＋5V，Low－Power，Voltage－Output， Serial 12－Bit DACs

General Description
The MAX531／MAX538／MAX539 are low－power，voltage－ output，12－bit digital－to－analog converters（DACs）speci－ fied for single +5 V power－supply operation．The MAX531 can also be operated with $\pm 5 \mathrm{~V}$ supplies．The MAX538／MAX539 draw only $140 \mu \mathrm{~A}$ ，and the MAX531 （with internal reference）draws only $260 \mu \mathrm{~A}$ ．The MAX538／MAX539 come in 8 －pin DIP and SO packages， while the MAX531 comes in 14－pin DIP and SO pack－ ages．All parts have been trimmed for offset voltage， gain，and linearity，so no further adjustment is necessary． The MAX538＇s buffer is fixed at a gain of +1 and the MAX539＇s buffer at a gain of +2 ．The MAX531＇s internal op amp may be configured for a gain of +1 or +2 ，as well as for unipolar or bipolar output voltages．The MAX531 can also be used as a four－quadrant multiplier without external resistors or op amps．
For parallel data inputs，see the MAX530 data sheet．

Applications

Battery－Powered Test Instruments
Digital Offset and Gain Adjustment
Battery－Operated／Remote Industrial Controls
Machine and Motion Control Devices
Cellular Telephones

Functional Diagram

－Operate from Single +5 V Supply
－Buffered Voltage Output
－Internal 2．048V Reference（MAX531）
－140 1 A Supply Current（MAX538／MAX539）
－INL＝$\pm 1 / 2 L S B$（max）
－Guaranteed Monotonic over Temperature
－Flexible Output Ranges：
OV to Vdd（MAX531／MAX539）
Vss to Vdd（MAX531）
OV to 2．6V（MAX531／MAX538）
－8－Pin SO／DIP（MAX538／MAX539）
－Power－On Reset
－Serial Data Output for Daisy－Chaining
Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE	ERROR （LSB）
MAX531ACPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP	$\pm 1 / 2$
MAX531BCPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP	± 1
MAX531ACSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO	$\pm 1 / 2$
MAX531BCSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO	± 1
MAX531BC／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice *	± 1

Ordering Information continued at end of data sheet． ＊Dice are specified at $T_{A}=+25^{\circ} \mathrm{C}$ only．

Pin Configurations

Pin Configurations continued at end of data sheet．

+5V, Low-Power, Voltage-Output Serial 12-Bit DACs

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$ to DGND and VDD to AGND.	3V, +6V
VSs to DGND and VSs to AGND	-6V, +0.3V
$V_{\text {DD }}$ to VSS	0.3V, +12V
AGND to DGND.	-0.3V, +0.3V
Digital Input Voltage to DGND-0.3V, (VDD +0.3 V)
REFIN	($\left.\mathrm{V}_{S S}-0.3 \mathrm{~V}\right),(\mathrm{V} D \mathrm{D}+0.3 \mathrm{~V})$
REFOUT to AGND	...-0.3V, (VDD + 0.3V)
RFB	(VSS - 0.3V), (VDD + 0.3V)
BIPOFF	(VSS - 0.3V), (VDD + 0.3V)
Vout (Note 1)VSS, VDD
Continuous Cu	-20mA, +20mA

Note 1: The output may be shorted to $V_{D D}, V_{S S}$, or AGND if the package power dissipation limit is not exceeded.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$(\mathrm{VDD}=+5 \mathrm{~V} \pm 10 \%, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$, REFIN $=2.048 \mathrm{~V}$ (external), RFB $=\mathrm{BIPOFF}=\mathrm{VOUT}$ (MAX531), CREFOUT $=33 \mu \mathrm{~F}$ (MAX531), RL $=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE						
Resolution	N		12		N. -	Bits
Relative Accuracy (Note 2)	INL	MAX53_AC/E			± 0.5	LSB
		MAX53_BC/E			± 1	
Differential Nonlinearity	DNL	Guaranteed monotonic			± 1	LSB
Unipolar Offset Error	Vos	MAX53__C/E	0		8	LSB
Unipolar Offset Tempco	TCVos			3		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Gain Error (Note 2)	GE	MAX53__C/E			± 1	LSB
Gain-Error Tempco				1	1\%	ppm $/{ }^{\circ} \mathrm{C}$
Power-Supply Rejection Ratio (Note 3)	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		0.4	1	LSB/V
VOLTAGE OUTPUT (VOUT)						
Output Voltage Range		MAX531 ($\mathrm{G}=+1$), MAX538	0		VDD-2	V
		MAX531 ($\mathrm{G}=+2$), MAX539	0		D-0.4	
Output Load Regulation		VOUT $=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$			1	LSB
Short-Circuit Current	Isc			12		mA
REFERENCE INPUT (REFIN)						
Voltage Range			0		VDD-2	V
Input Resistance		Code dependent, minimum at code 555 hex	40			$\mathrm{k} \Omega$
Input Capacitance		Code dependent (Note 4)	10		50	pF
AC Feedthrough		REFIN $=1 \mathrm{kHz}, 2 \mathrm{Vp}-\mathrm{p}$		-80		dB

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

$\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}\right.$, AGND $=\mathrm{DGND}=0 \mathrm{~V}$, REFIN $=2.048 \mathrm{~V}$ (external), RFB $=$ BIPOFF $=\mathrm{VOUT}$ (MAX531), CREFOUT $=33 \mu \mathrm{~F}$ (MAX531), $R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted.)

Output High	V OH	ISOURCE $=2 \mathrm{~mA}$		VDD - 1		V
Output Low	VOL	ISINK $=2 \mathrm{~mA}$			0.4	V
DYNAMIC PERFORMANCE						
Voltage-Output Slew Rate	SR	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$0.15 \quad 0.25$		V/ $/ \mathrm{s}$
Voltage-Output Settling Time		To $\pm 1 / 2 \mathrm{LSB}, \mathrm{VOUT}=2 \mathrm{~V}$		25		$\mu \mathrm{s}$
Digital Feedthrough	.	$\overline{\mathrm{CS}}=\mathrm{V}_{\text {DD }}, \mathrm{DIN}=100 \mathrm{kHz}$		5		nV -s
Signal-to-Noise plus Distortion	SINAD	$\begin{aligned} & \text { REFIN }=1 \mathrm{kHz}, 2 \mathrm{Vp-1} \\ & \text { code }=\text { FFF hex } \end{aligned}$	$(\mathrm{G}=+1 \text { or }+2),$	68		dB
POWER SUPPLY						
Positive Supply Voltage	$V_{D D}$			4.5	5.5	V
Power-Supply Current	IDD	All inputs $=0 \mathrm{~V}$ or VDD, output = no load	MAX531 MAX538, MAX539	260	400 300	$\mu \mathrm{A}$

SWITCHING CHARACTERISTICS

$\overline{\text { CS Setup Time }}$	tcSS		20	ns
SCLK Fall to $\overline{\mathrm{CS}}$ Fall Hold Time	tCSH0		15	
SCLK Fall to $\overline{\mathrm{CS}}$ Rise Hold Time	tCSH1		0	ns
SCLK High Width	tCH		35	ns
SCLK Low Width	tCL		35	ns
DIN Setup Time	tDS		45	ns
DIN Hold Time	tDH		0	ns
DOUT Valid Propagation Delay	tDO	CL $=50 \mathrm{pF}$		ns
$\overline{\text { CS High Pulse Width }}$	tcSW		20	ns
$\overline{\text { CLR Pulse Width }}$	tCLR		25	ns
$\overline{\text { CS Rise to SCLK Rise Setup Time }}$	tcS1		50	ns

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX531 Only)

$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}\right.$ SS $=-5 \mathrm{~V} \pm 10 \%, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$, REFIN $=2.048 \mathrm{~V}$ (external), RFB $=\mathrm{BIPOFF}=\mathrm{VOUT}, \mathrm{C}_{\text {REFOUT }}=33 \mu \mathrm{~F}$, $R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Resolution	N			12			Bits
Relative Accuracy	INL	$\begin{aligned} & \text { Tested at } V_{D D}=5 \mathrm{~V} \text {, } \\ & \text { VSS }=-5 \mathrm{~V} \end{aligned}$	MAX531AC/E			± 0.5	LSB
			MAX531BC/E			± 1	
Differential Nonlinearity	DNL	Guaranteed monotonic				± 1	LSB
Bipolar Offset Error	Vos	BIPOFF = REFIN, MAX531_C/E				± 8	LSB
Bipolar Offset Tempco	TCVos	BIPOFF = REFIN			3		ppm/ ${ }^{\circ} \mathrm{C}$
Gain Error (Unipolar or Bipolar)	GEU	MAX531_C/E				± 1	LSB
Gain-Error Tempco					1		ppm $/{ }^{\circ} \mathrm{C}$
Power-Supply Rejection Ratio (Note 3)	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V},-5.5 \mathrm{~V} \leq \mathrm{VSS} \leq-4.5 \mathrm{~V}$			0.4	1	LSB/V

REFERENCE INPUT (REFIN)

Voltage Range			VSS +2	VDD -2	V
Input Resistance		Code dependent, minimum at code 555 hex	40		$\mathrm{k} \Omega$
Input Capacitance	Code dependent (Note 4)	10	50	pF	
AC Feedthrough	REFIN $=1 \mathrm{kHz}, 2.0 \mathrm{Vp}-\mathrm{p}$		-80	dB	

REFERENCE OUTPUT (REFOUT-MAX531 only)

Reference Output Voltage		$V_{D D}=5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$2.024 \quad 2.048$	2.072	V
			MAX531BC	2.017	2.079	
			MAX531BE	2.013	2.083	
Temperature Coefficient	TCrefout	MAX531AC/AE/AM/BM		30	50	ppm/ ${ }^{\circ} \mathrm{C}$
		MAX531BC/BE		30		
Resistance	Rrefout	(Note 5)		0.5	2	Ω
Power-Supply Rejection Ratio	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			300	$\mu \mathrm{V} / \mathrm{V}$
Noise Voltage	en	0.1 Hz to 10 kHz		400		$\mu \mathrm{Vp}$-p
Minimum Required External Capacitor	Cmin			3.3		$\mu \mathrm{F}$

DIGITAL INPUTS (DIN, SCLK, $\overline{\mathbf{C S}}$)

Input High	V_{IH}		2.4	V
Input Low	V_{IL}		0.8	V
Input Current	I_{IN}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}	± 1	$\mu \mathrm{~A}$
Input Capacitance	C_{IN}		8	pF

DIGITAL OUTPUT (DOUT)

Output High	V_{OH}	ISOURCE $=2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{DD}}-1$	V
Output Low	$\mathrm{VOL}_{\mathrm{OL}}$	ISINK $=2 \mathrm{~mA}$		0.4

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX531 Only) (continued)

$\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, V_{S S}=-5 \mathrm{~V} \pm 10 \%, A G N D=D G N D=0 \mathrm{~V}\right.$, REFIN $=2.048 \mathrm{~V}$ (external), RFB $=$ BIPOFF $=$ VOUT, CREFOUT $=33 \mu F$, $R_{L}=10 k \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
VOLTAGE OUTPUT (VOUT)					
Output Voltage Range		MAX531 ($G=+1$)	VSS +2	VDD - 2	V
		MAX531 ($\mathrm{G}=+2$)	VSS +0.4	VDD -0.4	
Output Load Regulation		$\mathrm{VOUT}=2 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=2 \mathrm{k} \Omega$	C	1	LSB
Short-Circuit Current	Isc		12		mA
DYNAMIC PERFORMANCE					
Voltage-Output Slew Rate	SR		$0.15 \quad 0.25$		V/ $\mu \mathrm{s}$
Voltage-Output Settling Time		To $\pm 1 / 2 \mathrm{LSB}, \mathrm{VOUT}=2 \mathrm{~V}$	25		$\mu \mathrm{s}$
Digital Feedthrough		Step 000 hex to FFF hex	5		nV -s
Signal-to-Noise plus Distortion	SINAD	REFIN $=1 \mathrm{kHz}, 2 \mathrm{Vp}-\mathrm{p},(\mathrm{G}=+1$)	68		dB
		REFIN $=1 \mathrm{kHz}, 2 \mathrm{Vp}-\mathrm{p},(\mathrm{G}=+2)$	68		
POWER SUPPLY					
Positive Supply Voltage	VDD		4.5	5.5	V
Negative Supply Voltage	VSS		-5.5	0	V
Positive Supply Current	IDD	All inputs $=0 \mathrm{~V}$ or VDD, no load	260	400	$\mu \mathrm{A}$
Negative Supply Current	Iss	All inputs $=0 \mathrm{~V}$ or V_{DD}, no load	-120	-200	$\mu \mathrm{A}$
SWITCHING CHARACTERISTICS					
$\overline{\mathrm{CS}}$ Setup Time	tcss		20		ns
SCLK Fall to $\overline{\text { CS }}$ Fall Hold Time	tCSH0		15		ns
SCLK Fall to $\overline{\mathrm{CS}}$ Rise Hold Time	tcSH1		0		ns
SCLK High Width	tch		35		ns
SCLK Low Width	tcL		35		ns
DIN Setup Time	tDS		45		ns
DIN Hold Time	tDH		0	1	ns
DOUT Valid Propagation Delay	too	$C L=50 p F$		80	ns
$\overline{\mathrm{CS}}$ High Pulse Width	tcsw		20		ns
$\overline{\mathrm{CLR}}$ Pulse Width	tCLR		25	,	ns
$\overline{\overline{C S}}$ Rise to SCLK Rise Setup Time	tCS1		50		ns

Note 2: In single-supply operation, INL and GE calculated from code 11 to code 4095 . Tested at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$.
Note 3: This specification applies to both gain-error power-supply rejection ratio and offset-error power-supply rejection ratio.
Note 4: Guaranteed by design.
Note 5: Tested at IOUT $=100 \mu \mathrm{~A}$. The reference can typically source up to 5 mA (see Typical Operating Characteristics).

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

Typical Operating Characteristics

```
(VDD = +5V, VREFIN =2.048V, TA = +25 % , unless otherwise noted. )
```


OUTPUT SOURCE CAPABILITY vs.
OUTPUT PULL-UP VOLTAGE

SUPPLY CURRENT vs. TEMPERATURE

ANALOG FEEDTHROUGH vs.
FREQUENCY

MAX531
GAIN vs. FREQUENCY

M AX531
REFERENCE VOLTAGE vs.

MAX531
AMPLIFIER SIGNAL-TO-NOISE RATIO

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

Typical Operating Characteristics (continued)
$\left(\overline{\mathrm{VDD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REFIN }}=2.048 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

DIGITAL FEEDTHROUGH

$2 \mu \mathrm{~s} / \mathrm{div}$
$\overline{\mathrm{CS}}=\mathrm{HIGH}$
A: DIN = 4Vp-p, 100kHz
B: VOUT, $10 \mathrm{mV} / \mathrm{div}$

NEGATIVE SETTLING TIME (MAX531)

$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}} \mathrm{NN}=2 \mathrm{~V}$, BIPOLAR OONFGURATION A: ©SRISINGEDGE 5V/div B: VOUT, NOLOAD, 1V/div

POSITIVE SETTLING TIME (MAX531)

A

B
$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {RG }} \mathrm{N}=2 \mathrm{~V}$, BIPOLAR OONFGURATION
A: $\overline{C S}$ RISINGEDGE $5 \mathrm{~V} / \mathrm{div}$
B: VOUT, NOLOAD, 1 V/div

+5V, Low-Power, Voltage-Output Serial 12-Bit DACs

			Pín Desc ription	
PIN		FUNCTION		

Detailed Description

General DAC Discussion

The MAX531/MAX538/MAX539 use an "inverted" R-2R ladder network with a single-supply CMOS op amp to convert 12-bit digital data to analog voltage levels (see Functional Diagram). The term "inverted" describes the ladder network because the REFIN pin in current-output DACs is the summing junction, or virtual ground, of an op amp. However, such use would result in the output voltage being the inverse of the reference voltage. The MAX531/MAX538/MAX539's topology makes the output the same polarity as the reference input.
An internal reset circuit forces the DAC register to reset to 000 hex on power-up. Additionally, a clear CLR pin, when held low, sets the DAC register to 000 hex. CLR operates asynchronously and independently from the chip-select (CS) pin.

Buffer Amplifier

The output buffer is a unity-gain stable, rail-to-rail output, BiCMOS op amp. Input offset voltage and CMRR are trimmed to achieve better than 12-bit performance. Settling time is $25 \mu \mathrm{~s}$ to 0.01% of final value. The settling time is considerably longer when the DAC code is initially set to 000 hex, because at this code the op amp is completely debiased. Start from code 001 hex if necessary. The output is short-circuit protected and can drive a $2 \mathrm{k} \Omega$ load with more than 100pF load capacitance.

Figure 1. Timing Diagram

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

Figure 2. Reference Noise vs. Frequency

Internal Reference (MAX531 only)

The on-chip reference is lesser trimmed to generate 2.048 V at REFOUT. The output stage can source and sink current, so REFOUT can settle to the correct voltage quickly in response to code-dependent loading changes. Typically, source current is 5 mA and sink current is $100 \mu \mathrm{~A}$.
REFOUT connects the internal reference to the R-2R DAC ladder at REFIN. The R-2R ladder draws $50 \mu \mathrm{~A}$ maximum load current. If any other connection is made to REFOUT, ensure that the total load current is less than $100 \mu \mathrm{~A}$ to avoid gain errors.
For applications requiring very low-noise performance, connect a $33 \mu \mathrm{~F}$ capacitor from REFOUT to AGND. If noise is not a concern, a lower value capacitor ($3.3 \mu \mathrm{~F} \mathrm{~min}$) may be used. To reduce noise further, insert a buffered RC filter between REFOUT and REFIN (Figure 2). The reference bypass capacitor, CREFOUT, is still required for reference stability. In applications not requiring the reference, connect REFOUT to VDD or use the MAX538 or MAX539 (no internal reference).

Extemal Reference

An external reference in the range ($\mathrm{V} S \mathrm{~S}+2 \mathrm{~V}$) to (VDD -2 V) may be used with the MAX531 in dual-supply operation. With the MAX538/MAX539 or the MAX531 in single-supply use, the reference must be positive and may not exceed VDD - 2V. The reference voltage determines the DAC's fullscale output. The DAC input resistance is code dependent and is minimum ($40 \mathrm{k} \Omega$) at code 555 hex and virtually infi-
nite at code 000 hex. REFIN's input capacitance is also code dependent and has a 50pF maximum value at several codes. Because of the code-dependent nature of reference input impedances, a high-quality, low-output-impedance amplifier (such as the MAX480 low-power, precision op amp) should be used.
If an upgrade to the internal reference is required, the 2.5 V MAX873A is suitable: $\pm 15 \mathrm{mV}$ initial accuracy, TCVOUT $=$ $7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max).

Logic Interface

The MAX531/MAX538/MAX539 logic inputs are designed to be compatible with TIL or CMOS logic levels. However, to achieve the lowest power dissipation, drive the digital inputs with rail-to-rail CMOS logic. With TLL logic levels, the power requirement increases by a factor of approximately 2.

Serial Clock and Update Rate

Figure 1 shows the MAX531/MAX538/MAX539 timing. The maximum serial clock rate is given by $1 /$ ($\mathrm{tcH}+\mathrm{tcL}$), approximately 14 MHz . The digital update rate is limited by the chip-select period, which is $16 \times(\mathrm{t} \mathrm{CH}+\mathrm{tcL})+\mathrm{tcsw}$. This equals a $1.14 \mu \mathrm{~s}$, or 877 kHz , update rate. However, the DAC settling time to 12 bits is $25 \mu \mathrm{~s}$, which may limit the update rate to 40 kHz for full-scale step transitions.

Applications Information

Refer to Figures 3a and 3b for typical operating connections.

Serial Interface

The MAX531/MAX538/MAX539 use a three-wire serial interface that is compatible with SPITM, QSPITM (CPOL = CPHA = 0), and Microwire ${ }^{\text {TM }}$ standards as shown in Figures 4 and 5. The DAC is programmed by writing two 8 -bit words (see Figure 1 and the Functional Diagram). Sixteen bits of serial data are clocked into the DAC MSB first with the MSB preceded by four fill (dummy) bits. The four dummy bits are not normally needed. They are required only when DACs are daisy-chained. Data is clocked in on SCLK's rising edge while $\overline{\mathrm{CS}}$ is low. The serial input data is held in a 16-bit serial shift register. On CSs rising edge, the 12 least significant bits are transferred to the DAC register and update the DAC. With CS high, data cannot be clocked into the MAX531/MAX538/MAX539.
The MAX531/MAX538/MAX539 input data in 16-bit blocks. The SPI and Microwire interfaces output data in 8-bit blocks, thereby requiring two write cycles to input data to the DAC. The QSPI interface allows variable data input from eight to 16 bits, and can be loaded into the DAC in one write cycle.
SPI and QSPI are trademarks of Motorola, Inc.
Microwire is a trademark of National Semiconductor Corp.

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

Figure 3a. MAX531 Typical Operating Circuit

Daisy-Chaining Devices

The serial output, DOUT, allows cascading of two or more DACs. The data at DIN appears at DOUT, delayed by 16 clock cycles plus one clock width. For low power, DOUT is a CMOS output that does not require an external pull-up resistor. DOUT does not go into a high-impedance state when $\overline{\mathrm{CS}}$ is high. DOUT changes on SCLK's falling edge when $\overline{\mathrm{CS}}$ is low. When $\overline{\mathrm{CS}}$ is high, DOUT remains in the state of the last data bit.
Any number of MAX531/MAX538/MAX539 DACs can be daisy-chained by connecting the DOUT of one device to the DIN of the next device in the chain. For proper timing, ensure that tCL ($\overline{C S}$ low to SCLK high) is greater than tDO + tDS.

Unipolar Configuration

The MAX531 is configured for a gain of +1 (0 V to VREFIN unipolar output) by connecting BIPOFF and RFB to VOUT (Figure 6). The converter operates from either single or dual supplies in this configuration. See Table 1 for the DAC-latch contents (input) vs. the analog VOUT (output). In this range, 1 LSB $=\operatorname{VREFIN}\left(2^{-12}\right)$. The MAX538 is internally configured for unipolar gain $=+1$ operation.
A gain of +2 (0 V to $2 \mathrm{~V}_{\text {REFIN }}$ unipolar output) is set up by connecting BIPOFF to AGND and RFB to VOUT (Figure 7). Table 2 shows the DAC-latch contents vs. VOUT. The MAX531 operates from either single or dual

Figure 3b. MAX538/MAX539 Typical Operating Circuit
supplies in this mode. In this range, $1 \mathrm{LSB}=(2)(\mathrm{V}$ REFIN $)$ $\left(2^{-12}\right)=\left(V_{\text {REFIN }}\right)\left(2^{-11}\right)$. The MAX539 is internally configured for unipolar gain $=+2$ operation.

Bipolar Configuration

A bipolar range is set up by connecting BIPOFF to REFIN and RFB to VOUT, and operating from dual $(\pm 5 \mathrm{~V}$) supplies (Figure 8). Table 3 shows the DAC-latch contents (input) vs. VOUT (output). In this range, 1 LSB $=\operatorname{VREFIN}\left(2^{-11}\right)$.

Four-Quadrant Multiplication

The MAX531 can be used as a four-quadrant multiplier by connecting BIPOFF to REFIN and RFB to VOUT, using (1) an offset binary digital code, (2) bipolar power supplies, using dual power supplies, and (3) a bipolar analog input at REFIN within the range VSS +2 V to $\mathrm{V}_{D D}$ -2 V , as shown in Figure 9.
In general, a 12-bit DAC's output is (D) (VREFIN) (G), where " G " is the gain (+1 or +2) and " D " is the binary representation of the digital input divided by 2^{12} or 4096. This formula is precise for unipolar operation. However, for bipolar, offset binary operation, the MSB is really a polarity bit. No resolution is lost, as there are the same number of steps. The output voltage, however, has been shifted from a range of, for example, 0 V to $4.096 \mathrm{~V}(\mathrm{G}=+2)$ to a range of -2.048 V to +2.048 V .
Keep in mind that when using the DAC as a four-quadrant multiplier, the scale is skewed. Negative full scale is - VREFIN, while positive full scale is +VREFIN - 1LSB.

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

THE DOUT-SI CONNECTION IS NOT REQUIRED FOR WRITING TO THE DEVICE, BUT MAY BE USED FOR VERIFYING DATA TRANSFER .

Figure 4. Microwire Connection

Figure 6. Unipolar Configuration (OV to +2.048 V Output)
Table 1. Unipolar Binary Code Table (OV to Vrefin Output), Gain = +1

INPUT			OUTPUT
1111	1111	1111	$\left(V_{\text {REFIN }}\right) \frac{4095}{4096}$
1000	0000	0001	$\left(V_{\text {REFIN }}\right) \frac{2049}{4096}$
1000	0000	0000	$\left(V_{\text {REFIN }}\right) \frac{2048}{4096}=+\mathrm{V}_{\text {REFIN }} / 2$
0111	1111	1111	(VREIN) $\frac{2047}{4096}$
0000	0000	0001	$\left(V_{\text {REFIN }}\right) \frac{1}{4096}$
0000	0000	0000	OV

THE DOUT-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THE DEVICE, BUT MAY BE USED FOR VERIFYING DATA TRANSFER.

Figure 5. SPI/QSPI Connection

Figure 7. Unipolar Configuration (OV to +4.096 V Output)
Table 2. Unipolar Binary Code Table (OV to 2Vrefin Output), Gain = +2

INPUT	OUTPUT		
1111	1111	1111	$+2\left(V_{\text {REFIN }}\right) \frac{4095}{4096}$
1000	0000	0001	$+2\left(V_{\text {REFIN }}\right) \frac{2049}{4096}$
1000	0000	0000	$+2\left(V_{\text {REFIN }}\right) \frac{2048}{4096}=+V_{\text {REFIN }}$
0111	1111	1111	$+2\left(V_{\text {REFIN }}\right) \frac{2047}{4096}$
0000	0000	0001	$+2\left(V_{\text {REFIN }}\right) \frac{1}{4096}$
0000	0000	0000	

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

Figure 8. Bipolar Configuration (-2.048V to +2.048 V Output)

Single-Supply Linearity

As with any amplifier, the MAX531/MAX538/MAX539's output buffer can be positive or negative. When the offset is positive, it is easily accounted for (Figure 10). However, when the offset is negative, the buffer output cannot follow linearly when there is no negative supply. In that case, the amplifier output (VOUT) remains at ground until the DAC voltage is sufficient to overcome the offset and the output becomes positive.
Normally, linearity is measured after accounting for zero error and gain error. Since, in single-supply operation, the actual value of a negative offset is unknown, it cannot be accounted for during test. Additionally, the output buffer amplifier exhibits a nonlinearity near-zero output when operating with a single supply. To account for this nonlinearity in the MAX531/MAX538/MAX539, linearity and gain error are measured from code 11 to code 4095. The output buffer's offset and nonlinear behavior do not affect monotonicity, and these DACs are guaranteed monotonic starting with code zero. In dual-supply operation, linearity and gain error are measured from code 0 to 4095.

Power-Supply Bypassing and Ground Management

Best system performance is obtained with printed circuit boards that use separate analog and digital ground planes. Wire-wrap boards are not recommended. The two ground planes should be connected together at the low-impedance power-supply source.

Table 3. Bipolar (Offset Binary) Code Table (-Vrefin to +VREfin Output)

INPUT			OUTPUT
1111	1111	1111	$\left(+V_{\text {REFIN })} \frac{2047}{2048}\right.$
1000	0000	0001	$\left(+V_{\text {REFIN }} \frac{1}{2048}\right.$
1000	0000	0000	$0 V$
0111	1111	1111	$\left(-V_{\text {REFIN }}\right) \frac{1}{2048}$
0000	0000	0001	$\left(-V_{\text {REFIN }} \frac{2047}{2048}\right.$
0000	0000	0000	$\left(-V_{\text {REFIN }}\right) \frac{2048}{2048}=-V_{\text {REFIN }}$

DGND and AGND should be connected together at the chip. For the MAX531 in single-supply applications, connect $V_{S S}$ to AGND at the chip. The best ground connection may be achieved by connecting the DAC's DGND and AGND pins together and connecting that point to the system analog ground plane. If the DAC's DGND is connected to the system digital ground, digital noise may get through to the DAC's analog portion.
Bypass VDD (and VSS in dual-supply mode) with a $0.1 \mu \mathrm{~F}$ ceramic capacitor, connected between VDD and AGND (and between VSS and AGND). Mount with short leads close to the device. Ferrite beads may also be used to further isolate the analog and digital power supplies.
Figures 11a and 11b illustrate the grounding and bypassing scheme described.

Saving Power
When the DAC is not being used by the system, minimize power consumption by setting the appropriate code to minimize load current. For example, in bipolar mode, with a resistive load to ground, set the DAC code to mid-scale (Table 3). If there is no output load, minimize internal loading on the reference by setting the DAC to all 0s (on the MAX531, use $\overline{\mathrm{CLR}}$). Under this condition, REFIN is high impedance and the op amp operates at its minimum quiescent current. Due to these low current levels, the output settling time for an input code close to 0 typically increases to $60 \mu \mathrm{~s}$ (no more than $100 \mu \mathrm{~s}$).

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

Figure 9. MAX531 Connected as Four-Quadrant Multiplier. The unused REFOUT is connected to $V_{D D}$.

AC Considerations

Digital Feedthrough
High-speed serial data at any of the digital input or output pins may couple through the DAC package and cause internal stray capacitance to appear at the DAC output as noise, even though $\overline{\mathrm{CS}}$ is held high (see Typical Operating Characteristics). This digital feedthrough is tested by holding $\overline{C S}$ high, transmitting 555 hex from DIN to DOUT.

Analog Feedthrough

Because of internal stray capacitance, higher frequency analog input signals may couple to the output as shown in the Analog Feedthrough vs. Frequency graph in the Typical Operating Characteristics. It is tested by holding $\overline{\mathrm{CS}}$ high, setting the DAC code to all 0 s, and sweeping REFIN.

Figure 10. Single-Supply Offset

Figure 11. Power-Supply Bypassing

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

__Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE	$\begin{aligned} & \text { ERROR } \\ & \text { (LSB) } \end{aligned}$
MAX531AEPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP	$\pm 1 / 2$
MAX531BEPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP	± 1
MAX531AESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	$\pm 1 / 2$
MAX531BESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	± 1
MAX538ACPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP	$\pm 1 / 2$
MAX538BCPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP	± 1
MAX538ACSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO	$\pm 1 / 2$
MAX538BCSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO	± 1
MAX538BC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*	± 1
MAX538AEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP	$\pm 1 / 2$
MAX538BEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP	± 1
MAX538AESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	$\pm 1 / 2$
MAX538BESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	± 1
MAX539ACPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP	$\pm 1 / 2$
MAX539BCPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP	± 1
MAX539ACSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO	$\pm 1 / 2$
MAX539BCSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO	± 1
MAX539BC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*	± 1
MAX539AEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP	$\pm 1 / 2$
MAX539BEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP	± 1
MAX539AESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	$\pm 1 / 2$
MAX539BESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	± 1

${ }^{*}$ Dice are specified at $T_{A}=+25^{\circ} \mathrm{C}$ only.

Pin Configurations (continued)

Chip Topography

() ARE FOR MAX531 ONLY.
TRANSISTOR COUNT: 922
SUBSTRATE CONNECTED TO VDD

+5V, Low-Power, Voltage-Output, Serial 12-Bit DACs

Package Information

＋5V，Low－Power，Voltage－Output， Serial 12－Bit DACs

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．

