits of the Filter Register and $f_{\text {MOD }}$ is the modulator frequency and is $1 / 16$ th of the master clock frequency.
Thus for a given SF word the output rate from the AD 7731 is three times faster with $\mathrm{CH}=0$ than $\mathrm{CHP}=1$.
The various filter stages and options are discussed in the following sections.

First Stage Filter/SKIP Mode Enabled (SKIP = 1)

W ith SK IP mode enabled, the only filtering on the part is the first stage filter. The frequency response for this first stage filter is shown in Figure 8. The response of this first stage filter is similar to that of an averaging filter but with a sharper roll-off. With CHP $=0$, the output rate for the filter corresponds with the positioning of the first notch of the filter's frequency response. Thus, for the plot of F igure 8 where the output rate is $600 \mathrm{~Hz}\left(\mathrm{f}_{\mathrm{CLK}}\right.$ IN $=4.9152 \mathrm{M} \mathrm{Hz}$ and $\left.\mathrm{SF}=512\right)$, the first notch of the filter is at 600 Hz . With $\mathrm{CHP}=1$, the magnitude response is the same as in Figure 8 but in this case, the output rate is $1 / 3 r d$ the output rate so for the example shown in Figure 8 the output data rate is 200 Hz . The notches of this sinc ${ }^{3}$ filter frequency response are repeated at multiples of the first notch. The filter provides attenuation of better than 100 dB around these notches. Programming a different cutoff frequency via SF 0 SF 11 does not alter the profile of the filter response; it simply changes the location of the notches. The -3 dB frequency for both Chop and N onchop modes is defined as:

$$
f_{3 d B}=0.262 \times f_{M O D} \times \frac{1}{S F}
$$

Nonchop Mode (SKIP = 1, CHP = 0)

With CHP = 0 , the input chopping on the AD 7731 is disabled and any offset content in the samples to the first stage filter are all of the same polarity. When using the part in SKIP mode, the user can take the output from the AD 7731 directly. Time to the first output for the part is $3 \times 1 / 0$ utput Rate in this mode. T able XVIII summarizes the settling time and subsequent throughput rate for the various different modes.

Figure 8. SKIP Mode Frequency Response (SKIP =1, $S F=512$)

Chop Mode (SKIP = 1, CHP = 1)

With CH P = 1, the AD 7731 alternatively reverses the ADC inputs, producing an output which contains the channel offset when not reversed and the negative of the offset when reversed. As a result, when operating in SK IP mode, the user has to take two subsequent outputs from the AD 7731 and average them to produce a valid output from the first stage filter. While operating in this mode gives the benefits of chopping without the longer settling time associated with the 22-tap FIR filter, care should be taken with input signals near positive full-scale or negative full-scale (zero-scale in unipolar mode). Since the calibration coefficients are generated for the averaged offset, and not for the individual offsets represented in each sample, one of the two samples in the pair may record an all 1s or all Os reading. If this happens it will result in an error in the averaged reading. Time to first output for the part is $1 / 0$ utput Rate in this mode. H owever, since the user really needs two outputs to derive a correct chopped result, the time to get two outputs for averaging is $2 \times 1 / 0$ utput R ate. T able XVIII summarizes the settling time and subsequent throughput rate for the various different modes. If the user wants the benefits of chopping without the longer settling time associated with the 22-tap FIR filter, it is recommended that the part be used in FAST Step ${ }^{\text {TM }}$ mode.

Second Stage Filter

With SKIP mode disabled, the second stage filter is included in the signal processing. This second stage filter produces a different response depending on the CHP and FAST bits.

Normal FIR Operation (SKIP = 0)

The normal mode of operation of the second stage filter is as a 22-tap low-pass FIR filter. This second stage filter processes the output of the first stage filter and the net frequency response of the filter is simply a product of the filter response of both filters. The overall filter response of the AD 7731 is guaranteed to have no overshoot.

AD7731

Chop Mode (SKIP = $\mathbf{0}, \mathrm{CHP}=\mathbf{1}$)

With CHOP mode enabled and SKIP mode disabled, the second stage filter is presented with alternating first stage filter outputs and processes data accordingly. It has two primary functions. One is to set the overall frequency response and the second is to eliminate the modulated offset effect which appears on the output of the first stage filter. Time to first output is $22 \times 1 / 0$ utput Rate in this mode. T able XVIII summarizes the settling time and subsequent throughput rate for the various different modes.
Figure 9 shows the full frequency response of the AD 7731 when the second stage filter is set for normal FIR operation. This response is for chop mode enabled with the decimal equivalent of the word in the SF bits set to 512 and a master clock frequency of 4.9152 M Hz . The response will scale proportionately with master clock frequency. The response is shown from dc to 100 Hz . The rejection at $50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$ and $60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$ is better than 88 dB .
The - 3 dB frequency for the frequency response of the AD 7731 with the second stage filter set for normal FIR operation and chop mode enabled is determined by the following relationship:

$$
f_{3 \mathrm{~dB}}=0.0395 \times \mathrm{f}_{\text {MOD }} \times \frac{1}{3 \times S F}(C H P=1)
$$

In this case, $f_{3 \mathrm{~dB}}=7.9 \mathrm{~Hz}$ and the stop-band, where the attenuation is greater than 64.5 dB , is determined by:

$$
\mathrm{f}_{\text {STOP }}=0.14 \times \mathrm{f}_{\text {MOD }} \times \frac{1}{3 \times \mathrm{SF}} \quad(\mathrm{CHP}=1)
$$

In this case, $\mathrm{f}_{\text {stop }}=28 \mathrm{~Hz}$.

Figure 9. Detailed Full Frequency Response of AD7731
$(S K I P=0, C H P=1, S F=512)$

Figure 10 shows the frequency response for the same set of conditions as for Figure 9 but in this case the response in shown out to 600 Hz . This response shows that the attenuation of input frequencies close to 200 Hz and 400 Hz is significantly less than at other input frequencies. These "peaks" in the frequency response are a by-product of the chopping of the input. The plot of Figure 10 is the amplitude for different input frequencies. N ote that because the output rate is 200 Hz for the conditions under which Figure 10 is plotted, if something existed in the input frequency domain at 200 Hz , it would be aliased and appear in the output frequency domain at dc.
Because of this effect, care should be taken in choosing an output rate which is close to the line frequency in the application. F or example, if the line frequency is 50 Hz , an output update rate of 50 Hz should not be chosen as it will significantly reduce the AD 7731's line frequency rejection (the 50 Hz will appear as a dc component with only 6 dB attenuation). However, choosing 60 Hz as the output rate ($\mathrm{SF}=1707$) will give better than 90 dB attenuation of the aliased line frequency. In a similar fashion, if the line frequency is 60 Hz , it is recommended that the user choose an output update rate of $50 \mathrm{~Hz}(\mathrm{SF}=2048)$.

Figure 10. Expanded Full Frequency Response of AD7731 (SKIP $=0, C H P=1, S F=512$)

Similarly, multiples of the line frequency should be avoided as the output rate because harmonics of the line frequency will not be fully attenuated. The programmability of the AD 7731's output rate should allow the user to readily choose an output rate which overcomes this issue. An alternative is to use the part in nonchop mode.

Nonchop Mode (SKIP = 0, CHP = 0)

With CHOP mode disabled and SKIP mode disabled, the only function of the second stage filter is to give the overall frequency response. Figure 11 shows the frequency response for the AD 7731 with the second stage filter is set for normal FIR operation, chop mode disabled, the decimal equivalent of the word in the SF bits set to 1536 and a master clock frequency of 4.9152 M Hz . The response is analogous to that of Figure 9 with the three-times larger SF word producing the same 200 Hz output rate. Once again, the response will scale proportionally with master clock frequency. The response is shown from dc to 100 Hz . The rejection at $50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$ and $60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$ is better than 88 dB .
The -3 dB frequency for the frequency response of the AD 7731 with the second stage filter set for normal FIR operation and chop mode enabled is determined by the following relationship:

$$
f_{3 \mathrm{~dB}}=0.039 \times \mathrm{f}_{\mathrm{MOD}} \times \frac{1}{S F} \quad(C H P=0)
$$

In this case, $\mathrm{f}_{3 \mathrm{~dB}}=7.8 \mathrm{~Hz}$ and the stop-band, where the attenuation is greater than 64.5 dB , is determined by:

$$
\mathrm{f}_{\text {STOP }}=0.14 \times \mathrm{f}_{\text {MOD }} \times \frac{1}{\mathrm{SF}} \quad(\mathrm{CHP}=0)
$$

In this case, $\mathrm{f}_{\text {STOP }}=28 \mathrm{~Hz}$.

Figure 11. Detailed Full Frequency Response of AD7731 ($S K I P=0, C H P=0, S F=1536$)

Figure 12 shows the frequency response for the same set of conditions as for Figure 11 but in this case the response in shown out to 600 Hz . This plot is comparable to that of Figure 10. The most notable difference is absence of the peaks in the response at 200 Hz and 400 Hz . As a result, interference at these frequencies will be effectively eliminated before being aliased back to dc.
T able XVIII summarizes the settling time and subsequent throughput rate for the various different modes.

Figure 12. Expanded Full Frequency Response of AD7731 ($S K I P=0, C H P=0, S F=1536$)

AD7731

FAST Step ${ }^{\text {™ }}$ Mode (SKIP $=\mathbf{0}$, FAST $=\mathbf{1}$)

The second mode of operation of the second stage filter is in FA STStep ${ }^{\text {TM }}$ mode which enables it to respond rapidly to step inputs even when the second stage filter is in the loop. The FA STStep ${ }^{T M}$ mode is not relevant with SKIP mode enabled. The FASTStep ${ }^{T M}$ mode is enabled by placing a 1 in the FAST bit of the Filter Register. If the FAST bit is 0 , the part continues to process step inputs with the normal FIR filter as the second stage filter. With FA ST Step ${ }^{T M}$ mode enabled, the second stage filter will continue to process steady state inputs with the filter in its normal FIR mode of operation. H owever, the part is continuously monitoring the output of the first stage filter and comparing it with the second-previous output. If the difference between these two outputs is greater than a predetermined threshold (1% of full scale), the second stage filter switches to a simple moving average computation. T his also happens when a change in channels takes place regardless of how close the voltages on the two channels are. When the change is detected, the $\overline{\text { STDY }}$ bit of the Status Register goes to 1.
The initial number of averages in the moving average computation is either 2 (chop enabled) or 1 (chop disabled). The number of averages will be held at this value as long as the threshold is exceeded. Once the threshold is no longer exceeded (the step on the analog input has settled), the number of outputs used to compute the moving average output is increased. The first and second outputs from the first stage filter where the threshold is no longer exceeded is computed as an average by 2 , then 4 outputs with an average of 4,8 outputs with an average of 8 and 6 outputs with an average of 16 . At this time, the second stage filter reverts back to its normal FIR mode of operation. When the second stage filter reverts back to the normal FIR, the STDY bit of the Status Register goes to 0 .
Figure 13 gives an indication of the different responses to a step input with FA STStep ${ }^{T M}$ mode enabled and disabled. T he vertical axis indicates the settling of the output to the input step change while the horizontal axis shows how many outputs it takes for that settling to occur. The positive input step change occurs at a time coincident with the fifth output.

Figure 13. Step Response for FASTStep ${ }^{T M}$ and Normal Operation

In FASTStep ${ }^{\text {TM }}$ mode, the part has settled to the new value much faster. F or example, with CHP $=1$, the FAST Step ${ }^{\text {TM }}$ mode settles to its value in two outputs while the normal mode settling takes 23 outputs. Between the second and 23 rd output, the FASTStep ${ }^{\text {Tm }}$ mode produces a settled result but with additional noise compared to the specified noise level for its operating conditions. This noise level starts at approximately 3 times the final noise converging to FIR mode performance. The complete settling time to where the part is back within the specified noise number, is the same for FAST Step ${ }^{\text {TM }}$ mode and for normal mode. When switching channels, the profile of Figure 13 will not be seen. Since the part is synchronized when a channel change takes place, it will not produce an output until the filter (either FASTStep ${ }^{\text {TM }}$ or FIR) is settled. T able XVIII gives an indication of the faster settling time benefits of FA STStep ${ }^{\text {TM }}$ mode.
As can be seen from T able XVIII, the FAST Step ${ }^{T M}$ mode gives a much earlier indication of where the output channel is going and what its new value is. This feature is very useful in scanning multiple channels where the user does not have to wait for the FIR settling time to see if a channel has changed value. In this case, the part can be set up with CHP =1, SKIP = 0 and FAST $=1$. This takes advantage of the low drift, better noise immunity benefits of the CHOP mode. When a change in channels takes place, the part enters FA STStep ${ }^{T M}$ mode and provides an output result in $2 \times 1 / 0$ utput Rate.
N ote, if the FAST bit is set and the part operated in single conversion mode, the AD 7731 will continue to output results until the STDY bit goes to 0 .

Table XVIII. Time to First and Subsequent Outputs Following Channel Change

SKIP	CHP	FAST	Time to First O/P	Time to Subsequent O/Ps
0	0	0	$24 \times \mathrm{SF} / \mathrm{f}_{\text {MOD }}$	$\mathrm{SF} / \mathrm{f}_{\text {MOD }}$
0	1	0	$66 \times \mathrm{SF} / \mathrm{f}_{\text {MOD }}$	$3 \times \mathrm{SF} / \mathrm{f}_{\text {MOD }}$
1	0	X^{2}	$3 \times \mathrm{SF} / \mathrm{f}_{\text {MOD }}$	$\mathrm{SF} / \mathrm{f}_{\text {MOD }}$
1	1	X	$3 \times \mathrm{SF} / \mathrm{f}_{\text {MOD }}$	$3 \times \mathrm{SF} / \mathrm{f}_{\text {MOD }}$
0	0	1	$3 \times \mathrm{SF} / \mathrm{f}_{\text {MOD }}$	$\mathrm{SF} / \mathrm{f}_{\text {MOD }}$
0	1	1	$6 \times \mathrm{SF} / \mathrm{f}_{\text {MOD }}$	$3 \times \mathrm{SF} / \mathrm{f}_{\text {MOD }}$

${ }^{1}$ This $0 / P$ is fully settled.
${ }^{2} \mathrm{X}=\mathrm{D}$ on't C are.

CALIBRATION

T he AD 7731 provides a number of calibration options that can be programmed via the M D 2, M D 1 and M D 0 bits of the M ode Register. The different calibration options are outlined in the M ode Register and Calibration Operations sections. A calibration cycle may be initiated at any time by writing to these bits of the M ode Register. Calibration on the AD 7731 removes offset and gain errors from the device.
The AD 7731 gives the user access to the on-chip calibration registers allowing the microprocessor to read the device's calibration coefficients and also to write its own calibration coefficients to the part from prestored values in E2PROM. This gives the microprocessor much greater control over the AD7731's calibration procedure. It also means that by comparing the coefficients after calibration with prestored values in E^{2} PROM, the user can verify that the device has correctly performed its calibration. The values in these calibration registers are 24 bits wide. In addition, the span and offset for the part can be adjusted by the user.
Internally in the AD 7731, the coefficients are normalized before being used to scale the words coming out of the digital filter. The offset calibration register contains a value which, when normalized, is subtracted from all conversion results. The gain calibration register contains a value which, when normalized, is multiplied by all conversion results. The offset calibration coefficient is subtracted from the result prior to the multiplication by the gain coefficient.
The AD 7731 offers self-calibration or system calibration facilities. F or full calibration to occur on the selected channel, the on-chip microcontroller must record the modulator output for two different input conditions. T hese are "zero-scale" and "fullscale" points. These points are derived by performing a conversion on the different input voltages provided to the input of the modulator during calibration. The result of the "zero-scale" calibration conversion is stored in the Offset C alibration Register for the appropriate channel. The result of the "full-scale" calibration conversion is stored in the G ain Calibration Register for the appropriate channel. With these readings, the microcontroller can calculate the offset and the gain slope for the input-to-output transfer function of the converter. Internally, the part works with 33 bits of resolution to determine its conversion result of either 16 bits or 24 bits.

The sequence in which the zero-scale and full-scale calibration occurs depends upon the type of full-scale calibration being performed. The internal full-scale calibration is a two-step calibration that alters the value of the Offset Calibration Register. Thus, the user must perform a zero-scale calibration (either internal or system) after an internal full-scale calibration to correct the O ffset C alibration Register contents. When using system full-scale calibration, it is recommended that the zeroscale calibration (either internal or system) is performed first.
C alibration time is the same regardless of whether the SKIP mode is enabled or not. T his is because the SKIP bit is ignored and the second stage filter is included in the calibration cycle. T his is done to derive more accurate calibration coefficients. If the subsequent operating mode is with CHP=0, the calibration should be performed with CHP $=0$ so the offset calibration coefficient and the subsequent conversion offsets are consistent. Since the calibration coefficients are derived by performing a
conversion on the input voltage provided, the accuracy of the calibration can only be as good as the noise level which the part provides in normal mode. To optimize the calibration accuracy, it is recommended to calibrate the part at its lowest output rate where the noise level is lowest. The coefficients generated at any output update rate will be valid for all selected output update rates. This scheme of calibrating at the lowest output update rate does mean that the duration of calibration is longer.

Internal Zero-Scale Calibration

An internal zero-scale calibration is initiated on the AD 7731 by writing the appropriate values $(1,0,0)$ to the M D 2, M D 1 and M DO bits of the M ode Register. In this calibration mode with a unipolar input range, the zero-scale point used in determining the calibration coefficients is with the inputs of the differential pair internally shorted on the part (i.e., AIN [+] = AIN [-] = Externally-Applied AIN [-] voltage). The PGA is set for the selected gain (as per the RN 2, R N 1, RN 0 bits in the M ode Register) for this internal zero-scale calibration conversion.
The duration time of the calibration depends upon the CHP bit of the Filter Register. With CHP = 1, the duration is $22 \times 1 /$ Output Rate; with CHP = 0 , the duration is 24×1 /Output Rate. At this time the M D 2, M D 1 and M D 0 bits in the M ode Register return to $0,0,0$ (Sync or Idle M ode for the AD 7731). The $\overline{\text { RDY }}$ line goes high when calibration is initiated and returns low when calibration is complete. N ote, the part has not performed a conversion at this time; it has simply performed a zero-scale calibration and updated the Offset Calibration Register for the selected channel. The user must write either $0,0,1$ or $0,1,0$ to the M D 2, M D 1, M D 0 bits of the M ode Register to initiate a conversion. If $\overline{\mathrm{RDY}}$ is low before (or goes low during) the calibration command write to the M ode Register, it may take up to one modulator cycle (M CLK IN/16) before $\overline{\text { RDY }}$ goes high to indicate that calibration is in progress. Therefore, $\overline{\mathrm{RDY}}$ should be ignored for up to one modulator cycle after the last bit of the calibration command is written to the M ode R egister.
For bipolar input ranges in the internal zero-scale calibrating mode, the sequence is very similar to that just outlined. In this case, the zero-scale point is exactly the same as above but since the part is configured for bipolar operation, the output code for zero differential input is 800000 Hex in 24-bit mode.
The internal zero-scale calibration needs to be performed as one part of a two-step full calibration. H owever, once a full calibration has been performed, additional internal zero-scale calibrations can be performed by themselves to adjust the part's zero-scale point only. When performing a two-step full calibration, care should be taken as to the sequence in which the two steps are performed. If the internal zero-scale calibration is one part of a full self-calibration, then it should take place after an internal full-scale calibration. If it takes place in association with a system full-scale calibration, then this internal zero-scale calibration should be performed first.

AD7731

Internal Full-Scale Calibration

An internal full-scale calibration is initiated on the AD 7731 by writing the appropriate values $(1,0,1)$ to the M D $2, ~ M ~ D ~ 1 ~ a n d ~$ M D 0 bits of the M ode Register. In this calibration mode, the full-scale point used in determining the calibration coefficients is with an internally-generated full-scale voltage. This full-scale voltage is derived from the reference voltage for the AD 7731 and the PGA is set for the selected gain (as per the RN 2, RN 1, RN 0 bits in the M ode Register) for this internal full-scale calibration conversion.
N ormally, the internal full-scale calibration is performed at the required operating output range. When operating with a 20 mV or 40 mV input range, it is recommended that internal full-scale calibrations are performed on the 80 mV input range.
The internal full-scale calibration is a two-step sequence which runs when an internal full-scale calibration command is written to the AD 7731. One part of the calibration is a zero-scale calibration and as a result, the contents of the Offset C alibration Register are altered during this Internal Full-Scale C alibration. The user must, therefore, perform a zero-scale calibration (either internal or system) AFT ER the internal full-scale calibration. This means that internal full-scale calibrations cannot be performed in isolation.

The duration time of the calibration depends upon the CHP bit of the Filter Register. With CHP $=1$, the duration is $44 \times 1 /$ O utput Rate; with CHP $=0$, the duration is $48 \times 1 / 0$ utput R ate. At this time the M D 2, M D 1 and M D 0 bits in the M ode Register return to 0, 0, 0 (Sync or Idle M ode for the AD 7731). The $\overline{\text { RDY }}$ line goes high when calibration is initiated and returns low when calibration is complete. N ote, the part has not performed a conversion at this time. The user must write either $0,0,1$ or $0,1,0$ to the M D 2, M D 1, M D 0 bits of the M ode Register to initiate a conversion. If $\overline{\mathrm{RDY}}$ is low before (or goes low during) the calibration command write to the M ode Register, it may take up to one modulator cycle (M CLK IN /16) before RDY goes high to indicate that calibration is in progress. T herefore, $\overline{\text { RDY }}$ should be ignored for up to one modulator cycle after the last bit of the calibration command is written to the M ode Register.

System Zero-Scale Calibration

System calibration allows the AD 7731 to compensate for system gain and offset errors as well as its own internal errors. System calibration performs the same slope factor calculations as selfcalibration but uses voltage values presented by the system to the AIN inputs for the zero- and full-scale points.

A system zero-scale calibration is initiated on the AD 7731 by writing the appropriate values $(1,1,0)$ to the M D $2, ~ M D 1$ and M D 0 bits of the M ode Register. In this calibration mode with a unipolar input range, the zero-scale point used in determining the calibration coefficients is the bottom end of the transfer function. The system's zero-scale point is applied to the AD 7731's AIN input before the calibration step and this voltage must remain stable for the duration of the system zero-scale calibration. T he PGA is set for the selected gain (as per the RN 2, RN 1, R N 0 bits in the M ode Register) for this system zero-scale calibration conversion. The allowable range for the system zeroscale voltage is discussed in the Span and Offsets Section.

The duration time of the calibration depends upon the CHP bit of the Filter Register. With CHP = 1, the duration is $22 \times 1 /$ Output Rate; with CHP = 0, the duration is $24 \times 1 / 0$ utput R ate. At this time the M D 2, M D 1 and M D 0 bits in the M ode Register return to $0,0,0$ (Sync or Idle M ode for the AD 7731). T he $\overline{\text { RDY }}$ line goes high when calibration is initiated and returns low when calibration is complete. N ote, the part has not performed a conversion at this time; it has simply performed a zero-scale calibration and updated the Offset Calibration Register for the selected channel. T he user must write either $0,0,1$ or $0,1,0$ to the M D 2, M D 1, M D 0 bits of the M ode Register to initiate a conversion. If $\overline{\mathrm{RDY}}$ is low before (or goes low during) the calibration command write to the M ode R egister, it may take up to one modulator cycle (M CLK IN/16) before $\overline{\text { RDY }}$ goes high to indicate that calibration is in progress. Therefore, $\overline{\text { RDY }}$ should be ignored for up to one modulator cycle after the last bit of the calibration command is written to the M ode Register.
F or bipolar input ranges in the system zero-scale calibrating mode, the sequence is very similar to that just outlined. In this case, the zero-scale point is the mid-point of the AD 7731's transfer function.

T he system zero-scale calibration needs to be performed as one part of a two part full calibration. However, once a full calibration has been performed, additional system zero-scale calibrations can be performed by themselves to adjust the part's zero-scale point only. When performing a two-step full calibration, care should be taken as to the sequence in which the two steps are performed. If the system zero-scale calibration is one part of a full system calibration, it should take place before a system full-scale calibration. If it takes place in association with an internal full-scale calibration, this system zero-scale calibration should be performed after the full-scale calibration.

System Full-Scale Calibration

A system full-scale calibration is initiated on the AD 7731 by writing the appropriate values $(1,1,1)$ to the M D $2, ~ M ~ D 1 ~ a n d ~$ M D 0 bits of the M ode Register. System full-scale calibration is performed using the system's positive full-scale voltage. This full-scale voltage must be set up before the calibration is initiated, and it must remain stable throughout the calibration step. T he system full-scale calibration is performed at the selected gain (as per the RN 2, RN 1, RN 0 bits in the M ode Register).
The duration time of the calibration depends upon the CHP bit of the Filter Register. With CHP=1, the duration is $22 \times 1 /$ O utput Rate; with CH P $=0$, the duration is $24 \times 1 / 0$ utput Rate. At this time the M D2, M D 1 and M D 0 bits in the M ode Register return to 0, 0,0 (Sync or Idle M ode for the AD 7731). The $\overline{\text { RDY }}$ line goes high when calibration is initiated and returns low when calibration is complete. N ote, the part has not performed a conversion at this time; it has simply performed a full-scale calibration and updated the G ain C alibration Register for the selected channel. The user must write either $0,0,1$ or $0,1,0$ to the M D 2, M D1, M D 0 bits of the M ode Register to initiate a conversion. If $\overline{\mathrm{RDY}}$ is low before (or goes low during) the calibration command write to the M ode Register, it may take up to one modulator cycle (M CLK IN /16) before $\overline{\text { RDY }}$ goes high to indicate that calibration is in progress. Therefore, $\overline{\text { RDY }}$ should be ignored for up to one modulator cycle after the last bit of the calibration command is written to the M ode R egister.

The system full-scale calibration needs to be performed as one part of a two part full calibration. H owever, once a full calibration has been performed, additional system full-scale calibrations can be performed by themselves to adjust the part's gain calibration point only. When performing a two-step full calibration, care should be taken as to the sequence in which the two steps are performed. A system full-scale calibration should not be carried out unless the part contains valid zero-scale coefficients. Therefore, an internal zero-scale calibration or a system zero-scale calibration must be performed before the system fullscale calibration when a full two-step calibration operation is being performed.

Span and Offset Limits

Whenever a system calibration mode is used, there are limits on the amount of offset and span that can be accommodated. The overriding requirement in determining the amount of offset and gain that can be accommodated by the part is the requirement that the positive full-scale calibration limit is $\leq 1.05 \times$ FS, where FS is 20 mV through 1.28 V depending on the RN2, RN $1, R N 0$ bits in the M ode Register. This allows the input range to go 5\% above the nominal range. The built-in headroom in the AD 7731's analog modulator ensures that the part will still operate correctly with a positive full-scale voltage that is 5% beyond the nominal.
The range of input span in both the unipolar and bipolar modes has a minimum value of $0.8 \times \mathrm{FS}$ and a maximum value of $2.1 \times \mathrm{FS}$. H owever, the span (which is the difference between the bottom of the AD 7731's input range and the top of its input range) has to take into account the limitation on the positive full-scale voltage. The amount of offset which can be accommodated depends on whether the unipolar or bipolar mode is being used. Once again, the offset has to take into account the limitation on the positive full-scale voltage. In unipolar mode, there is considerable flexibility in handling negative (with respect to AIN [-]) offsets. In both unipolar and bipolar modes, the range of positive offsets that can be handled by the part depends on the selected span. Therefore, in determining the limits for system zero-scale and full-scale calibrations, the user has to ensure that the offset range plus the span range does not exceed $1.05 \times$ FS. This is best illustrated by looking at a few examples.
If the part is used in unipolar mode with a required span of $0.8 \times \mathrm{FS}$, the offset range the system calibration can handle is from $-1.05 \times$ FS to $+0.25 \times$ FS. If the part is used in unipolar mode with a required span of $F S$, the offset range the system calibration can handle is from $-1.05 \times$ FS to $+0.05 \times$ FS . Similarly, if the part is used in unipolar mode and required to remove an offset of $0.2 \times \mathrm{FS}$, the span range the system calibration can handle is $0.85 \times \mathrm{FS}$.

If the part is used in bipolar mode with a required span of $\pm 0.4 \times \mathrm{FS}$, the offset range the system calibration can handle is from $-0.65 \times$ FS to $+0.65 \times$ FS. If the part is used in bipolar mode with a required span of $\pm F S$, the offset range the system calibration can handle is from $-0.05 \times$ FS to $+0.05 \times$ FS . Similarly, if the part is used in bipolar mode and required to remove an offset of $\pm 0.2 \times \mathrm{FS}$, the span range the system calibration can handle is $\pm 0.85 \times \mathrm{FS}$. Figure 14 summarizes the span and offset ranges.

Figure 14. Span and Offset Limits

Power-Up and Calibration

On power-up, the AD 7731 performs an internal reset that sets the contents of the internal registers to a known state. There are default values loaded to all registers after a power-on or reset. The default values contain nominal calibration coefficients for the calibration registers. H owever, to ensure correct calibration for the device, a calibration routine should be performed after power-up.
The power dissipation and temperature drift of the AD 7731 are low and no warm-up time is required before the initial calibration is performed. H owever, if an external reference is being used, this reference must have stabilized before calibration is initiated. Similarly, if the clock source for the part is generated from a crystal or resonator across the M CLK pins, the start-up time for the oscillator circuit should elapse before a calibration is initiated on the part (see below).

Drift Considerations

The AD 7731 uses chopper stabilization techniques to minimize input offset drift. Charge injection in the analog multiplexer and dc leakage currents at the analog input are the primary sources of offset voltage drift in the part. The dc input leakage current is essentially independent of the selected gain. G ain drift within the converter depends primarily upon the temperature tracking of the internal capacitors. It is not affected by leakage currents.
When operating the part in CHOP mode ($\mathrm{CH} \mathrm{P}=1$), the signal chain including the first-stage filter is chopped. T his chopping reduces the overall offset drift to $5 \mathrm{nV} /{ }^{\circ} \mathrm{C}$. When operating in CHOP mode, it is recommended to calibrate the AD 7731 only after power-up or reset to achieve the optimum drift performance from the part. Integral and differential linearity errors are not significantly affected by temperature changes.
C are must also be taken with external drift effects in order to achieve optimum drift performance. T he user has to be especially careful to avoid, as much as possible, thermocouple effects from junctions of different materials. D evices should not be placed in sockets when evaluating temperature drift, there should be no links in series with the analog inputs and care must be taken as to how the input voltage is applied to the input pins. The true offset drift of the AD 7731 itself can be evaluated by performing temperature drift testing of the part with the AIN (-)/AIN (-) input channel arrangement (i.e., internal shorted input, test mode).

AD7731

USING THE ADT731

Clocking and Oscillator Circuit

The AD 7731 requires a master clock input, which may be an external CM OS compatible clock signal applied to the M CLK IN pin with the MCLK OUT pin left unconnected. Alternatively, a crystal or ceramic resonator of the correct frequency can be connected between MCLK IN and M CLK OUT in which case the clock circuit will function as an oscillator, providing the clock source for the part. The input sampling frequency, the modulator sampling frequency, the -3 dB frequency, output update rate and calibration time are all directly related to the master clock frequency, $\mathrm{f}_{\text {CLK IN }}$. Reducing the master clock frequency by a factor of 2 will halve the above frequencies and update rate and double the calibration time.
The crystal or ceramic resonator is connected across the M CLK IN and MCLK OUT pins, as per Figure 15*. When using a master clock frequency of $4.9152 \mathrm{M} \mathrm{Hz}, \mathrm{C} 1$ and C 2 should both have a value equal to 33 pF .

Figure 15. Crystal/Resonator Connections
The on-chip oscillator circuit also has a start-up time associated with it before it has attained its correct frequency and correct voltage levels. T he typical start-up time for the circuit is 6 ms with a $D V_{D D}$ of +5 V and 8 ms with a $D V_{D D}$ of +3 V .
The AD 7731's master clock appears on the M CLK OUT pin of the device. The maximum recommended load on this pin is one CM OS load. When using a crystal or ceramic resonator to generate the AD 7731's clock, it may be desirable to then use this clock as the clock source for the system. In this case, it is recommended that the M CLK OUT signal is buffered with a CM OS buffer before being applied to the rest of the circuit.

System Synchronization

The SYNC input allows the user to reset the modulator and digital filter without affecting any of the setup conditions on the part. T his allows the user to start gathering samples of the analog input from a known point in time, i.e., the rising edge of SYNC.
If multiple AD 7731 s are operated from a common master clock, they can be synchronized to update their output registers simultaneously. A falling edge on the $\overline{\text { SYNC }}$ input resets the digital filter and analog modulator and places the AD 7731 into a consistent, known state. While the SYNC input is low, the AD 7731 will be maintained in this state. On the rising edge of SYNC, the modulator and filter are taken out of this reset state and on the next clock edge the part again starts to gather input samples. In a system using multiple AD 7731s, a common signal to their SYNC inputs will synchronize their operation. This would normally be done after each AD 7731 has performed its own calibration or has had calibration coefficients loaded to it. The
output updates will then be synchronized with the maximum possible difference between the output updates of the individual AD 7731s being one M CLK IN cycle.

Single-Shot Conversions

The $\overline{\text { SYNC }}$ input can also be used as a start convert command allowing the AD 7731 to be operated in a conventional converter fashion. In this mode, the rising edge of $\overline{\text { SYNC }}$ starts conversion and the falling edge of $\overline{\mathrm{RDY}}$ indicates when conversion is complete. T he disadvantage of this scheme is that the settling time of the filter has to be taken into account for every data register update.
Writing $0,1,0$ to the M D 2, M D 1, M D 0 bits of the M ode register has the same effect. This initiates a single conversion on the AD 7731 with the part returning to idle mode at the end of conversion. Once again, the full settling time of the filter has to elapse before the D ata Register is updated.
N ote, if the FAST bit is set and the part operated in single conversion mode, the AD 7731 will continue to output results until the STDY bit goes to 0 .

Reset Input

The RESET input on the AD 7731 resets all the logic, the digital filter and the analog modulator while all on-chip registers are reset to their default state. $\overline{\text { RDY }}$ is driven high and the AD 7731 ignores all communications to any of its registers while the RESET input is low. When the RESET input returns high, the AD 7731 starts to process data and $\overline{\text { RDY }}$ will return low after the filter has settled indicating a valid new word in the data register. H owever, the AD 7731 operates with its default setup conditions after a RESET and it is generally necessary to set up all registers and carry out a calibration after a RESET command.
The AD 7731's on-chip oscillator circuit continues to function even when the RESET input is low. The master clock signal continues to be available on the M CLK OUT pin. Therefore, in applications where the system clock is provided by the AD 7731's clock, the AD 7731 produces an uninterrupted master clock during $\overline{\text { RESET }}$ commands.

Standby Mode

The $\overline{\text { STANDBY }}$ input on the AD 7731 allows the user to place the part in a power-down mode when it is not required to provide conversion results. The part can also be placed in its standby mode by writing $0,1,1$ to the M D 2, M D 1, M D 0 bits of the M ode Register. The AD 7731 retains the contents of all its on-chip registers (including the D ata Register) while in standby mode. D ata can still be read from the part in Standby M ode. The ST BY bit of the Status Register indicates whether the part is in standby or normal operating mode. When the STANDBY pin is taken high, the part returns to operating as it had been prior to the $\overline{\text { STANDBY }}$ pin going low.
The STANDBY input (or $0,1,1$ in the M D $2, ~ M ~ D 1, ~ M ~ D ~ 0 ~ b i t s) ~$ does not affect the digital interface. It does, however, set the $\overline{\text { RDY }}$ bit and pin high and also sets the STDY bit high. When $\overline{\text { STANDBY }}$ goes high again, $\overline{\text { RDY }}$ and STDY remain high until set low by a conversion or calibration.

[^0]Placing the part in standby mode reduces the total current to $10 \mu \mathrm{~A}$ typical when the part is operated from an external master clock, provided this master clock is stopped. If the external clock continues to run in standby mode, the standby current increases to $400 \mu \mathrm{~A}$ typical. If a crystal or ceramic resonator is used as the clock source, then the total current in standby mode is $400 \mu \mathrm{~A}$ typical. This is because the on-chip oscillator circuit continues to run when the part is in its standby mode. T his is important in applications where the system clock is provided by the AD 7731's clock, so that the AD 7731 produces an uninterrupted master clock even when it is in its standby mode.

Digital Outputs

The AD 7731 has two digital output pins, D 0 and D 1. When the DEN bit of the M ode Register is set to 1 , these digital outputs assume the logic status of bits D0 and D 1 of the M ode Register. It gives the user access to two digital port pins which can be programmed over the normal serial interface of the AD 7731. The two outputs obtain their supply voltage from $A V_{D D}$, thus the outputs operate to 5 V levels even in cases where $D V_{D D}=+3 V$.

POWER SUPPLIES

There is no specific power sequence required for the AD 7731, either the $A V_{D D}$ or the $D V_{D D}$ supply can come up first. While the latch-up performance of the AD 7731 is very good, it is important that power is applied to the AD 7731 before signals at REF IN, AIN or the logic input pins in order to avoid latch-up caused by excessive current. If this is not possible, then the current which flows in any of these pins should be limited to less than 30 mA per pin and less than 100 mA cumulative. If separate supplies are used for the AD 7731 and the system digital circuitry, then the AD 7731 should be powered up first. If it is not possible to guarantee this, then current limiting resistors should be placed in series with the logic inputs to again limit the current to less than 30 mA per pin and less than 100 mA total.

Grounding and Layout

Since the analog inputs and reference input are differential, most of the voltages in the analog modulator are common-mode voltages. The excellent Common-M ode Rejection of the part will remove common-mode noise on these inputs. The analog and digital supplies to the AD 7731 are independent and separately pinned out to minimize coupling between the analog and digital sections of the device. The digital filter will provide rejection of broadband noise on the power supplies, except at integer multiples of the modulator sampling frequency. The digital filter also removes noise from the analog and reference inputs provided those noise sources do not saturate the analog modulator. As a result, the AD 7731 is more immune to noise interference that a conventional high resolution converter. H owever, because the resolution of the AD 7731 is so high and the noise levels from the AD 7731 so low, care must be taken with regard to grounding and layout.
The printed circuit board that houses the AD 7731 should be designed such that the analog and digital sections are separated and confined to certain areas of the board. T his facilitates the use of ground planes which can be separated easily. A minimum etch technique is generally best for ground planes as it gives the best shielding. Digital and analog ground planes should only be joined in one place. If the AD 7731 is the only device requiring
an AGND to DGND connection, the ground planes should be connected at the AGND and DGND pins of the AD 7731. If the AD 7731 is in a system where multiple devices require AG ND to DGND connections, the connection should still be made at one point only, a star ground point, which should be established as close as possible to the AD 7731.
Avoid running digital lines under the device as these will couple noise onto the die. The analog ground plane should be allowed to run under the AD 7731 to avoid noise coupling. The power supply lines to the AD 7731 should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line. F ast switching signals like clocks should be shielded with digital ground to avoid radiating noise to other sections of the board and clock signals should never be run near the analog inputs. Avoid crossover of digital and analog signals. T races on opposite sides of the board should run at right angles to each other. T his will reduce the effects of feedthrough through the board. A microstrip technique is by far the best but is not always possible with a double-sided board. In this technique, the component side of the board is dedicated to ground planes while signals are placed on the solder side.
Good decoupling is important when using high resolution ADC s. All analog supplies should be decoupled with $10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ capacitors to AGND. To achieve the best from these decoupling components, they have to be placed as close as possible to the device, ideally right up against the device. All logic chips should be decoupled with $0.1 \mu \mathrm{~F}$ disc ceramic capacitors to DGND. In systems where a common supply voltage is used to drive both the $A V_{D D}$ and $D V_{D D}$ of the $A D 7731$, it is recommended that the system's $A V_{D D}$ supply is used. T his supply should have the recommended analog supply decoupling capacitors between the $A V_{D D}$ pin of the AD 7731 and $A G N D$ and the recommended digital supply decoupling capacitor between the DV ${ }_{D D}$ pin of the AD 7731 and DGND.

Evaluating the AD7731 Performance

A recommended layout for the AD 7731 is outlined in the evaluation board for the AD 7731. T he evaluation board package includes a fully assembled and tested evaluation board, documentation, software for controlling the board over the printer port of a PC and software for analyzing the AD 7731's performance on the PC. T he evaluation board order number is EVAL-AD7731EB.
N oise levels in the signals applied to the AD 7731 may also affect performance of the part. The AD 7731 allows a technique for evaluating the true performance of the part, independent of the analog input signal. This scheme should be used after a calibration has been performed on the part.
The first method is to select the AIN 6/AIN 6 input channel arrangement. In this case, the differential inputs to the AD 7731 are internally shorted together to provide a zero differential voltage for the analog modulator. External to the device, the AIN 6 input should be connected to a voltage which is within the allowable common-mode range of the part.
The software in the evaluation board package allows the user to look at the noise performance in terms of bits and $n V$. Once the user has established that the noise performance of the part is satisfactory in this mode, then an external input voltage can be applied to the device incorporating more of the signal chain.

AD7731

SERIAL INTERFACE

The AD 7731's programmable functions are controlled via a set of on-chip registers. Access to these registers is via the part's serial interface. After power-on or RESET, the device expects a write to its Communications Register. The data written to this register determines whether the next operation to the part is a read or a write operation and also determines to which register this read or write operation occurs. Therefore, write access to one of the control registers on the part starts with a write operation to the Communications Register followed by a write to the selected register. Reading from the part's on-chip registers can either take the form of a single read or continuous read. A single read from a register consists of a write to the Communications Register (with RW $1=0$ and RW $0=1$) followed by the read from the specified register. T o perform continuous reads from a register, write to the Communications Register (with RW $1=1$ and RWO $=0$) to place the part in continuous read mode. The specified register can then be read from continuously until a write operation to the Communications Register (with RW $1=1$ and RW0 $=1$) which takes the part out of continuous read mode. When operating in continuous read mode, the part is continuously monitoring its DIN line. Therefore, the DIN line should be permanently low to allow the part to stay in continuous read mode. Figure 5 and Figure 6, shown previously, indicate the correct flow diagrams when reading and writing from the AD 7731's registers.
The AD 7731's serial interface consists of five signals, $\overline{\mathrm{CS}}, \mathrm{SCLK}$, DIN, DOUT and RDY. The DIN line is used for transferring data into the on-chip registers while the DOUT line is used for accessing data from the on-chip registers. SCLK is the serial clock input for the device and all data transfers (either on DIN or DOUT) take place with respect to this SCLK signal.

Write Operation

The transfer of data into the part is to an input shift register. On completion of a write operation, data is transferred to the specified register. T his internal transfer will not take place until the correct number of bits for the specified register have been loaded to the input shift register. F or example, the transfer of
data from the input shift register takes place after eight serial clock cycles for a DAC Register write while the transfer of data from the input shift register takes place after 24 serial clock cycles when writing to the Filter Register. Figure 16 shows a timing diagram for a write operation to the input shift register of the AD 7731. With the POL input at a logic high, the data is latched into the input shift register on the rising edge of SCLK. With the POL input at a logic low, the data is latched into the input shift register on the falling edge of SCLK.
Figure 16 also shows the $\overline{\mathrm{CS}}$ input being used to decode the write operation to the AD 7731. H owever, this $\overline{\mathrm{CS}}$ input can be used in a number of different ways. It is possible to operate the part in three-wire mode where the $\overline{\mathrm{CS}}$ input is permanently tied low. In this case, the SCLK line should idle high between data transfer when the POL input is high and should idle low between data transfers when the POL input is low. F or $\mathrm{POL}=1$, the first falling edge of SCLK clocks data from the microcontroller onto the DIN line of the AD 7731. It is then clocked into the input shift register on the next rising edge of SCLK. F or $\mathrm{POL}=0$, the first clock edge which clocks data from the microcontroller onto the DIN line of the AD 7731 is a rising edge. It is then clocked into the input shift register on the next falling edge of SCLK.
In other microcontroller applications, which require a decoding of the AD 7731, $\overline{\mathrm{CS}}$ can be generated from a port line. In this case, $\overline{\mathrm{CS}}$ would go low well in advance of the first falling edge of SCLK (POL =1) or the first rising edge of SCLK (POL = 0) . C locking of each bit of data is as just described.
In DSP applications, the SCLK is generally a continuous clock. In these applications, the $\overline{\mathrm{CS}}$ input for the AD 7731 is generated from a frame synchronization signal from the DSP. For processors with the rising edge of SCLK as the active edge, the POL input should be tied high. For processors with the falling edge of SCLK as the active edge, the POL input should be tied low. In these applications, the first edge after $\overline{\mathrm{CS}}$ goes low is the active edge. The M SB of the data to be shifted into the AD 7731 must be set up prior to this first active edge.

Figure 16. Write Cycle Timing Diagram

Read Operation

The reading of data from the part is from an output shift register. On initiation of a read operation, data is transferred from the specified register to the output shift register. T his is a parallel shift and is transparent to the user. Figure 16 shows a timing diagram for a read operation from the output shift register of the AD 7731. With the POL input at a logic high, the data is clocked out of the output shift register on the falling edge of SCLK. With the POL input at a logic low, the data is clocked out of the output shift register on the rising edge of SCLK.
Figure 16 also shows the $\overline{\mathrm{CS}}$ input being used to decode the read operation to the AD 7731. H owever, this $\overline{\mathrm{CS}}$ input can be used in a number of different ways. It is possible to operate the part in three-wire mode where the $\overline{\mathrm{CS}}$ input is tied low permanently. In this case, the SCLK line should idle high between data transfer when the POL input is high and should idle low between data transfers when the POL input is low. F or $\mathrm{POL}=1$, the first falling edge of SCLK clocks data from the output shift register onto the DOUT line of the AD7731. It is then clocked into the microcontroller on the next rising edge of SCLK. F or $\mathrm{POL}=0$, the first clock edge which clocks data from the AD 7731 onto the D OUT line is a rising edge. It is then clocked into the microcontroller on the next falling edge of SCLK.
In other microcontroller applications, which require a decoding of the AD 7731, $\overline{\mathrm{CS}}$ can be generated from a port line. In this case, $\overline{\mathrm{CS}}$ would go low well in advance of the first falling edge of SCLK (POL =1) or the first rising edge of SCLK (POL = 0). Clocking of each bit of data is as just described.

In DSP applications, the SCLK is generally a continuous clock. In these applications, the $\overline{\mathrm{CS}}$ input for the AD 7731 is generated from a frame synchronization signal from the DSP. In these applications, the first edge after $\overline{\mathrm{CS}}$ goes low is the active edge. The M SB of the data to be shifted into the microcontroller must
be set up prior to this first active edge. U nlike microcontroller applications, the DSP does not provide a clock edge to clock the M SB from the AD 7731. In this case, the $\overline{C S}$ of the AD 7731 places the M SB on the DOUT line. For processors with the rising edge of SCLK as the active edge, the POL input should be tied high. In this case, the microcontroller takes data on the rising edge. If $\overline{\mathrm{CS}}$ goes low while SCLK is low, the M SB is clocked out on the DOUT line from the $\overline{\mathrm{CS}}$. Subsequent data bits are clocked from the falling edge of SCLK. For processors with the falling edge of SCLK as the active edge, the POL input should be tied low. In this case, the microcontroller takes data on the falling edge. If $\overline{\mathrm{CS}}$ goes low while SCLK is high, then the M SB is clocked out on the DOUT line from the $\overline{C S}$. Subsequent data bits are clocked from the rising edge of SCLK.
The $\overline{\mathrm{RDY}}$ line is used as a status signal to indicate when data is ready to be read from the AD 7731's data register. $\overline{\text { RDY }}$ goes low when a new data word is available in the data register. It is reset high when a read operation from the data register is complete. It also goes high prior to the updating of the data register to indicate when a read from the data register should not be initiated. This is to ensure that the transfer of data from the data register to the output shift register does not occur while the data register is being updated. It is possible to read the same data twice from the output register even though the $\overline{\text { RDY }}$ line returns high after the first read operation. C are must be taken, however, to ensure that the read operations are not initiated as the next output update is about to take place.
For systems with a single data line, the DIN and D OUT lines on the AD 7731 can be connected together but care must be taken in this case not to place the part in continuous read mode as the part monitors DIN while supplying data on DOUT and as a result, it may not be possible to take the part out of its continuous read mode.

Figure 17. Read Cycle Timing Diagram

AD7731

CONFIGURING THE AD7731

T he AD 7731 contains twelve on-chip registers which can be accessed via the serial interface. Figure 5 and Figure 6 have outlined a flowchart for the reading and writing of these registers. T able XIX and T able XX outline sample pseudo-code for some commonly used routines. The required operating conditions will dictate the values loaded to the M ode and Filter Registers. The values given here are for example purposes only.

Table XIX. Pseudo-C ode for Initiating a Self-Calibration after Power-On/Reset

W rite 03 Hex to Serial Port ${ }^{1}$

Write 1332 Hex to Serial Port ${ }^{1}$

Write 02 Hex to Serial Port

Write B174 H ex to Serial Port

W ait for $\overline{\text { RDY }}$ Low
Write 02 Hex to Serial Port

W rite 9174 Hex to Serial Port

Wait for $\overline{\text { RDY }}$ Low
/* W rites to Communications Register Setting N ext Operation as W rite to F ilter R egister*/
/* W rites to Filter Register Setting a 1 kHz Output Rate in nonCH OP M ode*/
/* W rites to Communications Register Setting N ext Operation as Write to M ode Register*/
/* W rites to M ode Register Initiating Internal Full-Scale Calibration for 0 V to +1.28 V Input R ange on C hannel Pair AIN 1/AIN 2*/
/* W ait for $\overline{\mathrm{RDY}}$ pin to go low to indicate end of calibration cycle*/
/* W rites to Communications Register Setting N ext Operation as Write to M ode Register*/
/* W rites to M ode Register Initiating Internal Zero-Scale Calibration for 0 V to +1.28 V Input Range*/
/* W ait for $\overline{\mathrm{RDY}}$ pin to go low to indicate end of calibration cycle*/
/* The part has now completed self-calibration and is in idle mode*/
${ }^{1}$ This operation is not necessary if the default values of the Filter Register are the values used in the application.
Table XX. Pseudo-Code for Looping AD7731 Through Three Fully-Differential Channels

CHANNEL $=4 \mathrm{Hex}$
CH_LOOP: MODE $=2177 \mathrm{Hex}$
MODE = MODE AND CHANNEL
Write 02 Hex to Serial Port

Write M ODE to Serial Port

W ait for $\overline{\text { RDY }}$ Low
Write 11 Hex to Serial Port

Read 24-Bit D ata From Serial Port
Increment CHANNEL
If CHANNEL $=7 \mathrm{Hex}$ Then Set $\mathrm{CHANNEL}=4 \mathrm{Hex}$
Loop to CH_LOOP

* Sets a Variable C alled CH AN NEL*/
/* Sets a Variable Called M ODE */
/* Logical AND of Both Variables */
/* W rites to Communications Register Setting N ext Operation as W rite to M ode Register*/
* W rites to M ode Register Setting C ontinuous Conversion M ode for 0 V to +1.28 V Input Range on Channel D etermined by CHAN NEL Variable*/
/* W ait for $\overline{\text { RDY }}$ pin to go low to Indicate O utput U pdate*/
/* W rites to Communications R egister Setting N ext Operation as Read F rom D ata Register*/
* Read Conversion Result from AD 7731's D ata Register*/
/* Increments Channel Address*/
/* Resets Channel Address*/

MICROCOMPUTER/MICROPROCESSOR INTERFACING

The AD 7731's flexible serial interface allows for easy interface to most microcomputers and microprocessors. The pseudo-code of Table XVIII and T able XIX outline typical sequences for interfacing a microcontroller or microprocessor to the AD 7731. Figures 18, 19 and 20 show some typical interface circuits.
The serial interface on the AD 7731 has the capability of operating from just three wires and is compatible with SPI interface protocols. The three-wire operation makes the part ideal for isolated systems where minimizing the number of interface lines minimizes the number of opto-isolators required in the system.
Register lengths on the AD 7731 vary from 8 to 16 to 24 bits. The 8-bit serial serial ports of most microcontrollers can handle communication with these registers as either one, two or three 8 -bit transfers. DSP processors and microprocessors generally transfer 16 bits of data in a serial data operation. Some of these processors, such as the ADSP-2105, have the facility to program the amount of cycles in a serial transfer. This allows the user to tailor the number of bits in any transfer to match the register length of the required register in the AD 7731. In any case, writing 32 bits of data to a 24 -bit register is not an issue provided the final 8 bits of the word are all 1s. T his is because the part returns to the Communications Register following a write operation.

AD7731 to 68HC 11 Interface

Figure 18 shows an interface between the AD 7731 and the 68 H C 11 microcontroller. The diagram shows the minimum (three-wire) interface with $\overline{\mathrm{CS}}$ on the AD 7731 hard-wired low. In this scheme, the $\overline{\text { RDY }}$ bit of the Status Register is monitored to determine when the D ata Register is updated. An alternative scheme, which increases the number of interface lines to four, is to monitor the $\overline{\mathrm{RDY}}$ output line from the AD 7731. The monitoring of the $\overline{\mathrm{RDY}}$ line can be done in two ways. First, $\overline{\mathrm{RDY}}$ can be connected to one of the 68H C 11's port bits (such as PC0) which is configured as an input. This port bit is then polled to determine the status of $\overline{\mathrm{RDY}}$. The second scheme is to use an interrupt driven system in which case, the $\overline{\mathrm{RDY}}$ output is connected to the IRQ input of the 68 HC C11. F or interfaces which require control of the $\overline{\mathrm{CS}}$ input on the AD 7731, one of the port bits of the 68 HC 11 (such as PC1), which is configured as an output, can be used to drive the $\overline{\mathrm{CS}}$ input.
The 68 HC 11 is configured in the master mode with its CPOL bit set to a logic zero and its C PH A bit set to a logic one. When the 68 HC 11 is configured like this, its SCLK line idles low between data transfers. Therefore, the POL input of the AD 7731 should be hard-wired low. For systems where it is preferable
that the SCLK idle high, the CPOL bit of the 68 HC 11 should be set to a logic 1 and the POL input of the AD 7731 should be hard-wired to a logic high.
The AD 7731 is not capable of full duplex operation. If the AD 7731 is configured for a write operation, no data appears on the DATA OUT lines even when the SCLK input is active. H owever, when the AD 7731 is configured for continuous read operation, data presented to the part on the DATA IN line is monitored to determine when to exit the continuous read mode.

Figure 18. AD7731 to $68 \mathrm{HC11}$ Interface

AD7731 to 8051 Interface

An interface circuit between the AD 7731 and the 8XC51 microcontroller is shown in Figure 19. The diagram shows the minimum number of interface connections with $\overline{\mathrm{CS}}$ on the AD 7731 hard-wired low. In the case of the 8 X C 51 interface the minimum number of interconnects is just two. In this scheme, the $\overline{\mathrm{RDY}}$ bit of the Status Register is monitored to determine when the D ata Register is updated. T he alternative scheme, which increases the number of interface lines to three, is to monitor the $\overline{\text { RDY }}$ output line from the AD 7731. The monitoring of the $\overline{\mathrm{RDY}}$ line can be done in two ways. First, $\overline{\mathrm{RDY}}$ can be connected to one of the 8X C51's port bits (such as P1.0) which is configured as an input. This port bit is then polled to determine the status of $\overline{\mathrm{RDY}}$. The second scheme is to use an interrupt driven system in which case, the $\overline{\mathrm{RDY}}$ output is connected to the INT 1 input of the 8XC51. F or interfaces which require control of the $\overline{C S}$ input on the AD 7731, one of the port bits of the $8 \times C 51$ (such as P1.1), which is configured as an output, can be used to drive the $\overline{\mathrm{CS}}$ input.

The 8XC51 is configured in its M ode 0 serial interface mode. Its serial interface contains a single data line. As a result, the DATA OUT and DATA IN pins of the AD 7731 should be connected together. T his means that the AD 7731 must not be configured for continuous read operation when interfacing to the 8XC51. The serial clock on the 8XC51 idles high between data transfers and, therefore, the POL input of the AD 7731 should be hard-wired to a logic high. The 8X C51 outputs the LSB first in a write operation while the AD 7731 expects the M SB first so the data to be transmitted has to be rearranged before being written to the output serial register. Similarly, the AD 7731 outputs the M SB first during a read operation while the 8XC51 expects the LSB first. Therefore, the data read into the serial buffer needs to be rearranged before the correct data word from the AD 7731 is available in the accumulator.

AD7731 to ADSP-2103/ADSP-2105 Interface

Figure 20 shows an interface between the AD 7731 and the AD SP-2105 D SP processor. In the interface shown, the $\overline{\text { RDY }}$ bit of the Status Register is again monitored to determine when the D ata R egister is updated. T he alternative scheme is to use an interrupt driven system, in which case the $\overline{\text { RDY }}$ output is connected to the $\overline{\mathrm{IRQ} 2}$ input of the ADSP-2105. The $\overline{\mathrm{RFS}}$ and TFS pins of the AD SP-2105 are configured as active low outputs and the ADSP-2105 serial clock line, SCLK, is also configured as an output. The POL pin of the AD 7731 is hard-wired low. Because the SCLK from the ADSP-2105 is a continuous clock, the $\overline{\mathrm{CS}}$ of the AD 7731 must be used to gate off the clock once the transfer is complete. The $\overline{\mathrm{CS}}$ for the AD 7731 is active when either the $\overline{\mathrm{RFS}}$ or $\overline{\mathrm{TFS}}$ outputs from the AD SP-2105 are active. T he serial clock rate on the AD SP-2105 should be limited to 3 M Hz to ensure correct operation with the AD 7731.

Figure 20. AD7731 to ADSP-2105 Interface

APPLICATIONS

The on-chip PGA allows the AD 7731 to handle analog input voltage ranges from 20 mV to 1.28 V . This makes the AD 7731 suitable for a range of application areas from handling signals directly from a transducer to processing fully-conditioned fullscale inputs. Some of these applications are discussed in the following sections.
The AD 7731 offers both unipolar and bipolar input ranges. In many cases, the application is single supply with the bipolar input voltages referenced to a biased-up differential voltage. Some applications will, however, require the flexibility of handling true bipolar inputs. Figure 25 shows how to configure the AD 7731 to handle this type of signal.
It should be noted in multiplexed applications that an input overvoltage (either $>A V D D+0.3 \mathrm{~V}$ or $<A G N D-0.3 \mathrm{~V}$) on an unselected channel can affect the conversion result on the selected channel. The system design should ensure that the input voltage on channels where input leads may be unconnected or broken be kept within the above limits.

The AD 7731 has a variety of different modes aimed at optimizing the AD 7731's performance across differing application requirements. The issue of filtering and settling time and throughput rates in multichannel applications has previously been discussed in the Filter Architecture section.

Data Acquisition

The AD 7731 with its three differential channels (or five pseudodifferential channels) is suited to low bandwidth, high resolution data acquisition systems. In addition, the three-wire digital interface allows this data acquisition front end to be isolated with just three optoisolators. The entire system can be operated from a single +5 V supply provided that the input signals to the AD 7731's analog inputs are all of positive polarity. Figure 21 shows the AD 7731 in an isolated three-channel data acquisition system.

Programmable Logic Controllers

The AD 7731 is also suited to programmable logic controller applications. In such applications, the ADC is required to handle signals from a variety of different transducers. T he AD 7731's programmable gain front end allows the part to either handle low level signals directly from a transducer or full-scale signals which have already been conditioned. The fast throughput rate and settling-time of the part is also an important feature in these applications where loop response time is often critical. The configuration of the AD 7731 in PLC applications is similar to that outlined in F igure 21 for the data acquisition system.

Figure 21. Data Acquisition Using the AD7731

AD7731

Pressure Measurement

One typical application of the AD 7731 where it is connected directly to a transducer is in pressure measurement. Figure 22 shows the AD 7731 with a pressure transducer in a bridge arrangement. The differential output from the transducer is connected directly to the AIN I/AIN 2 input channel. The entire circuit is powered from a single +5 V supply that generates the excitation voltage for the transducer and the power supply, and reference voltage for the AD 7731. The application is ratiometric and variations in the excitation voltage do not introduce errors in the measurement.

Temperature Measurement

Another application area where the transducer can be connected directly to the AD 7731 is in temperature measurement. Figure 23 outlines a connection between a thermocouple and the AD 7731. In order to place the differential voltage from the AD 7731 on a suitable common-mode voltage, the AIN 2 input of the AD 7731 is biased up at the reference voltage, +2.5 V .

Figure 24 shows another temperature measurement application for the AD 7731. In this case, the temperature transducer is an RTD (Resistive T emperature D evice), a PT 100. The arrangement is a four-lead RTD configuration. There are voltage drops across lead resistances RL1 and RL4 and across resistor R2 but these simply shift the common-mode voltage. Resistor R2 is required to set the common-mode voltage within the allowable range for the AD 7731. T he voltage differential caused by RL 2 and RL3 and the AD 7731's offset current is negligible.
In the application shown, the external $400 \mu \mathrm{~A}$ current source provides the excitation current for the PT 100 and it also generates the reference voltage for the AD 7731 via resistor R 1 . Variations in the excitation current do not affect the circuit as the input voltage and the reference voltage vary ratiometrically with the excitation current. Resistor R 1, however, must have a low temperature coefficient to avoid errors in the reference voltage over temperature.

Figure 22. Pressure Measurement Using the AD7731

Figure 23. Temperature Measurement Using the AD7731

Figure 24. RTD Measurement Using the AD7731

AD7731

Bipolar Input Signals

As mentioned previously, some applications will require that the AD 7731 handle input signals that are negative with respect to system ground. The number of applications requiring this are limited but with the addition of some external components the AD 7731 is capable of handling such signals. Figure 25 outlines one approach to the problem.
The example shown is a system that is driven from $\pm 5 \mathrm{~V}$ supplies. In such a circuit, two issues must be addressed. T he first is how to get the AD 7731 to handle input voltages below ground and the second is how to generate a suitable reference voltage for the AD 7731. The circuit of Figure 25 attempts to address these two issues simultaneously.
The AD 7731's analog and digital supplies can be split such that $A V_{D D}$ and $D V_{D D}$ can be at separate potentials and $A G N D$ and D GND can also be at separate potentials. The only stipulation is that $A V_{D D}$ or $D V_{D D}$ must not exceed the $A G N D$ by 5.5 V . In Figure 25 , the $D V_{D D}$ is operated at +3 V which allows the $A G N D$ to go down to -2.5 V with respect to system ground. T his means that all logic signals to the part must not exceed 3 V with respect to system ground. T he $A V_{D D}$ is operated at +2.5 V with respect to system ground.
The resistor string R1, R2 and R3 takes the $\pm 5 \mathrm{~V}$ supply voltage and generates a differential voltage of nominally 5 V . Amplifiers

A1 and A2 buffer the resistor string voltages and provide the $A V_{D D}$ and $A G N D$ voltages as well as the REF IN (+) and REF IN (-) voltages for the AD 7731. The differential reference voltage for the part is +5 V . If the input voltage is from a transducer excited by the $\pm 5 \mathrm{~V}$, the AD 7731 retains its ratiometric operation with this reference voltage varying in sympathy with the analog input voltage.
The values of the resistors in the resistor string are chosen assuming the maximum input voltage range of $\pm 1.28 \mathrm{~V}$ is applied to the AD 7731. The minimum input voltage must be 1.2 V above the AD 7731's AGND, while the maximum input voltage must be 0.95 V below the AD 7731's AV $\mathrm{DD}^{\text {. F or smaller input voltage }}$ ranges, the resistor ratios in the resistor string can be changed to allow a larger $D V_{D D}$ voltage. For example, if R1 $=3 \mathrm{k} \Omega$, $R 2=10 \mathrm{k} \Omega$ and $R 3=6.8 \mathrm{k} \Omega$, the $A V_{D D}$ and $A G N D$ voltages become +3.49 V and -1.56 V respectively. This allows the AD 7731 to be used with $a+3.6 \mathrm{~V} V_{D D}$ voltage while allowing analog input ranges of $\pm 320 \mathrm{mV}$ and below.
An alternate scheme is to generate the $A V_{D D}$ and $A G N D$ voltages from regulators or Zener diodes driven from the +5 V and -5 V supplies respectively. The reference voltage for the part can be generated from an AD 780 whose GND pin is connected to the AD 7731's AGND pin.

Figure 25. Bipolar Input Signals on the AD7731
PAGE INDEX
Topic Page
FEATURES 1
GENERAL DESCRIPTION 1
SPECIFICATIONS 2
TIMING CHARACTERISTICS 4
ABSOLUTEMAXIMUM RATINGS 5
ORDERING GUIDE 5
DETAILED FUNCTIONAL BLOCK DIAGRAM 6
SIGNAL PROCESSING CHAIN 7
PIN CONFIGURATION 7
PIN FUNCTION DESCRIPTIONS 7
TERMINOLOGY 9
OUTPUT NOISE AND RESOLUTION SPECIFICATION 10
ON-CHIP REGISTERS 11
Summary Of On-Chip Registers 12
C ommunications Register 13
Status Register 14
D ata Register 15
M ode R egister 15
Filter Register 18
Offset Calibration Register 19
G ain Calibration Register 19
T est Register 19
READING FROM AND WRITING TOTHE ON-CHIP REGISTERS 20
CALIBRATION OPERATION SUMMARY 21
CIRCUIT DESCRIPTION 22
ANALOG INPUT 23
Analog Input Channels 23
Analog Input Ranges 23
Bipolar/U nipolar Inputs 23
Burnout Currents 23
REFERENCEINPUT 24
Reference D etect 24
SIGMA-DELTA MODULATOR 24
DIGITAL FILTERING 24
Filter A rchitecture 24
First Stage Filter/SKIP M ode Enabled 25
Second Stage Filter 25
Normal FIR Operation 25
FASTStep ${ }^{\text {TM }}$ M ode 28
CALIBRATION 29
Internal Zero-Scale C alibration 29
Internal Full-Scale Calibration 30
System Zero-Scale C alibration 30
System Full-Scale Calibration 30
Span and Offset Limits 31
Power-Up and Calibration 31
Drift Considerations 31
USING THE AD7731 32
Clocking and Oscillator Circuit 32
System Synchronization 32
Single-Shot C onversions 32
Reset Input 32
Standby M ode 32
Digital Outputs 33
POWER SUPPLIES 33
Grounding and Layout 33
Evaluating the AD 7731 Performance 33
Topic Page
SERIAL INTERFACE 34
W rite Operation 34
R ead Operation 35
CONFIGURING THE AD 7731 36
MICROCOM PUTER/MICROPROCESSOR INTERFACING 37
AD 7731 to 68H C 11 Interface 37
AD 7731 to 8051 Interface 37
AD 7731 to AD SP-2103/AD SP-2105 Interface 38
APPLICATIONS 39
D ata Acquisition 39
Programmable Logic C ontrollers 39
Pressure M easurement 40
T emperature M easurement 40
Bipolar Input Signals 42
INDEX 43
OUTLINE DIMENSIONS 44
TABLE INDEX
Table TitleT able I. Output N oise vs. Input Range andU pdate Rate ($\mathrm{CH} P=0, \mathrm{SK} \operatorname{IP}=1$)10
T able II. Peak-to-Peak Resolution vs. Input Range and U pdate R ate ($\mathrm{CHP}=0, \mathrm{SKIP}=1$) 10
Table III. Output N oise vs. Input Range and U pdate Rate ($\mathrm{CH} P=1, S K I P=0$) 11
Table IV. Peak-to-Peak Resolution vs. Input Range and Update R ate $(C H P=1, S K I P=0)$ 11
Table V. Summary of On-Chip Registers 12
Table VI. Communications R egister 13
T able VII. Read/W rite M ode 13
T able VIII. Register Selection 14
T able IX. Status Register 14
T able X. M ode Register 15
T able XI. O perating M odes 15
Table XII. Input Range Selection 17
T able XIII. Channel Selection 18
T able XIV. Filter Register 18
Table XV. SF Ranges 19
Table XVI. Calibration Operations 21
T able XVII. Reset Events 22
T able XVIII. Time to First and Subsequent Outputs F ollowing Channel Change 28
T able XIX. Pseudo-C ode for Initiating a Self-C alibration After Power-On/R eset 36
T able XX. Pseudo-C ode for Looping T hrough Three Fully-Differential Channels 36

24－Lead Plastic Dual In－Line Package［PDIP］ Narrow Body（N－24－1）

Dimensions shown in inches and（millimeters）

Dimensions shown in millimeters and（inches）

COMPLIANT TO JEDEC STANDARDS MS－013－AD
CONTROLLING DIMENSIONS ARE IN MILLIMETERS；INCH DIMENSIONS （IN PARENTHESES）ARE ROUNDED－OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN．
24－Lead Thin Shrink Small Outline Package［TSSOP］
［RU－24］
Dimensions shown in millimeters

[^0]: *T he AD 7731 has a capacitance of 5 pF on M CLK IN and 13 pF on M CLK OUT.

