Low－Power，Quad，12－Bit Voltage－Output DAC with Serial Interface

General Description

The MAX525 combines four low－power，voltage－output， 12－bit digital－to－analog converters（DACs）and four pre－ cision output amplifiers in a space－saving，20－pin pack－ age．In addition to the four voltage outputs，each amplifier＇s negative input is also available to the user． This facilitates specific gain configurations，remote sensing，and high output drive capacity，making the MAX525 ideal for industrial－process－control applica－ tions．Other features include software shutdown，hard－ ware shutdown lockout，an active－low reset which clears all registers and DACs to zero，a user－programmable logic output，and a serial－data output．
Each DAC has a double－buffered input organized as an input register followed by a DAC register．A 16－bit serial word loads data into each input／DAC register．The serial interface is compatible with SPI $^{T M} /$ QSPI $^{\text {TM }}$ and MICROWIRETM．It allows the input and DAC registers to be updated independently or simultaneously with a sin－ gle software command．The DAC registers can be simultaneously updated through the 3 －wire serial inter－ face．All logic inputs are TTL／CMOS－logic compatible．

Applications

Industrial Process Controls
Automatic Test Equipment
Digital Offset and Gain Adjustment
Motion Control
Remote Industrial Controls
Microprocessor－Controlled Systems

Features
－Four 12－Bit DACs with Configurable Output Amplifiers
－＋5V Single－Supply Operation
－Low Supply Current： 0.85 mA Normal Operation 104A Shutdown Mode
－Available in 20－Pin SSOP
－Power－On Reset Clears all Registers and DACs to Zero
－Capable of Recalling Last State Prior to Shutdown
－SPI／QSPI and MICROWIRE Compatible
－Simultaneous or Independent Control of DACs through 3－Wire Serial Interface
－User－Programmable Digital Output
Ordering Information

PART	TEMP RANGE	PIN－PACKAGE	INL （LSB）
MAX525ACPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP	$\pm 1 / 2$
MAX525BCPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP	± 1
MAX525ACAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP	$\pm 1 / 2$
MAX525BCAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP	± 1

Ordering Information continued at end of data sheet．
Pin Configuration appears at end of data sheet．

Functional Diagram

SPI and QSPI are trademarks of Motorola，Inc．MICROWIRE is a trademark of National Semiconductor Corp．

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Ranges
MAX525_C_P.. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX525_E_P.. $55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX525_MJP....................................... $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range.............................. $+30^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 s).......................

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, A G N D=D G N D=0 \mathrm{~V}, \mathrm{REFAB}=\mathrm{REFCD}=2.5 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE-ANALOG SECTION						
Resolution	N		12			Bits
Integral Nonlinearity (Note 1)	INL	MAX525A		± 0.25	± 0.5	LSB
		MAX525B			± 1.0	
Differential Nonlinearity	DNL	Guaranteed monotonic			± 1.0	LSB
Offset Error	Vos				± 6.0	mV
Offset-Error Tempco				6		ppm $/{ }^{\circ} \mathrm{C}$
Gain Error	GE	(Note 1)		-0.8	± 2.0	LSB
Gain-Error Tempco				1		ppm $/{ }^{\circ} \mathrm{C}$
Power-Supply Rejection Ratio	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		100	600	$\mu \mathrm{V} / \mathrm{V}$
MATCHING PERFORMANCE ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)						
Gain Error	GE			-0.8	± 2.0	LSB
Offset Error	N			± 1.0	± 6.0	mV
Integral Nonlinearity	INL			± 0.35	± 1.0	LSB
REFERENCE INPUT						
Reference Input Range	VREF		0		-1.4	V
Reference Input Resistance	RREF	Code-dependent, minimum at code 555 hex	8			k Ω
Reference Current in Shutdown		\square		0.01	± 1	$\mu \mathrm{A}$

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, A G N D=D G N D=0 \mathrm{~V}, R E F A B=R E F C D=2.5 \mathrm{~V}, R_{L}=5 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, T_{A}=T_{M I N}\right.$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$. Output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
MULTIPLYING-MODE PERFORMANCE				
Reference -3dB Bandwidth		$V_{\text {REF }}=0.67 \mathrm{VP}_{\text {P-P }}$	650	kHz
Reference Feedthrough		Input code $=$ all $0 \mathrm{~s}, \mathrm{~V}_{\text {REF }}=3.6 \mathrm{~V}$ P-P at 1 kHz	-84	dB
Signal-to-Noise Plus Distortion Ratio	SINAD	$V_{\text {REF }}=1 \mathrm{~V}_{\text {P-P }}$ at 25 kHz	72	dB
DIGITAL INPUTS				
Input High Voltage	V_{IH}		2.4	V
Input Low Voltage	VIL		0.8	V
Input Leakage Current	IIN	VIN $=0 \mathrm{~V}$ or V_{DD}	0.01 ± 1.0	$\mu \mathrm{A}$
Input Capacitance	CIN		8	pF
DIGITAL OUTPUTS				
Output High Voltage	V OH	ISOURCE $=2 \mathrm{~mA}$	VDD - 0.5	V
Output Low Voltage	VOL	ISINK $=2 \mathrm{~mA}$	$0.13 \quad 0.4$	V
DYNAMIC PERFORMANCE				
Voltage Output Slew Rate	SR		0.6	V/us
Output Settling Time		To $\pm 1 / 2 \mathrm{LSB}, \mathrm{V}$ STEP $=2.5 \mathrm{~V}$	12	$\mu \mathrm{s}$
Output Voltage Swing		Rail-to-Rail ${ }^{(1)}$ (Note 2)	0 to V_{DD}	V
Current into FB_		$\square \mathrm{l}$	00.1	$\mu \mathrm{A}$
OUT_ Leakage Current in Shutdown		$R \mathrm{~L}=\infty$	0.01 ± 1	$\mu \mathrm{A}$
Start-Up Time Exiting Shutdown Mode			15	$\mu \mathrm{s}$
Digital Feedthrough		$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{DIN}=100 \mathrm{kHz}$	5	$n \vee$-s
Digital Crosstalk			5	nV -s
POWER SUPPLIES				
Supply Voltage	VDD		$\begin{array}{ll}4.5 & 5.5\end{array}$	V
Supply Current	IDD	(Note 3)	$0.85 \quad 0.98$	mA
Supply Current in Shutdown	0	(Note 3)	$10 \quad 20$	$\mu \mathrm{A}$
Reference Current in Shutdown			0.01 ± 1	$\mu \mathrm{A}$

Note 1: Guaranteed from code 11 to code 4095 in unity-gain configuration.
Note 2: Accuracy is better than 1.0LSB for VOUT $=6 \mathrm{mV}$ to $\mathrm{V}_{\mathrm{DD}}-60 \mathrm{mV}$, guaranteed by PSR test on end points.
Note 3: $R L=\infty$, digital inputs at DGND or VDD.

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{REFAB}=\mathrm{REFCD}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to T_{MAX}, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$. Output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
TIMING CHARACTERISTICS (Figure 6)				
SCLK Clock Period	tcP	- ${ }^{2}$	100	ns
SCLK Pulse Width High	tch		40	ns
SCLK Pulse Width Low	tcL	1.-	40	ns
$\overline{\text { CS }}$ Fall to SCLK Rise Setup Time	tcss		40	ns
SCLK Rise to $\overline{\mathrm{CS}}$ Rise Hold Time	tcSH		0	ns
DIN Setup Time	tDS		40	ns
DIN Hold Time	tDH	-	0	ns
SCLK Rise to DOUT Valid Propagation Delay	tD01	CLOAD $=200 \mathrm{pF}$	-80	ns
SCLK Fall to DOUT Valid Propagation Delay	tD02	CLOAD $=200 \mathrm{pF}$	- 80	ns
SCLK Rise to $\overline{\mathrm{CS}}$ Fall Delay	tCSO		40	ns
$\overline{\text { CS }}$ Rise to SCLK Rise Hold Time	tCS1		$40 \sim 0$	ns
$\overline{\text { CS }}$ Pulse Width High	tcsw		100	ns

Typical Operating Characteristics
$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

MAJOR-CARRY TRANSITION

10us/div
$V_{\text {REF }}=2.5 \mathrm{~V}, R_{L}=5 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

$10 \mu \mathrm{~s} / \mathrm{div}$
$V_{\text {REF }}=2.5 \mathrm{~V}, R_{L}=5 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$
DAC A CODE SWITCHING FROM OOB HEX TO FFF HEX DAC B CODE SET TO 800 HEX

DIGITAL FEEDTHROUGH (SCLK = 100kHz)

$2 \mu \mathrm{~s} / \mathrm{div}$
$V_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$
$\overline{\mathrm{CS}}=\overline{\mathrm{PDL}}=\overline{\mathrm{CL}}=5 \mathrm{~V}, \mathrm{DIN}=0 \mathrm{~V}$
DAC A CODE SET TO 800 HEX

$10 \mu \mathrm{~s} / \mathrm{div}$
$V_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
SWITCHING FROM CODE 000 HEX TO FB4 HEX
OUTPUT AMPLIFIER GAIN $=+2$

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Pin Description

PIN	NAME	
1	AGND	Analog Ground
2	FBA	DAC A Output Amplifier Feedback
3	OUTA	DAC A Output Voltage
4	OUTB	DAC B Output Voltage
5	FBB	DAC B Output Amplifier Feedback
6	REFAB	Reference Voltage Input for DAC A and DAC B
7	$\overline{\text { CL }}$	Clear All DACs and Registers. Resets all outputs (OUT_, UPO, DOUT) to 0, active low.
8	$\overline{\text { CS }}$	Chip-Select Input. Active low.
9	DIN	Serial-Data Input
10	SCLK	Serial Clock Input
11	DGND	Digital Ground
12	DOUT	Serial-Data Output
13	UPO	User-Programmable Logic Output
14	$\overline{\text { PDL }}$	Power-Down Lockout. Active low. Locks out software shutdown if low.
15	REFCD	Reference Voltage Input for DAC C and DAC D
16	FBC	DAC C Output Amplifier Feedback
17	OUTC	DAC C Output Voltage
18	OUTD	DAC D Output Voltage
19	FBD	DAC D Output Amplifier Feedback
20	VDD	Positive Power Supply

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

SHOWN FOR ALL is ON DAC

Figure 1. Simplified DAC Circuit Diagram

Detailed Description

The MAX525 contains four 12-bit, voltage-output digi-tal-to-analog converters (DACs) that are easily addressed using a simple 3 -wire serial interface. It includes a 16 -bit data-in/data-out shift register, and each DAC has a doubled-buffered input composed of an input register and a DAC register (see Functional Diagram). In addition to the four voltage outputs, each amplifier's negative input is available to the user.
The DACs are inverted R-2R ladder networks that convert 12-bit digital inputs into equivalent analog output voltages in proportion to the applied reference voltage inputs. DACs A and B share the REFAB reference input, while DACs C and D share the REFCD reference input. The two reference inputs allow different full-scale output voltage ranges for each pair of DACs. Figure 1 shows a simplified circuit diagram of one of the four DACs.

Reference Inputs

The two reference inputs accept positive DC and AC signals. The voltage at each reference input sets the full-scale output voltage for its two corresponding DACs. The reference input voltage range is OV to (VDD - 1.4V). The output voltages (VOUT_) are represented by a digitally programmable voltage source as:

$$
\text { Vout_ }=(\text { VREF } \times \text { NB / 4096 }) \times \text { Gain }
$$

where NB is the numeric value of the DAC's binary input code (0 to 4095), VREF is the reference voltage, and Gain is the externally set voltage gain.

The impedance at each reference input is code-dependent, ranging from a low value of $10 \mathrm{k} \Omega$ when both DACs connected to the reference have an input code of 555 hex, to a high value exceeding several gigohms (leakage currents) with an input code of 000 hex. Because the input impedance at the reference pins is code-dependent, load regulation of the reference source is important.
The REFAB and REFCD reference inputs have a $10 \mathrm{k} \Omega$ guaranteed minimum input impedance. When the two reference inputs are driven from the same source, the effective minimum impedance is $5 \mathrm{k} \Omega$. A voltage reference with a load regulation of $6 \mathrm{ppm} / \mathrm{mA}$, such as the MAX873, would typically deviate by 0.025 LSB (0.061 LSB worst case) when driving both MAX525 reference inputs simultaneously at 2.5 V . Driving the REFAB and REFCD pins separately improves reference accuracy.
In shutdown mode, the MAX525's REFAB and REFCD inputs enter a high-impedance state with a typical input leakage current of $0.01 \mu \mathrm{~A}$.
The reference input capacitance is also code dependent and typically ranges from 20 pF with an input code of all 0 s to 100 pF with an input code of all 1 s .

Output Amplifiers

All MAX525 DAC outputs are internally buffered by precision amplifiers with a typical slew rate of $0.6 \mathrm{~V} / \mathrm{\mu s}$. Access to the inverting input of each output amplifier provides the user greater flexibility in output gain setting/ signal conditioning (see the Applications Information section).
With a full-scale transition at the MAX525 output, the typical settling time to $\pm 1 / 2 \mathrm{LSB}$ is $12 \mu \mathrm{~s}$ when loaded with $5 \mathrm{k} \Omega$ in parallel with 100 pF (loads less than $2 \mathrm{k} \Omega$ degrade performance).
The MAX525 output amplifier's output dynamic responses and settling performances are shown in the Typical Operating Characteristics.

Power-Down Mode
The MAX525 features a software-programmable shutdown that reduces supply current to a typical value of $10 \mu \mathrm{~A}$. The power-down lockout ($\overline{\mathrm{PDL}}$) pin must be high to enable the shutdown mode. Writing 1100XXXXXXXXXXXX as the input-control word puts the MAX525 in powerdown mode (Table 1).

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

In power-down mode, the MAX525 output amplifiers and the reference inputs enter a high-impedance state. The serial interface remains active. Data in the input registers is retained in power-down, allowing the MAX525 to recall the output states prior to entering shutdown. Start up from power-down either by recalling the previous configuration or by updating the DACs with new data. When powering up the device or bringing it out of shutdown, allow 15μ s for the outputs to stabilize.

Serial-Interface Configurations

The MAX525's 3-wire serial interface is compatible with both MICROWIRE (Figure 2) and SPI/QSPI (Figure 3). The serial input word consists of two address bits and two control bits followed by 12 data bits (MSB first), as shown in Figure 4. The 4-bit address/ control code determines the MAX525's response outlined in Table 1. The connection between DOUT and the serial-interface port is not necessary, but may be used for data echo. Data held in the MAX525's shift register can be shifted out of DOUT and returned to the microprocessor ($\mu \mathrm{P}$) for data verification.
The MAX525's digital inputs are double buffered. Depending on the command issued through the serial interface, the input register(s) can be loaded without affecting the DAC register(s), the DAC register(s) can be loaded directly, or all four DAC registers can be updated simultaneously from the input registers (Table 1).

Serial-Interface Description

The MAX525 requires 16 bits of serial data. Table 1 lists the serial-interface programming commands. For certain commands, the 12 data bits are "don't cares." Data is sent MSB first and can be sent in two 8-bit packets or one 16-bit word ($\overline{\mathrm{CS}}$ must remain low until 16 bits are transferred). The serial data is composed of two DAC address bits (A1, A0) and two control bits (C1, C0), followed by the 12 data bits D11...D0 (Figure 4). The 4-bit address/control code determines:

- The register(s) to be updated
- The clock edge on which data is to be clocked out through the serial-data output (DOUT)
- The state of the user-programmable logic output (UPO)
- If the part is to go into shutdown mode (assuming $\overline{\text { PDL }}$ is high)
- How the part is configured when coming out of shutdown mode.

*THE DOUT-SI CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX525, BUT CAN BE USED FOR READBACK PURPOSES.

Figure 2. Connections for Microwire

*THE DOUT-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THE MAX525, BUT CAN BE USED FOR READBACK PURPOSES.

Figure 3. Connections for SPI/QSPI

Figure 4. Serial-Data Format

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Table 1. Serial-Interface Programming Commands

16-BIT SERIAL WORD					FUNCTION
A1	A0	C1	C0	D11................D0 MSB LSB	
0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	12-bit DAC data 12-bit DAC data 12-bit DAC data 12-bit DAC data	Load input register A; DAC registers unchanged. Load input register B; DAC registers unchanged. Load input register C; DAC registers unchanged. Load input register D; DAC registers unchanged.
0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	12-bit DAC data 12-bit DAC data 12-bit DAC data 12-bit DAC data	Load input register A; all DAC registers updated. Load input register B; all DAC registers updated. Load input register C; all DAC registers updated. Load input register D; all DAC registers updated.
0	1	0	0	XXXXXXXXXXXX	Update all DAC registers from their respective input registers (start-up).
1	0	0	0	12-bit DAC data	Load all DAC registers from shift register (start-up).
1	1	0	0	XXXXXXXXXXXXX	Shutdown (provided $\overline{\mathrm{PDL}}=1$)
0	0	1	0	XXXXXXXXXXXXX	UPO goes low (default)
0	1	1	0	XXXXXXXXXXXXX	UPO goes high
0	0	0	0	XXXXXXXXXXXXX	No operation (NOP) to DAC registers
1	1		0	XXXXXXXXXXXX	Mode 1, DOUT clocked out on SCLK's rising edge. All DAC registers updated.
1	0		0	XXXXXXXXXXXX	Mode 0, DOUT clocked out on SCLK's falling edge. All DAC registers updated (default).

" X " = Don't care

Figure 5 shows the serial-interface timing requirements. The chip-select pin ($\overline{\mathrm{CS}}$) must be low to enable the DAC's serial interface. When $\overline{\mathrm{CS}}$ is high, the interface control circuitry is disabled. $\overline{\mathrm{CS}}$ must go low at least tcss before the rising serial clock (SCLK) edge to properly clock in the first bit. When $\overline{\mathrm{CS}}$ is low, data is clocked into the internal shift register through the serialdata input pin (DIN) on SCLK's rising edge. The maximum guaranteed clock frequency is 10 MHz . Data is latched into the appropriate MAX525 input/DAC registers on $\overline{\mathrm{CS}}$'s rising edge.
The programming command Load-All-DACs-From-ShiftRegister allows all input and DAC registers to be simultaneously loaded with the same digital code from the input shift register. The no operation (NOP) command leaves the register contents unaffected and is useful when the MAX525 is configured in a daisy chain (see the Daisy Chaining Devices section). The command to
change the clock edge on which serial data is shifted out of DOUT also loads data from all input registers to their respective DAC registers.

Serial-Data Output (DOUT)

The serial-data output, DOUT, is the internal shift register's output. The MAX525 can be programmed so that data is clocked out of DOUT on SCLK's rising edge (Mode 1) or falling edge (Mode 0). In Mode 0, output data at DOUT lags input data at DIN by 16.5 clock cycles, maintaining compatibility with MICROWIRE, SPI/QSPI, and other serial interfaces. In Mode 1, output data lags input data by 16 clock cycles. On power-up, DOUT defaults to Mode 0 timing.

User-Programmable Logic Output (UPO)

The user-programmable logic output, UPO, allows an external device to be controlled through the MAX525 serial interface (Table 1).

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Figure 5. Serial-Interface Timing Diagram

Figure 6. Detailed Serial-Interface Timing Diagram

Power-Down Lockout (PDL)

The power-down lockout pin PDL disables software shutdown when low. When in shutdown, transitioning $\overline{\text { PDL }}$ from high to low wakes up the part with the output set to the state prior to shutdown. PDL could also be used to asynchronously wake up the device.

Daisy Chaining Devices

Any number of MAX525s can be daisy chained by connecting the DOUT pin of one device to the DIN pin of the following device in the chain (Figure 7).

Since the MAX525's DOUT pin has an internal active pullup, the DOUT sink/source capability determines the time required to discharge/charge a capacitive load. Refer to the serial-data-out VOH and VOL specifications in the Electrical Characteristics.

Figure 8 shows an alternate method of connecting several MAX525s. In this configuration, the data bus is common to all devices; data is not shifted through a daisy chain. More I/O lines are required in this configuration because a dedicated chip-select input $(\overline{\mathrm{CS}})$ is required for each IC

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Figure 7. Daisy-Chaining MAX525s

Figure 8. Multiple MAX525s Sharing a Common DIN Line

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Applications Information

Unipolar Output

For a unipolar output, the output voltages and the reference inputs have the same polarity. Figure 9 shows the MAX525 unipolar output circuit, which is also the typical operating circuit. Table 2 lists the unipolar output codes.
For rail-to-rail outputs, see Figure 10. This circuit shows the MAX525 with the output amplifiers configured with a closed-loop gain of +2 to provide 0 V to 5 V full-scale range when a 2.5 V reference is used.
Table 2. Unipolar Code Table

DAC CONTENTS		ANALOG OUTPUT	
MSB	LSB	+VREF $\left(\frac{4095}{4096}\right)$	
1111	1111	1111	$+V_{\text {REF }}\left(\frac{2049}{4096}\right)$
1000	0000	0001	$+V_{\text {REF }}\left(\frac{2048}{4096}\right)=\frac{+V_{\text {REF }}}{2}$
1000	0000	0000	$+V_{\text {REF }}\left(\frac{2047}{4096}\right)$
0111	1111	1111	$+V_{\text {REF }}\left(\frac{1}{4096}\right)$
0000	0000	0001	0000
0000	$0 V$		

Table 3. Bipolar Code Table

DAC CONTENTS		ANALOG OUTPUT	
MSB	LSB	$+\operatorname{VREF}\left(\frac{2047}{2048}\right)$	
1111	1111	1111	$+\operatorname{VREF}\left(\frac{1}{2048}\right)$
1000	0000	0001	$0 V$
1000	0000	0000	$-\operatorname{VREF}\left(\frac{1}{2048}\right)$
0111	1111	1111	$-\operatorname{VREF}\left(\frac{2047}{2048}\right)$
0000	0000	0001	0000
0000	000	$-\operatorname{VREF}\left(\frac{2048}{2048}\right)=-V_{\text {REF }}$	

Note: $1 \mathrm{LSB}=\left(\mathrm{V}_{\text {REF }}\right)\left(\frac{1}{4096}\right)$

Bipolar Output
The MAX525 outputs can be configured for bipolar operation using Figure 11's circuit.
VoUT = VREF [(2NB / 4096) - 1]
where NB is the numeric value of the DAC's binary input code. Table 3 shows digital codes (offset binary) and corresponding output voltages for Figure 11's circuit.

Figure 9. Unipolar Output Circuit

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Figure 10. Unipolar Rail-to-Rail Output Circuit

Figure 11. Bipolar Output Circuit

Using an AC Reference

In applications where the reference has AC signal components, the MAX525 has multiplying capability within the reference input range specifications. Figure 12 shows a technique for applying a sine-wave signal to the reference input where the AC signal is offset before being applied to REFAB/REFCD. The reference voltage must never be more negative than DGND.
The MAX525's total harmonic distortion plus noise (THD $+N$) is typically less than -72 dB , given a $1 \mathrm{Vp}-\mathrm{p}$ signal swing and input frequencies up to 25 kHz . The typical -3 dB frequency is 650 kHz , as shown in the Typical Operating Characteristics graphs.

Digitally Programmable Current Source

The circuit of Figure 13 places an NPN transistor (2N3904 or similar) within the op-amp feedback loop to implement a digitally programmable, unidirectional current source. This circuit can be used to drive 4 mA to 20 mA current loops, which are commonly used in industrial-control applications. The output current is calculated with the following equation:

$$
\text { IOUT }=(\text { VREF } / R) \times(N B / 4096)
$$

where $N B$ is the numeric value of the DAC's binary input code and R is the sense resistor shown in Figure 13.

Figure 12. AC Reference Input Circuit

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Figure 13. Digitally Programmable Current Source

Power-Supply Considerations
On power-up, all input and DAC registers are cleared (set to zero code) and DOUT is in Mode 0 (serial data is shifted out of DOUT on the clock's falling edge).
For rated MAX525 performance, limit REFAB/REFCD to less than 1.4 V below V_{DD}. Bypass V_{DD} with a $4.7 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor to AGND. Use short lead lengths and place the bypass capacitors as close to the supply pins as possible.

Grounding and Layout Considerations

Digital or AC transient signals between AGND and DGND can create noise at the analog outputs. Tie AGND and DGND together at the DAC, then tie this point to the highest-quality ground available.
Good printed circuit board ground layout minimizes crosstalk between DAC outputs, reference inputs, and digital inputs. Reduce crosstalk by keeping analog lines away from digital lines. Wire-wrapped boards are not recommended

Pin Configuration

TOP VIEW

Low－Power，Quad，12－Bit Voltage－Output DAC with Serial Interface
＿Ordering Information（continued） \qquad Chip Information

PART	TEMP RANGE	PIN－PACKAGE	INL （LSBs）
MAX525BC／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	± 1
MAX525AEPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP	$\pm 1 / 2$
MAX525BEPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP	± 1
MAX525AEAP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP	$\pm 1 / 2$
MAX525BEAP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP	± 1
MAX525AMJP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mathrm{CERDIP**}$	$\pm 1 / 2$
MAX525BMJP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 CERDIP＊＊	± 1

TRANSISTOR COUNT： 4337
＊Dice are specified at $T_{A}=+25^{\circ} \mathrm{C}, D C$ parameters only．
＊＊Contact factory for availability and processing to MIL－STD－883．

Package Information
（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．
\qquad Maxim Integrated Products， 120 San Gabriel Drive，Sunnyvale，CA 94086 408－737－7600

