
#### Abstract

General Description The MAX536／MAX537 combine four 12－bit，voltage－output digital－to－analog converters（DACs）and four precision output amplifiers in a space－saving 16 －pin package． Offset，gain，and linearity are factory calibrated to provide the MAX536＇s $\pm 1$ LSB total unadjusted error．The MAX537 operates with $\pm 5 \mathrm{~V}$ supplies，while the MAX536 uses -5 V and +12 V to +15 V supplies． Each DAC has a double－buffered input，organized as an input register followed by a DAC register．A 16－bit serial word is used to load data into each input／DAC register．The serial interface is compatible with either SPI／QSPITM or Microwire ${ }^{\text {TM }}$ ，and allows the input and DAC registers to be updated independently or simulta－ neously with a single software command．The DAC reg－ isters can be simultaneously updated with a hardware LDAC pin．All logic inputs are TTL／CMOS compatible．


## Applications

Industrial Process Controls
Automatic Test Equipment
Digital Offset and Gain Adjustment
Motion Control Devices
Remote Industrial Controls
Microprocessor－Controlled Systems
Functional Diagram


Features
－Four 12－Bit DACs with Output Buffers
－Simultaneous or Independent Control of Four DACs via a 3－Wire Serial Interface
－Power－On Reset
－SPI／QSPI and Microwire Compatible
－$\pm 1$ LSB Total Unadjusted Error（MAX536）
－Full 12－Bit Performance without Adjustments
－$\pm 5 \mathrm{~V}$ Supply Operation（MAX537）
－Double－Buffered Digital Inputs
－Buffered Voltage Output
－16－Pin DIP／SO Packages
Ordering Information

| PART | TEMP．RANGE | PIN－PACKAGE | INL <br> （LSB） |
| :--- | :--- | :--- | :---: |
| MAX536ACPE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 1 / 2$ |
| MAX536BCPE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 1$ |
| MAX536ACWE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Wide SO | $\pm 1 / 2$ |
| MAX536BCWE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Wide SO | $\pm 1$ |
| MAX536BC／D | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Dice＊ | $\pm 1$ |
| MAX536AEPE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 1 / 2$ |
| MAX536BEPE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 1$ |
| MAX536AEWE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Wide SO | $\pm 1 / 2$ |
| MAX536BEWE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Wide SO | $\pm 1$ |
| MAX536AMDE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 Ceramic $\mathrm{SB} *$ | $\pm 1 / 2$ |
| MAX536BMDE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 Ceramic $\mathrm{SB}{ }^{* *}$ | $\pm 1$ |

Ordering Information continued at end of data sheet．
＊Contact factory for dice specifications．
＊＊Contact factory for availability and processing to MIL－STD－883．
Pin Configuration


SPI and QSPI are trademarks of Motorola，Inc．Microwire is a trademark of National Semiconductor Corp．

## Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface

## ABSOLUTE MAXIMUM RATINGS

| VDD to AGND or DGND |  |
| :---: | :---: |
| MAX536 ........................................................-0.3V, +17V |  |
|  |  |
| VSS to AGND or DGND ........................................-7V, +0.3V |  |
| SDI, SCK, $\overline{C S}$, LDAC, TP, SDO |  |
| to AGND or DGND................................-0.3V, (VDD + 0.3V) |  |
| REFAB, REFCD to AGND or DGND ............-0.3V, (VDD + 0.3V) |  |
| OUT_ to AGND or DGND .......................................VDD, VSS |  |
| aximum Current into Any | 50 m |



Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS-MAX536

$\left(V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{REFAB} / R E F C D=10 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)


# Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface 

## ELECTRICAL CHARACTERISTICS—MAX536 (continued)

$\left(V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \operatorname{REFAB} / R E F C D=10 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)


## Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface

## ELECTRICAL CHARACTERISTICS-MAX536 (continued)

$\left(V_{D D}=+15 \mathrm{~V}, \mathrm{~V} S S=-5 \mathrm{~V}, \mathrm{REFAB} / \mathrm{REFCD}=10 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)


Note 1: TUE is specified with no resistive load.
Note 2: Guaranteed by design.
Note 3: Crosstalk is defined as the glitch energy at any DAC output in response to a full-scale step change on any other DAC.
Note 4: Digital inputs at 2.4 V ; with digital inputs at CMOS levels, IDD decreases slightly.
Note 5: All input signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 5 \mathrm{~ns}$. Logic input swing is 0 V to 5 V .
Note 6: Serial data clocked out of SDO on SCK's falling edge. (SDO is an open-drain output for the MAX536. The MAX537's SDO pin has an internal active pull-up.)
Note 7: Serial data clocked out of SDO on SCK's rising edge.
Note 8: SDO changes from High-Z state to $90 \%$ of final value.
Note 9: SDO rises 10\% toward High-Z state.

# Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface 

## ELECTRICAL CHARACTERISTICS—MAX537

$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \operatorname{REFAB} / R E F C D=2.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)


## Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface

## ELECTRICAL CHARACTERISTICS-MAX537 (continued)

$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{REFAB} / R E F C D=2.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)


# Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface 

## ELECTRICAL CHARACTERISTICS-MAX537 (continued)

$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{REFAB} / R E F C D=2.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

| PARAMETER | SYMBOL |  |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{CS}}$ Fall to SDO Enable | tDV | CLOAD $=50 \mathrm{pF}$ | MAX537_C/E |  | 75 | 140 | ns |
|  |  |  | MAX537_M |  |  | 170 |  |
| $\overline{\mathrm{CS}}$ Rise to SDO Disable (Note 10) | tTR | CLOAD $=50 \mathrm{pF}$ | MAX537_C/E |  | 70 | 130 | ns |
|  |  |  | MAX537_M |  |  | 165 |  |
| SCK Rise to $\overline{C S}$ Fall Delay | tcso | Continuous SCK, SCK edge ignored | MAX537_C/E | 35 |  |  | ns |
|  |  |  | MAX537_M | 40 |  |  |  |
| $\overline{\mathrm{CS}}$ Rise to SCK Rise Hold Time | tCS1 | SCK edge ignored | MAX537_C/E | 35 |  |  | ns |
|  |  |  | MAX537_M | 40 |  |  |  |
|  | tLDAC | MAX537_C/E |  | 50 |  |  | ns |
|  |  | MAX537_M |  | 70 |  |  |  |
| $\overline{\mathrm{CS}}$ Pulse Width High | tcsw | MAX537_C/E |  | 100 |  |  | ns |
|  |  | MAX537_M |  | 125 |  |  |  |

Note 2: Guaranteed by design.
Note 3: Crosstalk is defined as the glitch energy at any DAC output in response to a full-scale step change on any other DAC
Note 4: Digital inputs at 2.4 V ; with digital inputs at CMOS levels, IDD decreases slightly.
Note 5: All input signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{tF} \leq 5 \mathrm{~ns}$. Logic input swing is 0 V to 5 V .
Note 6: Serial data clocked out of SDO on SCK's falling edge. (SDO is an open-drain output for the MAX536. The MAX537's SDO pin has an internal active pull-up.)
Note 7: Serial data clocked out of SDO on SCK's rising edge.
Note 10: When disabled, SDO is internally pulled high.

## Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface



TOTAL HARMONIC DISTORTION PLUS NOISE vs. REFERENCE FREQUENCY


MAX536 REFERENCE FEEDTHROUGH AT 400 Hz


500 $\mu \mathrm{s} / \mathrm{div}$

MAX536

MAX536
REFERENCE VOLTAGE INPUT
FREQUENCY RESPONSE


MAX536
FULL-SCALE ERROR vs. LOAD


M AX536
TOTAL HARM ONIC DISTORTION PLUS NOISE vs. REFERENCE FREQUENCY


MAX536
SUPPLY CURRENT vs. TEMPERATURE


MAX536 REFERENCE FEEDTHROUGH AT 4kHz

$50 \mu \mathrm{~s} / \mathrm{div}$
INPUT CODE = ALL Os

## Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface

## Typical Operating Characteristics (continued)

( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

## MAX536

MAX536
DYNAMIC RESPONSE (ALL BITS ON, OFF, ON)

$5 \mu \mathrm{~s} / \mathrm{div}$
$V_{D D}=+15 V, V_{S S}=-5 V$, REFAB $=5 V, C_{L}=100 \mathrm{pF}, R_{L}=10 \mathrm{k} \Omega$

MAX536
POSITIVE FULL-SCALE SETTLING TIME (ALL BITS OFF TO ALL BITS ON)

$1 \mu \mathrm{~s} / \mathrm{div}$
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{REFAB}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$

MAX536
NEGATIVE FULL-SCALE SETTUING TIME
(ALL BITS ON TO ALL BITS OFF)

$1 \mu \mathrm{~s} / \mathrm{div}$
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{REFAB}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$

M AX536
DIGITAL FEEDTHROUGH

$V_{D D}=+15 \mathrm{~V}, V_{S S}=-5 \mathrm{~V}, \mathrm{REFAB}=10 \mathrm{~V}, \overline{C S}=\mathrm{HIGH}$, DIN TOGGLING AT ½ THE CLOCK RATE, OUTA $=5 \mathrm{~V}$

## Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface

Typical Operating Characteristics (continued)


M AX537
TOTAL HARM ONIC DISTORTION PLUS NOISE
vs. FREQUENCY


REFERENCE FEEDTHROUGH AT 400 Hz

$500 \mu \mathrm{~s} / \mathrm{div}$
INPUT CODE = ALL Os

MAX537

MAX537
REFERENCE VOLTAGE INPUT FREQUENCY RESPONSE


MAX537
FULL-SCALE ERROR vs. LOAD


MAX537
TOTAL HARM ONIC DISTORTION PLUS NOISE vs. FREQUENCY


MAX537
SUPPLY CURRENT vs. TEMPERATURE


MAX537
REFERENCE FEEDTHROUGH AT 4kHz

$50 \mu \mathrm{~s} / \mathrm{div}$
INPUT CODE = ALL Os

## Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface

## Typical Operating Characteristics (continued)

( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

## MAX537

MAX537
DYNAMIC RESPONSE (ALL BITS ON, OFF, ON)

$5 \mu \mathrm{~s} / \mathrm{div}$
$V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{REFAB}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$

MAX537
POSITIVE FULL-SCALE SETTLING TIME (ALL BITS OFF TO ALL BITS ON)

$1 \mu \mathrm{~s} / \mathrm{div}$
$V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{REFAB}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$

MAX537
NEGATIVE FULL-SCALE SETTLING TIME (ALL BITS ON TO ALL BITS OFF)


1 $\mu \mathrm{s} / \mathrm{div}$
$V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{REFAB}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$

MAX537
DIGITAL FEEDTHROUGH


100ns/div
$V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{REFAB}=2.5 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{HIGH}$, DIN TOGGLING AT $1 / 2$ THE CLOCK RATE, OUTA $=1.25 \mathrm{~V}$

## Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface

Pin Description

| PIN | NAME |  |
| :---: | :---: | :--- |
| 1 | OUTB | DAC B Output Voltage |
| 2 | OUTA | DAC A Output Voltage |
| 3 | VSS | Negative Power Supply |
| 4 | AGND | Analog Ground |
| 5 | REFAB | Reference Voltage Input for DAC A and DAC B |
| 6 | DGND | Digital Ground |
| 7 | $\overline{\text { LDAC }}$ | Load DAC Input (active low). Driving this asynchronous input low transfers the contents of all input <br> registers to their respective DAC registers. |
| 8 | SDI | Serial Data Input. Data is shifted into an internal 16-bit shift register on SCK's rising edge. |
| 9 | $\overline{\text { CS }}$ | Chip-Select Input (active low). A low level on $\overline{\text { CS }}$ enables the input shift register and SDO. <br> On $\overline{\text { CS's rising edge, data is latched into the appropriate register(s). }}$ <br> 10$\quad$ SCK |
| 11 | Shift Register Clock Input |  |
| 12 | REFCD | Serial Data Output. SDO is the output of the internal shift register. SDO is enabled when $\overline{\text { CS }}$ <br> For is low. MAX536, SDO is an open-drain output. For the MAX537, SDO has an active pull-up to VDD. |
| 13 | Reference Voltage Input for DAC C and DAC D |  |
| 14 | VDD | Test Pin. Connect to VDD for proper operation. |
| 15 | OUTD | Positive Power Supply |
| 16 | OUTC | DAC D Output Voltage |

## Detailed Description

The MAX536/MAX537 contain four 12-bit voltage-output DACs that are easily addressed using a simple 3 -wire serial interface. They include a 16 -bit data-in/data-out shift register, and each DAC has a double-buffered input composed of an input register and a DAC register (see the Functional Diagram on the front page).
The DACs are "inverted" R-2R ladder networks that convert 12-bit digital inputs into equivalent analog output voltages in proportion to the applied reference-voltage inputs. DAC A and DAC B share the REFAB reference input, while DAC C and DAC D share the REFCD reference input. The two reference inputs allow different full-scale output voltage ranges for each pair of DACs. Figure 1 shows a simplified circuit diagram of one of the four DACs.

## Reference Inputs

The two reference inputs accept positive DC and AC signals. The voltage at each reference input sets the full-scale output voltage for its two corresponding DACs. The REFAB/REFCD voltage range is 0 V to (VDD - 4V) for the MAX536 and OV to (VDD - 2.2V) for the MAX537. The output voltages Vout_are represented by


Figure 1. Simplified DAC Circuit Diagram
a digitally programmable voltage source as:

$$
\text { Vout_ }=N_{B}\left(V_{\text {REF }}\right) / 4096
$$

where $N_{B}$ is the numeric value of the DAC's binary input code (0 to 4095) and VREF is the reference voltage.

# Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface 

The input impedance at each reference input is code dependent, ranging from a low value of typically $6 \mathrm{k} \Omega$ (with an input code of 010101010101 ) to a high value of $60 \mathrm{k} \Omega$ (with an input code of 000000000000 ). Since the input impedance at the reference pins is code dependent, load regulation of the reference source is important.
The REFAB and REFCD reference inputs have a $5 \mathrm{k} \Omega$ guaranteed minimum input impedance. When the two reference inputs are driven from the same source, the effective minimum impedance becomes $2.5 \mathrm{k} \Omega$. A voltage reference with a load regulation of $0.001 \% / \mathrm{mA}$, such as the MAX674, would typically deviate by 0.164 LSB ( 0.328 LSB worst case) when simultaneously driving both MAX536 reference inputs at 10V.
An op amp, such as the MAX400 or OP07, can be used to buffer the reference to increase reference accuracy. The op amp's closed-loop output impedance should be kept below $0.05 \Omega$ to ensure an error of less than 0.08 LSB . Reference accuracy is also improved by driving the REFAB and REFCD pins separately, or by using a reference with excellent accuracy and superior load regulation, such as the MAX676/MAX677/MAX678.

The reference input capacitance is also code dependent and typically ranges from 125pF to 300pF.


Figure 2. Connections for Microwire

## Output Buffer Amplifiers

All MAX536/MAX537 voltage outputs are internally buffered by precision unity-gain followers with a typical slew rate of $5 \mathrm{~V} / \mu \mathrm{s}$ for the MAX536 and $3 \mathrm{~V} / \mu$ s for the MAX537.

With a full-scale transition at the MAX536 output (0V to 10 V or 10 V to 0 V ), the typical settling time to $\pm 1 / 2 \mathrm{LSB}$ is $3 \mu \mathrm{~s}$ when loaded with $5 \mathrm{k} \Omega$ in parallel with 100 pF (loads less than $5 \mathrm{k} \Omega$ degrade performance).
With a full-scale transition at the MAX537 output ( 0 V to 2.5 V or 2.5 V to 0 V ), the typical settling time to $\pm 1 / 2 \mathrm{LSB}$ is $5 \mu$ s when loaded with $5 \mathrm{k} \Omega$ in parallel with 100 pF (loads less than $5 \mathrm{k} \Omega$ degrade performance).

Output dynamic responses and settling performances of the MAX536/MAX537 output amplifier are shown in the Typical Operating Characteristics.

## Serial-Interface Configurations

The MAX536/MAX537's 3-wire or 4-wire serial interface is compatible with both Microwire (Figure 2) and SPI/QSPI (Figure 3). In Figures 2 and 3, LDAC can be tied either high or low for a 3-wire interface, or used as the fourth input with a 4 -wire interface. The connection between SDO and the serial-interface port is not necessary, but may be used for data echo. (Data held in the shift register

*THE SDO-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THEMAX536, BUT MAY BE USED FOR READBACK PURPOSES.
**THE LDAC CONNECTION IS NOT REQUIRED WHEN USING THE 3-WIRE INTERFACE.
†THEMAX537 HAS AN INTERNAL ACTIVE PULL-UP TO VDD SO Rp IS NOT NECESSARY.

Figure 3. Connections for SPI/QSPI

## Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface



Figure 4. 3-Wire Serial-Interface Timing Diagram ( $\overline{L D A C}=G N D$ or $V_{D D}$ )


Figure 5. 4-Wire Serial-Interface Timing Diagram for Asynchronous DAC Updating Using LDAC


Figure 6. Detailed Serial-Interface Timing Diagram

# Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface 

of the MAX536/MAX537 can be shifted out of SDO and returned to the microprocessor for data verification; data in the MAX536/MAX537 input/DAC registers cannot be read.)
With a 3-wire interface ( $\overline{\mathrm{CS}}, \mathrm{SCK}, \mathrm{SDI}$ ) and $\overline{\text { LDAC }}$ tied high, the DACs are double-buffered. In this mode, depending on the command issued through the serial interface, the input register(s) may be loaded without affecting the DAC register(s), the DAC register(s) can be loaded directly, or all four DAC registers may be simultaneously updated from the input registers. With a 3wire interface ( $\overline{\mathrm{CS}}, \mathrm{SCK}, \mathrm{SDI}$ ) and LDAC tied low (Figure 4), the DAC registers remain transparent. Any time an input register is updated, the change appears at the DAC output with the rising edge of $\overline{C S}$.
The 4-wire interface ( $\overline{\mathrm{CS}}, \mathrm{SCK}, \mathrm{SDI}, \overline{\mathrm{LDAC}})$ is similar to the 3-wire interface with $\overline{\text { LDAC }}$ tied high, except $\overline{\mathrm{LDAC}}$ is a hardware input that simultaneously and asynchronously loads all DAC registers from their respective input registers when driven low (Figure 5).

## Serial-Interface Description

The MAX536/MAX537 require 16 bits of serial data. Data is sent MSB first and can be sent in two 8-bit packets or one 16-bit word ( $\overline{\mathrm{CS}}$ must remain low until 16 bits are transferred). The serial data is composed of two DAC address bits (A1, A0), two control bits (C1, C0), and the 12 data bits D11...D0 (Figure 7). The 4-bit address/control code determines the following: 1) the register(s) to be updated and/or the status of the input and DAC registers (i.e., whether they are in transparent or latch mode), and 2) the edge on which data is clocked out of SDO.

Figure 7. Serial-Data Format (MSB Sent First)
Figure 6 shows the serial-interface timing requirements. The chip-select pin $(\overline{\mathrm{CS}})$ must be low to enable the DAC's serial interface. When $\overline{\mathrm{CS}}$ is high, the interface control circuitry is disabled and the serial data output pin (SDO) is driven high (MAX537) or is a high-impedance open drain (MAX536). $\overline{\mathrm{CS}}$ must go low at least $t_{\text {CSS }}$ before the rising serial clock (SCK) edge to properly clock in the first bit. When $\overline{\mathrm{CS}}$ is low, data is

clocked into the internal shift register via the serial data input pin (SDI) on SCK's rising edge. The maximum guaranteed clock frequency is 10 MHz . Data is latched into the appropriate MAX536/MAX537 input/DAC registers on $\overline{\mathrm{CS}}$ 's rising edge.
Interface timing is optimized when serial data is clocked out of the microcontroller/microprocessor on one clock edge and clocked into the MAX536/MAX537 on the other edge. Table 1 lists the serial-interface programming commands. For certain commands, the 12 data bits are "don't cares".

The programming command Load-All-DACs-From-ShiftRegister allows all input and DAC registers to be simultaneously loaded with the same digital code from the input shift register. The NOP (no operation) command allows the register contents to be unaffected and is useful when the MAX536/MAX537 are configured in a daisy-chain (see the Daisy-Chaining Devices section). The command to change the clock edge on which serial data is shifted out of the MAX536/MAX537 SDO pin also loads data from all input registers to their respective DAC registers.

## Serial-Data Output

The serial-data output, SDO, is the internal shift register's output. The MAX536/MAX537 can be programmed so that data is clocked out of SDO on SCK's rising (Mode 1) or falling (Mode 0) edge . In Mode 0, output data at SDO lags input data at SDI by 16.5 clock cycles, maintaining compatibility with Microwire, SPI/QSPI, and other serial interfaces. In Mode 1, output data lags input data by 16 clock cycles. On power-up, SDO defaults to Mode 1 timing.
For the MAX536, SDO is an open-drain output that should be pulled up to +5 V . The data sheet timing specifications for SDO use a $1 \mathrm{k} \Omega$ pull-up resistor. For the MAX537, SDO is a complementary output and does not require an external pull-up.

Test Pin
The test pin (TP) is used for pre-production analysis of the IC. Connect TP to VDD for proper MAX536/MAX537 operation. Failure to do so affects DAC operation.

Daisy-Chaining Devices
Any number of MAX536/MAX537s can be daisy-chained by connecting the SDO pin of one device (with a pull-up resistor, if appropriate) to the SDI pin of the following device in the chain (Figure 8).
Since the MAX537's SDO pin has an internal active pull-up, the SDO sink/source capability determines the time required to discharge/charge a capacitive load. Refer to the serial data out VOH and VOL specifications in the Electrical Characteristics.

# Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface 

## Table 1. Serial-Interface Programming Commands

| 16-BIT SERIAL WORD |  |  |  |  | $\overline{\text { LDAC }}$ | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | A0 | C1 | CO | D11...D0 |  |  |
| 0 | 0 | 0 | 1 | 12-bit DAC data | 1 | Load DAC A input register; DAC output unchanged. |
| 0 | 1 | 0 | 1 | 12-bit DAC data | 1 | Load DAC B input register; DAC output unchanged. |
| 1 | 0 | 0 | 1 | 12-bit DAC data | 1 | Load DAC C input register; DAC output unchanged. |
| 1 | 1 | 0 | 1 | 12-bit DAC data | 1 | Load DAC D input register; DAC output unchanged. |
| 0 | 0 | 1 | 1 | 12-bit DAC data | 1 | Load input register A; all DAC registers updated. |
| 0 | 1 | 1 | 1 | 12-bit DAC data | 1 | Load input register B; all DAC registers updated. |
| 1 | 0 | 1 | 1 | 12-bit DAC data | 1 | Load input register C; all DAC registers updated. |
| 1 | 1 | 1 | 1 | 12-bit DAC data | 1 | Load input register D; all DAC registers updated. |
| X | 0 | 0 | 0 | 12-bit DAC data | X | Load all DACs from shift register. |
| X | 1 | 0 | 0 | XXXXXXXXXXXX | X | No operation (NOP) |
| 0 | X | 1 | 0 | XXXXXXXXXXXX | 1 | Update all DACs from their respective input registers. |
| 1 | 1 | 1 | 0 | XXXXXXXXXXXX | X | Mode 1 (default condition at power-up), DOUT clocked out on SCK's rising edge. All DACs updated from their respective input registers. |
| 1 | 0 | 1 | 0 | XXXXXXXXXXXX | X | Mode 0, DOUT clocked out on SCK's falling edge. All DACs updated from their respective input registers. |
| 0 | 0 | X | 1 | 12-bit DAC data | 0 | Load DAC A input register; DAC A is immediately updated. |
| 0 | 1 | X | 1 | 12-bit DAC data | 0 | Load DAC B input register; DAC B is immediately updated. |
| 1 | 0 | X | 1 | 12-bit DAC data | 0 | Load DAC C input register; DAC C is immediately updated. |
| 1 | 1 | X | 1 | 12-bit DAC data | 0 | Load DAC D input register; DAC D is immediately updated. |

" X " = Don't Care. $\overline{\mathrm{LDAC}}$ provides true latch control: when $\overline{\mathrm{LDAC}}$ is low, the DAC registers are transparent; when $\overline{\mathrm{LDAC}}$ is high, the DAC registers are latched.

When daisy-chaining MAX536s, the delay from $\overline{\mathrm{CS}}$ low to SCK high (tcSs) must be the greater of:

$$
\begin{gathered}
\operatorname{tDV}+\operatorname{tDS} \\
\text { or } \\
\mathrm{tTR}+\operatorname{tRC}+\mathrm{tDS}-\mathrm{tcSW}
\end{gathered}
$$

where tRC is the time constant of the external pull-up resistor (Rp) and the load capacitance (C) at SDO. For $\operatorname{tRC}<20 \mathrm{~ns}$, tCSS is simply tDV + tDS. Calculate tRC from the following equation:

$$
\operatorname{tRC}=R_{p}(C)\left[\ln \left(\frac{\text { VPULL-UP }}{\text { VPULL-UP-2.4V }}\right)\right]
$$

where VPULL-UP is the voltage to which the pull-up resistor is connected.

Additionally, when daisy-chaining devices, the maximum clock frequency is limited to:

$$
\operatorname{fSCK}(\max )=\frac{1}{2(\operatorname{tDO}+\operatorname{tRC}-38 \mathrm{~ns}+\operatorname{tDS})}
$$

For example, with tRC $=23 \mathrm{~ns}(5 \mathrm{~V} \pm 10 \%$ supply with $R p=1 \mathrm{k} \Omega$ and $\mathrm{C}=30 \mathrm{pF}$ ), the maximum clock frequency is 8.7 MHz .

Figure 9 shows an alternate method of connecting several MAX536/MAX537s. In this configuration, the data bus is common to all devices; data is not shifted through a daisy-chain. More I/O lines are required in this configuration because a dedicated chip-select input $(\overline{\mathrm{CS}})$ is required for each IC.

## Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface



* THE MAX537 HAS AN ACTIVE INTERNAL PULL-UP, SO RP IS NOT NECESSARY.

Figure 8. Daisy-Chaining MAX536/MAX537s with a 3-Wire Serial Interface


Figure 9. Multiple devices sharing a common DIN line may be simultaneously updated by bringing $\overline{\text { LDAC low. CS1, CS2, CS3... are }}$ driven separately, thus controlling which data are written to devices 1, 2, 3...

# Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface 

## Applications Information

Interfacing to the M68HC11*
PORT D of the 68 HC 11 supports SPI. The four registers used for SPI operation are the Serial Peripheral Control Register, the Serial Peripheral Status Register, the Serial Peripheral Data I/O Register, and PORT D's Data Direction Register. These registers have a default starting location of $\$ 1000$.
On reset, the PORT D register (memory location \$1008) is cleared and bits 5-0 are configured as general-purpose inputs. Setting bit 6 (SPE) of the Serial Peripheral Control Register (SPCR) configures PORT D for SPI as follows:

| BIT |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| NAME |  |  |  |  |  |  |  |
| - | - | $\overline{S S}$ | SCK | MOSI MISO | TXD | RXD |  |

Bits 6 and 7 are not used. Writes to these bits are ignored. The PORT D Data Direction Register (DDRD) determines whether the port bits are inputs or outputs. Its configuration is shown below:
$\left.\begin{array}{|lllllll|}\hline \text { BIT } & & & & \\ 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right) 0$

Setting DDD_ = 0 configures the port bit as an input, while setting $\mathrm{DDD}_{-}^{-}=1$ configures the port bit as an output. Writes to bits 6 and 7 have no effect.
In SPI mode with MSTR = 1 , when a PORT $D$ bit is expected to be an input ( $\overline{\mathrm{SS}}, \mathrm{MISO}, \mathrm{RXD}$ ), the corresponding DDRD bit (DDD) is ignored. If the bit is expected to be an output (SCK, MOSI, TXD), the corresponding DDRD bit must be set for the bit to be an output.

## Table 2. Serial Peripheral Control-Register Definitions



Table 3. Serial Peripheral Status-Register Definitions

| NAME | DEFINITION |
| :---: | :--- |
| SPIF | SPIF is set when an SPI data transfer is complete. It is cleared by reading the SPSR and then accessing the SPDR. |
| WCOL | The Write Collision flag is set when a write to the SPDR occurs while a data transfer is in progress. It is cleared by read- <br> ing the SPSR and then accessing the SPDR. |
| MODF | The Mode Fault flag detects master/slave conflicts in a multimaster environment. It is set when the "master" controller <br> has its $\overline{\text { SS }}$ line (PORT D) pulled low, and cleared by reading the SPSR followed by a write to the SPCR. |

[^0]
# Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface 

Table 4. M68HC11 Programming Code

```
* 68HC11 Programming Code for interfacing to the MAX536/MAX537 DACs.
* Data for the MAX536/MAX537 is stored in memory locations $0100 and $0101.
*
* Release Date February 24, 1994
* Revision 0
* Technical support provided by Motorola
* Additional assistance provided by Diane Scott
********************************************************************************************************
*
* 68HC11 Code Instruction
STRT EQU $0000 ; Memory location for beginning of program
REGBLK EQU $1000 ; Starting address for 68HC11 register block
* The following registers will be addressed relative to the start of the
* register block (REGBLK) using indexed addressing mode.
* The effective address = contents of Index Register X + offset.
*
PORTD EQU $08 ; PORT D memory location
DDRD EQU $09 ; PORT D Data Direction Register memory location
SPCR EQU $28 ; SPCR memory location
SPSR EQU $29 ; SPSR memory location
SPDR EQU $2A ; SPDR memory location
* Start of main program
*
MAIN ORG STRT
    LDAA #$74 ; an arbitrary MAX536/MAX537 DAC code (load input
    STAA $0100 ; register B with 1/4 of full-scale value; all DAC
    LDAA #$00 ; registers updated) is loaded into data memory
    STAA $0101 ; locations $0100 and $0101.
*
LDN #REGBLK llom
STAA DDRD,X ; load data into the Data Direction Register
    LDAA #$2F ; set /SS and MOSI high; set SCK low
    STAA PORTD,X ; load data into PORTD to set-up SPI control lines
    LDAA #$51 ; set data for SPCR
    STAA SPCR,X ; load data into the SPCR
    BCLR PORTD,X $2O ; bring /CS Low
    LDAA $0100 ; load high byte of digital data into Accumulator(A)
    STAA SPDR,X ; load high byte of MAX536/MAX537 data into SPDR
WAIT1 LDAA SPSR,X ; beginning of loop to poll the SPSR
    BITA #$80 ; mask all bits except SPIF (transfer complete) flag
    BEQ WAIT1 ; branch if SPIF is not set to beginning of loop
    LDAA $0101 ; load low byte of digital data into Accumulator(A)
    STAA SPDR,X ; load low byte of MAX536/MAX537 data into SPDR
WAIT2 LDAA SPSR,X ; beginning of loop to poll the SPSR
    BITA #$80 ; mask all bits except SPIF (transfer complete) flag
    BEQ WAIT2 ; branch if SPIF is not set to beginning of loop
    LDAA SPDR,X ; read the SPDR to clear the SPIF bit in the SPSR
    BSET PORTD,X $20 ; bring /CS high to latch data into the MAX536/MAX537
*
* The MAX536/MAX537 is now configured to have V VOUTB
*************************************************************************************************
```


# Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface 

$\overline{\mathrm{SS}}$ is an input intended for use in a multimaster environment. However, $\overline{S S}$ or unused PORT D bit RXD, TXD, or possibly MISO (if DAC readback is not used) should be configured as a general-purpose output and used as $\overline{\mathrm{CS}}$ by setting the appropriate Data Direction Register bit.
The SPCR configuration (memory location $\$ 1028$ ) is shown below:

*U = Unknown
**Depends on $\mu \mathrm{P}$ clock frequency.
Always configure the $68 \mathrm{HC11}$ as the "master" controller and the MAX536/MAX537 as the "slave" device.
When MSTR $=1$ in the SPCR, a write to the Serial Peripheral Data I/O Register (SPDR), located at memory location \$102A, initiates the transmission/reception of data. The data transfer is monitored and the appropriate flags are set in the Serial Peripheral Status Register (SPSR).
The SPSR configuration is shown below:

| BIT |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| NAME |  |  |  |  |  |  |  |
| SPIF WCOL | - | MODF | - | - | - | - |  |
| RESET CONDITIONS <br> 0 |  |  |  |  |  |  |  |

An example of 68 HC 11 programming code for a two-byte SPI transfer to the MAX536/MAX537 is given in Table 4. $\overline{\mathrm{SS}}$ is used for $\overline{\mathrm{CS}}$, the high byte of MAX536/ MAX537 digital data is stored in memory location \$0100, and the low byte is stored in memory location $\$ 0101$.

Interfacing to Other Controllers
When using Microwire, refer to the section on Interfacing to the M68HC11 for guidance, since Microwire can be considered similar to SPI when CPOL $=0$ and CPHA $=0$. When interfacing to Intel's 80C51/80C31 microcontroller family, use bit-pushing to configure a desired port as the MAX536/MAX537 interface port. Bitpushing involves arbitrarily assigning I/O port bits as interface control lines, and then writing to the port each time a signal transition is required.

## Unipolar Output

 For a unipolar output, the output voltages and the reference inputs are the same polarity. Figure 10 shows the MAX536/MAX537 unipolar output circuit, which is also the typical operating circuit. Table 5 lists the unipolar output codes.
## Bipolar Output

The MAX536/MAX537 outputs can be configured for bipolar operation using Figure 11's circuit. One op amp and two resistors are required per DAC. With R1 = R2:

$$
\text { VOUT }=\operatorname{VREF}\left[\left(2 N_{B} / 4096\right)-1\right]
$$

where $N_{B}$ is the numeric value of the DAC's binary input code. Table 6 shows digital codes and corresponding output voltages for Figure 11's circuit.
Table 5. Unipolar Code Table

| DAC CONTENTS |  |
| :---: | :---: | :---: | :---: |
| MSB |  |$\quad$ LSB $\quad$ ANALOG OUTPUT

Table 6. Bipolar Code Table

| DAC CONTENTS |  |  | ANALOG OUTPUT |
| :---: | :---: | :---: | :---: |
| MSB |  | LSB |  |
| 1111 | 1111 | 1111 | $+\mathrm{V}_{\text {REF }}\left(\frac{2047}{2048}\right)$ |
| 1000 | 0000 | 0001 | $+V_{\text {REF }}\left(\frac{1}{2048}\right)$ |
| 1000 | 0000 | 0000 | OV |
| 0111 | 1111 | 1111 | $-V_{R E F}\left(\frac{1}{2048}\right)$ |
| 0000 | 0000 | 0001 | $-\operatorname{VREF}\left(\frac{2047}{2048}\right)$ |
| 0000 | 0000 | 0000 | $-V_{\text {REF }}\left(\frac{2048}{2048}\right)=-V_{\text {REF }}$ |
| OTE: 1L | $B=\left(V_{R}\right.$ | FF) $\left(\frac{1}{4096}\right)$ |  |

# Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface 



Figure 10. Unipolar Output Circuit


Figure 12. AC Reference Input Circuit


Figure 11. Bipolar Output Circuit


Figure 13. AGND Bias Circuit

## Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface



Figure 14. When $V_{S S}$ and $V_{D D}$ cannot be sequenced, tie a Schottky diode between VSS and AGND.

## Using an AC Reference

In applications where the reference has AC signal components, the MAX536/MAX537 have multiplying capability within the reference input range specifications. Figure 12 shows a technique for applying a sine-wave signal to the reference input where the AC signal is offset before being applied to REFAB/REFCD. The reference voltage must never be more negative than DGND.
The MAX536's total harmonic distortion plus noise (THD +N ) is typically less than $0.012 \%$, given a 5 Vp -p signal swing and input frequencies up to 35 kHz , or given a $2 \mathrm{Vp}-\mathrm{p}$ swing and input frequencies up to 50 kHz . The typi-$\mathrm{cal}-3 \mathrm{~dB}$ frequency is 700 kHz as shown in the Typical Operating Characteristics graphs.
For the MAX537, with an input signal amplitude of $0.85 \mathrm{mVp}-\mathrm{p}, \mathrm{THD}+\mathrm{N}$ is typically less than $0.024 \%$ with a $5 \mathrm{k} \Omega$ load in parallel with 100 pF and input frequencies up to 100 kHz , or with a $2 \mathrm{k} \Omega$ load in parallel with 100 pF and input frequencies up to 95 kHz .

Offsetting AGND
AGND can be biased from DGND to the reference voltage to provide an arbitrary nonzero output voltage for a zero input code (Figure 13). The output voltage VOUTA is:

$$
\text { VOUTA }=\text { VBIAS }+\mathrm{NB}_{\mathrm{B}}(\mathrm{VIN})
$$

where VBIAS is the positive offset voltage (with respect to DGND) applied to AGND, and $N_{B}$ is the numeric value of the DAC's binary input code. Since AGND is common to all four DACs, all outputs will be offset by VBIAS in the same manner. As the voltage at AGND increases, the DAC's resolution decreases because its full-scale voltage swing is effectively reduced. AGND should not be biased more negative than DGND.

Power-Supply Considerations
On power-up, VSS should come up first, VDD next, then REFAB or REFCD. If supply sequencing is not possible, tie an external Schottky diode between VSS and AGND as shown in Figure 14. On power-up, all input and DAC registers are cleared (set to zero code) and SDO is in Mode 0 (serial data is shifted out of SDO on the clock's rising edge).
For rated MAX536 performance, VDD should be 4V higher than REFAB/REFCD and should be between 10.8 V and 16.5 V . When using the MAX537, VDD should be at least 2.2 V higher than REFAB/REFCD and should be between 4.75 V and 5.5 V . Bypass both VDD and VSS with a $4.7 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor to AGND. Use short lead lengths and place the bypass capacitors as close to the supply pins as possible.

Grounding and Layout Considerations Digital or AC transient signals between AGND and DGND can create noise at the analog outputs. Tie AGND and DGND together at the DAC, then tie this point to the highest quality ground available.
Good printed circuit board ground layout minimizes crosstalk between DAC outputs, reference inputs, and digital inputs. Reduce crosstalk by keeping analog lines away from digital lines. Wire-wrapped boards are not recommended.

# Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface 

_Ordering Information (continued)

| PART | TEMP. RANGE | PIN-PACKAGE | INL <br> (LSB) |
| :---: | :---: | :--- | :---: |
| MAX537ACPE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 1 / 2$ |
| MAX537BCPE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 1$ |
| MAX537ACWE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Wide SO | $\pm 1 / 2$ |
| MAX537BCWE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Wide SO | $\pm 1$ |
| MAX537BC/D | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Dice* | $\pm 1$ |
| MAX537AEPE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 1 / 2$ |
| MAX537BEPE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 1$ |
| MAX537AEWE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Wide SO | $\pm 1 / 2$ |
| MAX537BEWE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Wide SO | $\pm 1$ |
| MAX537AMDE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 Ceramic SB $^{\star *}$ | $\pm 1 / 2$ |
| MAX537BMDE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 Ceramic $\mathrm{SB}^{* *}$ | $\pm 1$ |

* Contact factory for dice specifications.
** Contact factory for availability and processing to MIL-STD-883.

Chip Topography


TRANSISTOR COUNT: 5034
SUBSTRATE CONNECTED TO VDD

Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface


Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

24 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

[^1]Printed USA
MユXIMI is a registered trademark of Maxim Integrated Products.


[^0]:    * M 68 HC 11 is a Motorola microcontroller. General information about the device was obtained from M 68 HC 11 technical manuals.

[^1]:    © 1997 Maxim Integrated Products

