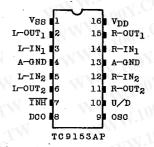
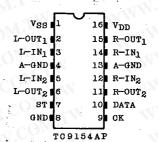
[C9]|53AP, [C9]|54AP


ELECTRONIC VOLUME.


The TC9153/54AP is an optimum C2MOS IC which has been designed for electronization of volume control of audio equipment, ect. with the following features.

- . Attenuation can be controlled from OdB to -66dB by 2dB/step.
- . 2 channels have been built in.
- . Both of dual power supplies of (+) and (-) and a single power supply can be used.
- The TC9153AP is capable of controlling attenuation by means of the built-in oscillator and the up/down terminals.
- The TC9154AP is capable of optionally controlling attenuation and channel balance when specified signals are externally applied to the data, clock and strobe input terminals.
- . Being in C2-MOS structure, the operating voltage range is wide and current consumption is low. Vpp=6 ~ 12(V) (Backup is possible up to 4V)

Weight: 1.0g
PIN CONNECTION

MAXIMUM RATINGS (Ta=25°C)

CHARACTERISTIC -	SYMBOL	RATING	UNIT
Supply Voltage	v_{DD}	13	V
Input Voltage	VIN	$V_{SS}-0.3 \sim V_{DD}+0.3$	V
Power Dissipation	PD	150	mW
Operating Temperature	Topr	-30~75	°C
Storage Temperature	Tstg	-55~125	°C

∝TOSHIBA

-282-

DE 9097247 0018070 4 TOSHIBA, ELECTRONIC OZ TC9153AP, **TC9154AP** T-77-21 **BLOCK DIAGRAM** TC9153AP INH v_{DD} vss T $^{(1)}$ AUTO U/D 6 BITS 7 BITS - INT INITIALIZE υ/υ (10 BIDIRECTIONAL BIDIRECTIONAL CIRCUIT CK СK SHIFT REGISTOR SHIFT REGISTOR INT CONSTANT (8) DCO osc 080 (9 CURRENT CIRCUIT v_{DD} (15) R-OUT₁ L-OUT₁ (2 CK CK A-SW (14) R-IN₁ A-SW L-IN1 (3) CIRCUIT CIRCUIT A-SW A-SW A-SW A-SW LATCH LATCH A-SW A-S₩ A-SW A-8W 2-2 A-SW A-8W CK A-SW A-SW 13) A-GND A-GND (4 CK CK 12) R-IN2 CIRCUIT CIRCUIT A-SW L-IN2 (5 A-SW A-SW A-SW LATCH LATCH A-SW A-SW A-SW A-SW BIIS

EXAUDIO DIGITAL IC

R-OUT2

WWW.100Y

-283-

A-SW

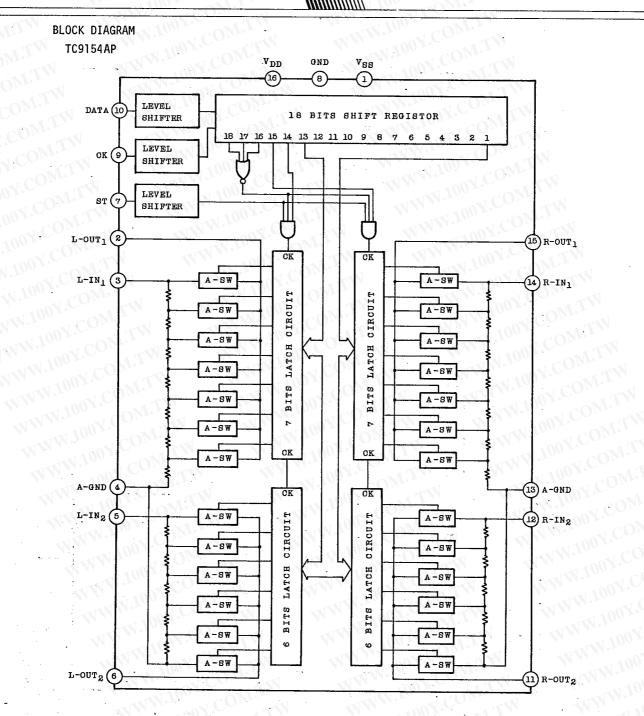
A-8W

L-OUT2(6)

9

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

A-SW


A-SW

TOSHIBA

T-77-21

WWW.100Y.COM

券 特 力 材 料 886

-284-

T-77-21

ELECTRICAL CHARACTERISTICS

TC9153AP (Unless otherwise specified, VDD=12V, VSS=0V, Ta=25°C)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Supply	Voltage	V _{DD}	. F		6	$O\bar{x}_T$,	12	. A
Operating Supply	Current	IDD	11-11	N W	$\sqrt{360}$ yr.	.01/	3	mA
Backup Current	MMA	IB	- T	V _{DD} =4V, INH="L"	1407	-	10	μA
Input Voltage	"H" Level	VIH	DATE.	INH, U/D Terminal	$0.8 \times V_{DD}$	$C_{D_{2}}$	V _{DD} +0.3	V
Input Vortage	"L" Level	VIL	OŽĄ	Init, 07 D Terminal	VSS-0.3	J €0	V _{DD} ×0.2	
Attenuator 1 (10dB/step) Resistor		RATT-1	COJ	R-IN1 (L-IN1) -A-GND	25	50	70	kΩ
Attenuator 2 (2dB/step) Resistor		RATT-2	(.e ^O	R-IN2 (L-IN2) -A-GND	10	20	28	√ kΩ
Attenuation Error		14 .100	J C	DIA.	W.	-0V	2	dB
Max. Input Amplitude		v _{in}	-	Biase V _{DD} /2=6V	Wire	Iño.	4.0	Vrms
Operating Oscillation Frequency		fosc	007.	COMILA	5	1.100	10k	Hz
DCO Output Current		IDCO	100.	1 Step	70	100	140	μА
Total Harmonic Distortion		THD	: 1 <u>0</u> 0	ATT=-10dB f _{in} =1kHz V _{in} =1.0Vp-p	- 11/	0.005	0.01	%

TC9154AP (Unless otherwise specified, VDD=6V, VSS=-6V, GND=0V, Ta=25°C)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Supply	y Voltage	v_{DD}	N V	Ting COM.	6	-	12	y V
Operating Supply	Current	I _{DD}	<u> </u>	N.1001. COM.1	_	1	3	mA
Static Supply Current		IDD(S)	11/2/	1007.	[]	-7//	300	μA
Input Voltage	Tanut Voltage "H" Level			CK, DATA, ST	V _{DD} ×0.8	- 1	V _{DD} +0.3	0 v. C
Input voltage	"L" Level	VIL	241	Terminal	-0.3	-	V _{DD} ×0.2	V
Attenuator 1 (10dB/step) Resistor		R _{ATT-1}		R-IN1 (L-IN1) -A-GND	25	50	70	kΩ
Attenuator 2 (2dB/step) Resistor		RATT-2		R-IN2 (L-IN2) -A-GND	10	20	28	kΩ
Attenuation Error		TOWN	-	WWW. JONY.C	U17_ TY	V -	2	dB
Max. Input Amplitude		Vin	-	Biase OV	$CO_{D_{P_{i}}}$	CN-	4.0	Vrms
Max. Clock Frequency		fck	_	M. 100	COM.	-41	100	kHz
Min. Clock Width		Tck	-	11 100	5	ĹĀ	- 1/	μsec
Total Harmonic Distortion		THD	N_	ATT=-10dB f _{in} =1kHz V _{in} =1.0Vp-p	VY.CON	0.005	0.01	%

=AUDIO DIGITAL IC::::

WWW.100Y.CO!

TC9153AP, TC9154AP

FUNCTIONAL DESCRIPTION OF EACH TERMINAL

TERMINAL No.	SYMBOL	FUNCTION	REMARKS
2	L-OUT1 R-OUT1	10dB/step attenuator outputs. A signal applied to IN is attenuated in 7 steps from 0dB to 60dB at 10dB/step.	L and R are symmetrical.
3	L-IN1	10dB/step attenuator inputs.	оит ₁ . о——
14	R-IN1	TWING COM.	COM.
4	A-GND	Analog ground terminal	IN ₁ O
13		WW 2007 CTW WW 100	A-GND O-
5	L-IN2	2dB/step attenuator inputs.	A-GND OF
12	R-IN2	W. M.	IN ^S OT
6	L-OUT2	2dB/step attenuator outputs.	M_{II}
	R-OUT2	A signal applied to IN is attenuated in 5 steps from OdB to 8dB at 2dB/step.	OUT ₂ O
	-7		

TC9153AP

109153AP	Live L	MAN MAN CO. TON THE STATE OF TH	
100 ⁷ ,CC 100 ⁷ ,CC	INH	Inhibit terminal. When this terminal is at "L" level, all input/ output cut off and the TC9153AP is placed in the inhibit state. When at "H" level, the TC9153AP operates normally	M.100X.COM; M.100X.COM; M.100X.COM;
8	DCO	DC current output for displaying attenuation. Attenuation 0~∞ is divided into 13 steps and approx. 100#A/step is transmitted.	Attenuation can be converted to DC voltage by attaching a resistor between this terminal and VSS.
9	osc	C, R connecting terminal for the oscillator. Up/down speed of attenuation is decided by the attenuation up/down control oscillator according to this time constant.	V _{DD}
10	U/D	Attenuation up/down control input terminal. When this terminal is at "H" level, sound volume is increased synchronizing with rise of the oscillator. Conversely, when this pin is at "L" level, sound volume is decreased.	With pull-up resistor.

≅TOSHIBA

-286-

T-77-21

TC9154AP

TERMINAL No.	SYMBOL	FUNCTION	REMARKS
10	DATA	Attenuation channel selection data input terminal. Data consists of 18 bits and inputted by CK signal.	M.TW M.TW
7.779	. CK	Clock input terminal. Clock input terminal for taking data from DATA terminal.	OW.TW
OM.7W COM.TV COM.TV V.COM V.CON	ST	Strobe input terminal. Attenuation channel selection signals taken from DATA and CK terminals are latched when this terminal is placed at "H" level. When no "H" level signal is applied to this terminals, previous data is kept maintained.	COM.TW N.COM.TW NOY.COM.TW 100Y.COM.TW 100Y.COM.TW
7X'.100, N'.100, I'.10	OM.TW COM.TV COM.T COM.T	DATA	M. 100 X. COM. 100
1100	V _{SS}	(-) Power supply terminal.	MAM. 100 X.C.
16	v _{DD}	(+) Power supply terminal.	MMM.100X
(8)	GND	Earth terminal only for TC9154AP.	MMM.Too

DE

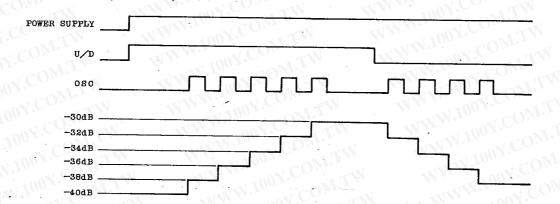
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.1

WWW.100Y.C

DESCRIPTION OF OPERALLON

SETTING OF ATTENUATION

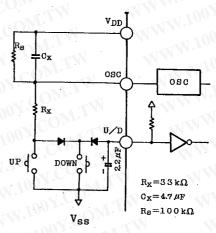

Setting of attenuation differs between the TC9153AP and TC9154AP.

On the TC9153AP, attenuation can be increased/decreased according to the state of U/D terminal ("H" or "L" level) by actuating the built-in oscillator.

On the TC9154AP, attenuation can be set at optional level by inputting specified data to the DATA, CK and ST terminals, respectively.

In Case of TC9153AP

On the TC9153AP, attenuation is automatically set at the -40dB position when power is applied.

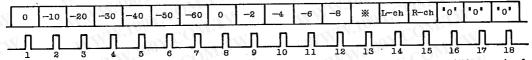


When the UP key is pressed after power ON, the U/D terminal is placed in the up state at "H" level, and the oscillator is actuated.

When the DOWN key is pressed, the U/D terminal is kept at "L" level as long as the DOWN key is pressed, and the oscillator is actuated in the down state and therefore, attenuation is decreased.

Oscillation frequency is decided by $\mathtt{C}_{\mathbf{X}}$ and $\mathtt{R}_{\mathbf{X}}.$

$$f_{OSC} \doteq \frac{1}{0.7 \text{ C}_{X} \cdot R_{X}} \text{ (Hz)} \qquad (R_{S} \ge 3R_{X})$$

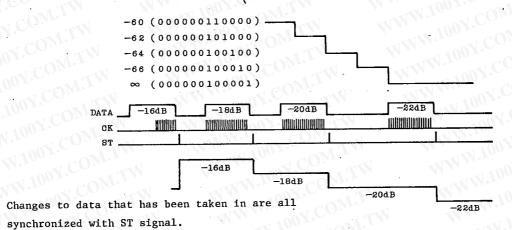

TOSHIBA

-288-

In Case of TC9154AP

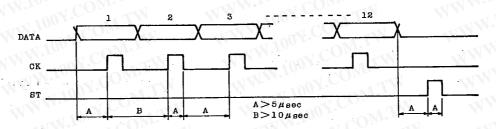
T-77-21

On the TC9154P, optional attenuation data is inputted through the DATA, CK and ST terminals. Data consists of 18 bits as follows.



DE

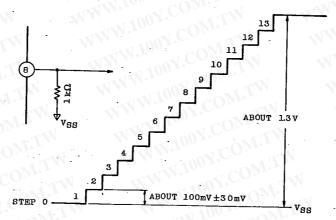
For instance, when data of (000100001000011000) is inputted through the DATA terminal, attenuation is set at -32dB.


Bits $1\sim7$ of the data are set at a unit of 10dB and $8\sim12$ at a unit of 2dB. Bit 13 can be at either "1" or "0". Bits 14 and 15 are for selecting the left and right channels and "1", "0"=Lch, "0", "1"=Rch, and "1", "1"=L & Rch. Bits $16\sim18$ are fixed at "0".

Infinite attenuation is set by -68dB data and therefore, if attenuation is increased from the infinite quantity by one step, it becomes -66dB.

TIMING OF DATA, CK AND ST

DATA, CK and ST should be inputted under the conditions shown below.


AUDIO DIGITAL IC

-- 289 -

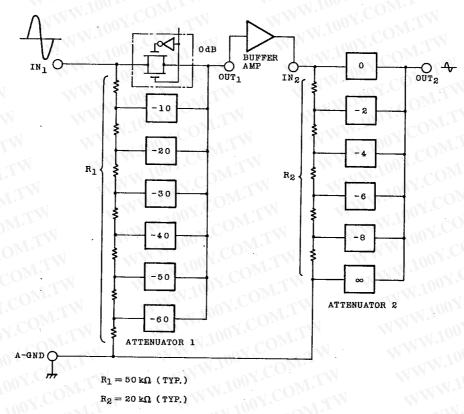
ATTENUATION DISPLAY OUTPUT

The TC9153AP is provided with the DC current output terminal for displaying attenuation. With $0dB^{\infty}$ divided into 13 steps, current of approx. $100\mu\text{A/step}$ is transmitted.

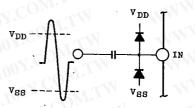
	CU>``				
STEP	DCO	ATTENUATION			
0	0.1.0	-64dB~∞			
1	Ι=100μΑ±30μΑ	-60dB~ -62dB			
2	2 × I	-54dB~ -58dB			
3	3×1	-50dB~-52dB			
4	4 × I	-44dB~ -48dB			
5	5 × I	-40dB~-42dB			
6	6×I	-34dB~-38dB			
7	7 × I -30dB ~ -32dB				
8	8 × I	-24dB~ -28dB			
9	. 9 × I	-20dB ~ -22dB			
10	10 × I	-14dB~ -18dB			
11	11 × I	-10dB~-12dB			
12	12 × I	-4dB ~ -8dB			
13	13 × I	0dB ~ −2dB			

* Current value may fluctuate depending upon IC.

When high precision is required, use a variable resistor as a load resistor.


"TOSHIBA

-290-

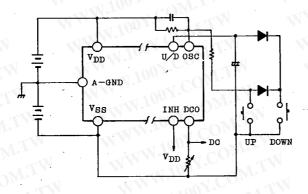

T-77-21

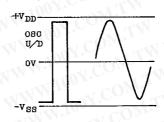
ATTENUATOR

The attenuator unit consist of diffused resistors and analog switches. Attenuator-1 attenuates $0\sim60\text{dB}$ at 10dB/step while Attenuator-2 attenuates $2\sim8\text{dB}$ at 2dB/step, a total of $0\sim66\text{dB}$ at 2dB/step.

If there is the possibility for excessive voltage being to the attenuator, it is recommended to insert a protective diode as illustrated below.

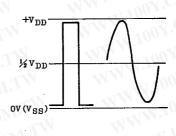
AUDIO DIGITAL IC


TC9153AP, TC9154AP



POWER SUPPLY


TC9153AP

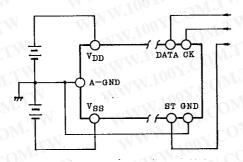

. IN CASE OF DUAL POWER SUPPLIES

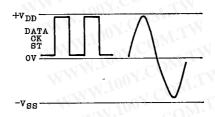
. IN CASE OF SINGLE POWER SUPPLY

WWW.100Y.COM

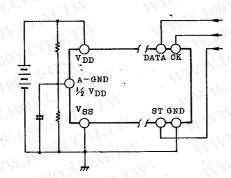
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

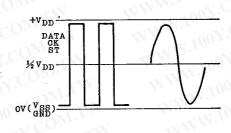
Http://www.100y.com.tw


TOSHIBA

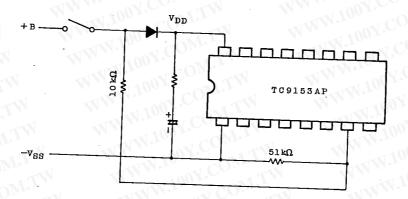

T-77-21

TC9154AP


As the TC9154AP has a built-in level shifter, DATA, CK and ST inputs can be operated by a single power supply ($V_{\rm DD}$ -GND) even when Dual power supplies are used. As a result, it has become easy to connect to a microcomputer, other controller.


. IN CASE OF DUAL POWER SUPPLY

. IN CASE OF SINGLE POWER SUPPLY



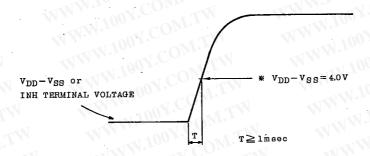
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

BACKUP WHEN POWER OFF

On the TC9153AP, when the INH terminal is set at "L" (-VSS) level, all input/output terminal are shut off and current consumption is reduced to the minimum. The backup by means of a capacitor becomes possible in this condition. An exmaple of application when a backup capacitor is used is shown below.

* If $V_{\mathrm{DD}}\text{-}V_{\mathrm{SS}}$ drops below 4.0V, the backup becomes impossible.

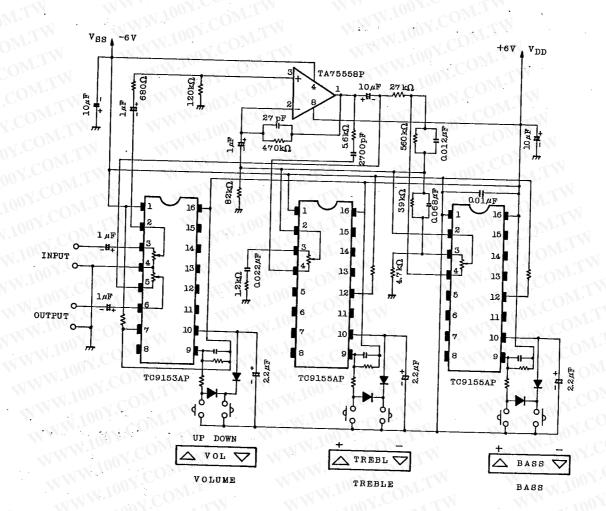

The TC9154AP is of such type that attenuation data is supplied externally and has no INH pin and therefore, is not suited for the backup. It is recommended to perform the backup at the controller side and to input holding data when power is ON.

INITIALIZATION WHEN POWER ON

The TC9153AP has the auto-intializing function built-in for initialization at time of power ON.

As the initializing system through detection of supply voltage level is adopted, if rise of power supply is too fast, the initialization may not be fully effected. (No external initialization is necessary.) In additions for effective initialization it is necessary that the INH terminal is raised simultaneously with supply voltage. Further, the initializing level is -40dB.

It is recommended to rise supply voltage and the INH terminal as illustrated below.

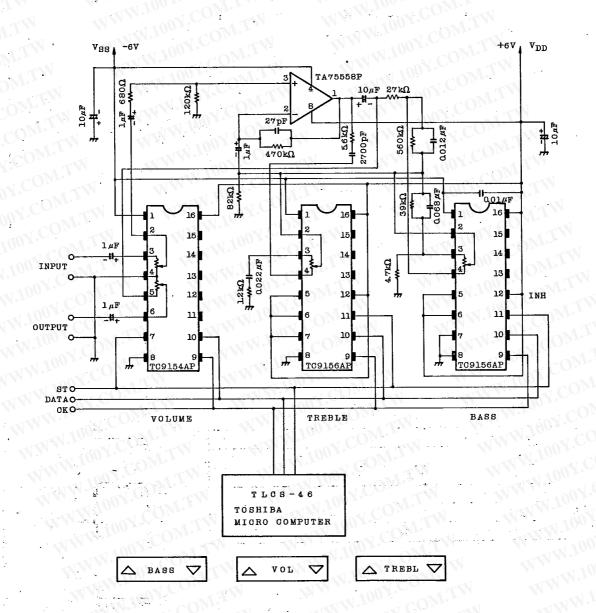

* On the TC9153AP, if $V_{\mathrm{DD}}-V_{\mathrm{SS}}$ drops below 4.0V, the auto-initializing function is actuated.

The TC9154AP is of such type that attenuation data is supplied externally, it has no built-in auto-initializing function. It is recommended to send data after power to the TC9154AP is raised.

TC9153AP, TC9154AP

77.

TC9153/55AP APPLICATION CIRCUIT (L-ch only)



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

"TOSHIBA

TC9154/56AP APPLICATION CIRCUIT (L-ch only)

T-77-21

AUDIO DIGITAL IC

-297-