The MAX5480 is a CMOS，8－bit digital－to－analog con－ verter（DAC）that interfaces directly with most micro－ processors．On－chip input latches make the DAC load cycle interface similar to a RAM write cycle，where $\overline{C S}$ and $\overline{W R}$ are the only control inputs required．
Linearity of $\pm 1 / 2$ LSB is guaranteed，and power con－ sumption is less than $500 \mu \mathrm{~W}$ ．Monotonicity is guaran－ teed over the full operating temperature range．
The MAX5480 can be operated in either voltage－output or current－output mode．It is available in a small 16 －pin QSOP package．

Applications

Digitally Adjusted Power Supplies
Programmable Gain
Automatic Test Equipment
Portable，Battery－Powered Instruments
VCO Frequency Control
RF Transmit Control in Portable Radios

Features
－QSOP－16 Package（same footprint as SO－8）
－Single +5 V Supply Operation
－Vout or Iout Operation
－8－Bit Parallel Interface
－Guaranteed Monotonic Over Temperature
－Low Power Consumption－100 A max
－$\pm 1 / 2$ LSB Linearity Over Temperature
\qquad Ordering Information

PART	TEMP．RANGE	PIN－ PACKAGE	ERROR （LSB）
MAX5480ACEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	$\pm 1 / 2$
MAX5480BCEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	$\pm 1 / 2$
MAX5480AEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	$\pm 1 / 2$
MAX5480BEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	$\pm 1 / 2$

Typical Operating Circuit

Pin Configuration

8-Bit Parallel DAC in QSOP-16 Package

ABSOLUTE MAXIMUM RATINGS

VDD to GND
-0.3 V to +17 V

RFB to GND ...土25V
Digital Inputs to GND
-0.3 V to (VDD +0.3 V)
OUT1, OUT2 to GND
-0.3 V to VDD

Operating Temperature Ranges	
MAX5480_CEE.	.$^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX5480_EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ..	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Continuous Power Dissipation ($\mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
MAX5480_EE (derate 8.3mW	C)667mW
Lead Temperature (soldering 10s	$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=0 \mathrm{~V}\right.$, Circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS	
DC ACCURACY									
Resolution					8		\square	Bits	
Relative Accuracy	INL				$\pm 1 / 2$			LSB	
Differential Nonlinearity	DNL	All grades guaranteed monotonic over temperature			± 1			LSB	
Gain Error (Note 1)		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$						LSB	
Gain Temperature Coefficient (Note 2)					± 2			ppm/ ${ }^{\circ} \mathrm{C}$	
Supply Rejection	PSR	MAX5480A (Note 3)		$\mathrm{A}=+25^{\circ} \mathrm{C}$		0.002	0.08	\%FSR/\%	
				A $=$ TMIN to $\mathrm{T}_{\text {MAX }}$		0.01	0.16		
		MAX5480B		$\mathrm{A}=+25^{\circ} \mathrm{C}$		0.002			
				A $=$ TMIN to $\mathrm{T}_{\text {MAX }}$		0.01	,		
Output Leakage Current (lout1)		$\begin{aligned} & \text { VREF }= \pm 10 \mathrm{~V} \\ & \text { DAC code }=\text { full scale } \end{aligned}$		$\mathrm{A}=+25^{\circ} \mathrm{C}$			± 50	nA	
				A $=$ TMIN to TMAX			± 400		
Output Leakage Current (lout2)		$\begin{aligned} & \text { VREF }= \pm 10 \mathrm{~V} \\ & \text { DAC code }=\text { zero scale } \end{aligned}$		A $=+25^{\circ} \mathrm{C}$			± 50	nA	
				A $=$ TMIN to $\mathrm{T}_{\text {MAX }}$			± 400		
REFERENCE INPUT									
Input Resistance	RREF	pin 15 to GND			5	10	20	k Ω	
DYNAMIC PERFORMANCE									
Output Current Settling Time to $1 / 2 L S B$		$\text { D0-D7 }=0 \mathrm{~V} \text { to }$ V_{DD} or V_{DD} to 0 V , $\overline{\mathrm{WR}}=\overline{\mathrm{CS}}=0 \mathrm{~V}$, OUT1 load = 100Ω \|	13 pF	MAX5480A (Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			400	ns
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			500		
			MAX5480B	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	250				
AC Feedthrough (OUT1 or OUT2)		$V_{\text {REF }}= \pm 10 \mathrm{~V}$, 100 kHz sine wave,$\overline{W R}=\overline{\mathrm{CS}}=0 \mathrm{~V}$	MAX5480A (Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.25	ns	
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.5		
			MAX5480B	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1			
ANALOG OUTPUTS									
OUT1 Capacitance (Note 3)	Cout1	$\mathrm{D} 0-\mathrm{D} 7=\mathrm{VDD}, \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=0 \mathrm{~V}$					120	pF	
		D0-D7 $=0 \mathrm{~V}, \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=0 \mathrm{~V}$					30		
OUT2 Capacitance (Note 3)	Cout2	D0-D7 $=\mathrm{V} \mathrm{DD}, \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=0 \mathrm{~V}$					30	pF	
		D0-D7 $=0 \mathrm{~V}, \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=0 \mathrm{~V}$					120		

8-Bit Parallel DAC in QSOP-16 Package

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}\right.$, $\mathrm{V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=0 \mathrm{~V}$, Circuit of Figure $1, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
DIGITAL INPUTS						
Input High Voltage	V_{IH}			2.4		V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	1)	0.8	V
Input Current	IIN	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}$			± 1	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			± 10	
Input Capacitance (Note 3)	CIN	D0-D7			8	pF
		$\overline{\mathrm{WR}}, \overline{\mathrm{CS}}$			20	
POWER REQUIREMENTS						
Supply Current	IDD	Digital inputs at 0 V or V_{DD}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		100	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		500	
SWITCHING CHARACTERISTICS (Figure 4)						
Chip-Select to WriteSetup Time	tcs	MAX5480A		220		ns
		MAX5480B		35		
Chip-Select to WriteHold Time	tch	MAX5480A		0		ns
		MAX5480B		0		
Write Pulse Width	twR	MAX5480A		220		ns
		MAX5480B		35		
Data-Setup Time	tDs	MAX5480A		170		ns
		MAX5480B		55		
Data-Hold Time	tDH	MAX5480A		10		ns
		MAX5480B		-7	\square	

Note 1: Gain error is measured using internal feedback resistor. Full-scale range (FSR) = VREF.
Note 2: Gain TempCo measured from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}$ and from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$.
Note 3: Guaranteed by design.

Pin Description

PIN	NAME	
1	OUT1	R-2R Ladder Output
2	OUT2	R-2R Ladder Output, complement of OUT1
3	GND	Ground
$4-11$	D7-D0	Data Inputs, D7 is the most significant bit.
12	$\overline{\mathrm{CS}}$	Chip Select Input. Active Low.
13	$\overline{\text { WR }}$	Write Control Input. Active Low.
14	VDD	Power Supply Input, +5 V
15	REF	Reference Voltage Input
16	RFB	Feedback Resistor Connection

8-Bit Parallel DAC in QSOP-16 Package

Abstract

Detailed Description The MAX5480 is an 8 -bit multiplying digital-to-analog converter (DAC) that consists of a thin-film R-2R resistor array with CMOS current steering switches. Figure 3 shows a simplified schematic of the DAC. The inverted R -2R ladder divides the voltage or current reference in a binary manner among the eight steering switches. The magnitude of the current appearing at either OUT terminal depends on the number of switches selected; therefore, the output is an analog representation of the digital input. The two OUT terminals must be held at the same potential so a constant current is maintained in each ladder leg. This makes the REF input current independent of switch state and also ensures that the MAX5480 maintains its excellent linearity performance.

Interface-Logic Information

Mode Selection

The inputs $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ control the MAX5480's operating mode (see Table 1).

Write Mode When $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are both low, the MAX5480 is in write mode, and its analog output responds to data activity at the D0-D7 data-bus inputs. In this mode, the data latches are transparent (see Tables 2 and 3).

Hold Mode
In hold mode, the MAX5480 retains the data that was present on D0-D7 just prior to $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WR}}$ assuming a high state. The analog output remains at the value corresponding to the digital code locked in the data latch.

Applications Information

Using the MAX5480 in VoltageOutput Mode (Single Supply)

The MAX5480 can be used either as a current-output DAC (Figures 1 and 6) or as a voltage-output DAC (Figures 2 and 5).
To use the MAX5480 in voltage mode, connect OUT1 to the reference input and connect OUT2 to ground. REF, now the DAC output, is a voltage source with a constant output resistance of $10 \mathrm{k} \Omega$ (nominally). This output is often buffered with an op amp (Figure 5).
An advantage of voltage-mode operation is singlesupply operation for the complete circuit; i.e., a negative reference is not required for a positive output. It is important to note that the range of the reference is restricted in voltage mode. The reference input (voltage at OUT1) must always be positive and is limited to no more than $V_{D D}-3 V$. If the reference voltage exceeds this value, linearity is degraded.

Figure 1. Unipolar Binary Operation (Two-Quadrant Multiplication)

Figure 2. Typical Operating Circuit (Voltage Mode—Unbuffered)

Table 1. Mode-Selection Table

$\overline{\mathbf{C S}}$	$\overline{\text { WR }}$	MODE	DAC Response
L	L	Write	DAC responds to data bus (D0-D7) inputs.
H	X	Hold X	Hata bus (D0-D7) is locked out; DAC holds last data present when $\overline{\mathrm{CS}}$ or $\overline{\text { WR }}$ assumed high state.

$L=$ Low State, $H=$ High State, $X=$ Don't Care

8-Bit Parallel DAC in QSOP-16 Package

Table 2. Unipolar Binary Code Table

MSB ${ }^{\text {DIGITAL INPUT }}$ LSB	ANALOG OUTPUT
$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$-V_{\text {REF }}\left(\frac{255}{256}\right)$
10000000001	$-\operatorname{VREF}\left(\frac{129}{256}\right)$
100000000	$-V_{\text {REF }}\left(\frac{128}{256}\right)=-\frac{V_{\text {REF }}}{2}$
$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$-\mathrm{V}_{\text {REF }}\left(\frac{127}{256}\right)$
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$	$-V_{\text {REF }}\left(\frac{1}{256}\right)$
0000000000	$-V_{\text {REF }}\left(\frac{0}{256}\right)=0$

NOTE: $1 \mathrm{LSB}=\left(2^{-8}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)=\frac{1}{256}\left(\mathrm{~V}_{\mathrm{REF}}\right)$

Figure 3. MAX5480 Functional Diagram

Table 3. Bipolar (Offset Binary) Code Table

DIGITAL INPUT								
MSB			LSB	ANALOG OUTPUT				
1	1	1	1	1	1	1	1	$+V_{\text {REF }}\left(\frac{127}{128}\right)$
1	0	0	0	0	0	0	1	$+V_{\text {REF }}\left(\frac{1}{128}\right)$
1	0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1	$-V_{\text {REF }}\left(\frac{1}{128}\right)$
0	0	0	0	0	0	0	1	$-V_{\text {REF }}\left(\frac{127}{128}\right)$
0	0	0	0	0	0	0	0	$-V_{\text {REF }}\left(\frac{128}{128}\right)$

NOTE: $1 \mathrm{LSB}=\left(2^{-7}\right)\left(\mathrm{V}_{\text {REF }}\right)=\frac{1}{128}\left(\mathrm{~V}_{\text {REF }}\right)$

Figure 4. Write-Cycle Timing Diagram

8－Bit Parallel DAC in QSOP－16 Package

Http：／／www．100y．com．tw

Figure 5．Single－Supply Voltage－Output Mode（Buffered）

Figure 6．Bipolar（Four－Quadrant）Operation

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．

6 \qquad Maxim Integrated Products， 120 San Gabriel Drive，Sunnyvale，CA 94086 408－737－7600
© 1997 Maxim Integrated Products
Printed USA
MユXINI is a registered trademark of Maxim Integrated Products．

