




# **CMOS linear image sensors**

S9226 series

# Built-in timing generator and signal processing circuit; 3.3 V single supply operation

The S9226 series is a small CMOS linear image sensor designed for image input applications. The signal processing circuit has a charge amplifier with excellent input/output characteristics. Two package styles are provided: a DIP type and a surface mount type.

#### Features

- Pixel pitch: 7.8 μm Pixel height: 125 µm
- **→** 1024 pixels
- 3.3 V single power supply operation available
- High sensitivity, low dark current, low noise
- On-chip charge amplifier with excellent input/output characteristics
- Built-in timing generator allows operation with only start and clock pulse inputs.
- → Video data rate: 200 kHz max.
- Spectral response range: 400 to 1000 nm
- Two package styles are provided:

DIP (dual inline package) type: S9226-03

Surface mount type: S9226-04

#### Applications

- Analytical instruments
- Position detection
- Image reading

#### Structure

| Parameter                  | Specification               | Unit |
|----------------------------|-----------------------------|------|
| Number of pixels           | 1024                        | -    |
| Pixel pitch                | 7.8                         | μm   |
| Pixel height               | 125                         | μm   |
| Photosensitive area length | 7.9872                      | mm   |
| Package                    | Ceramic                     | -    |
| Window material            | Borosilicate glass (Tempax) | -    |

### **-** Absolute maximum ratings

| Parameter                       | Svmbol | Value                                       | Unit |
|---------------------------------|--------|---------------------------------------------|------|
| Supply voltage                  | Vdd    | -0.3 to +6                                  | V    |
| Gain selection terminal voltage | Vg     | -0.3 to +6                                  | V    |
| Clock pulse voltage             | V(CLK) | -0.3 to +6                                  | V    |
| Start pulse voltage             | V(ST)  | -0.3 to +6                                  | V    |
| Operating temperature*1         | Topr   | -5 to +60                                   | °C   |
| Storage temperature*1           | Tstg   | -10 to +70                                  | °C   |
| Reflow soldering condition*2 *3 | Tsol   | Peak temperature 240 °C, 2 times (See P.8.) | -    |

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

- \*1: No condensation
- \*2: S9226-04
- \*3: JEDEC level 5

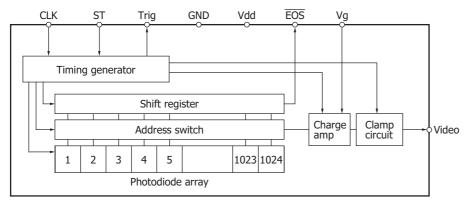
# **►** Recommended terminal voltage (Ta=25 °C)

| Parameter                       |            | Symbol | Min.       | Тур. | Max.       | Unit |
|---------------------------------|------------|--------|------------|------|------------|------|
| Supply voltage                  |            | Vdd    | 3.3        | 5    | 5.25       | V    |
| Cain coloction terminal voltage | High gain  | Vg -   | -          | 0    | -          | V    |
| Gain selection terminal voltage | Low gain   |        | Vdd - 0.25 | Vdd  | Vdd + 0.25 | V    |
|                                 | High level | V(CLK) | Vdd - 0.25 | Vdd  | Vdd + 0.25 | V    |
|                                 | Low level  |        | -          | 0    | -          | V    |
| Start pulse voltage             | High level | V(ST)  | Vdd - 0.25 | Vdd  | Vdd + 0.25 | V    |
|                                 | Low level  |        | -          | 0    | -          | V    |

## **■** Electrical characteristics [Ta=25 °C, Vdd=5 V, V(CLK)=V(ST)=5 V]

| Parameter             |          | Symbol | Min. | Тур.     | Max.  | Unit    |
|-----------------------|----------|--------|------|----------|-------|---------|
| Clock pulse frequency |          | f(CLK) | 10 k | -        | 800 k | Hz      |
| Video data rate       |          | VR     | -    | f(CLK)/4 | -     | Hz      |
| Power consumption     |          | Р      | 20   | 30       | 40    | mW      |
| High gain             |          | CE     | -    | 3.2      | -     | 11)//0- |
| Conversion efficiency | Low gain |        | -    | 1.6      | _     | μV/e-   |
| Output impedance*4    |          | Zo     | -    | 185      | -     | Ω       |

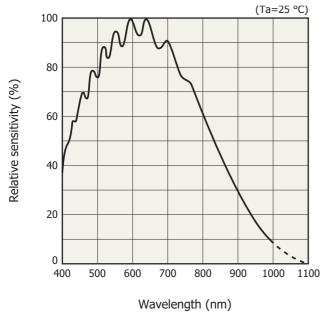
#### **■** Electrical and optical characteristics [Ta=25 °C, Vdd=5 V, V(CLK)=V(ST)=5 V]


| Parameter                        |           | Symbol | Min. | Min. Typ. |     | Unit       |  |
|----------------------------------|-----------|--------|------|-----------|-----|------------|--|
| Spectral response range          | λ         |        | nm   |           |     |            |  |
| Peak sensitivity wavelength      |           | λр     | -    | - 650 -   |     |            |  |
| Dark current                     |           | ID     | -    | 5         | 50  | fA         |  |
| Dark output voltage*5            | High gain | Vd     | -    | 1         | 10  | mV         |  |
| Dark output voitage"             | Low gain  |        | -    | 0.5       | 5   |            |  |
| Saturation output voltage*6      |           | Vsat   | 2.2  | 3.2       | -   | V          |  |
| Dandout noice                    | High gain | Nr     | -    | 1.4       | 2.2 | ma\/ wma.c |  |
| Readout noise                    | Low gain  |        | -    | 0.7       | 1.1 | mV rms     |  |
| Offset output voltage            |           | Vo     | 0.2  | 0.35      | 0.6 | V          |  |
| Photoresponse nonuniformity*7 *8 |           | PRNU   |      | -         | ±5  | %          |  |

<sup>\*4:</sup> An increased current consumption at the video output terminal rises the sensor chip temperature causing an increased dark current. Connect a buffer amplifier for impedance conversion to the video output terminal so that the current flow is minimized.

Use a JFET or CMOS input, high-impedance input op amp as the buffer amplifier.

- \*5: Integration time=10 ms
- \*6: Voltage difference with respect to Vo
- \*7: Photoresponse nonuniformity (PRNU) is the output nonuniformity that occurs when the entire photosensitive area is uniformly illuminated by light which is 50% of the saturation exposure level. PRNU is measured using 1022 pixels excluding the pixels at both ends, and is defined as follows: PRNU =  $\Delta X/X \times 100$  (%)
  - X: average output of all pixels,  $\Delta X$ : difference between X and maximum or minimum output
- \*8: Measured with a tungsten lamp of 2856 K


# **Block diagram**



KMPDC0165EC

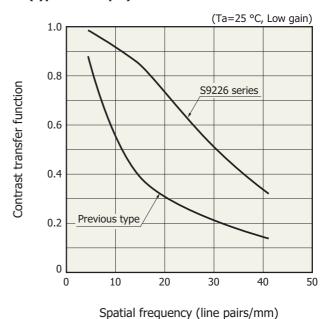


# Spectral response (typical example)



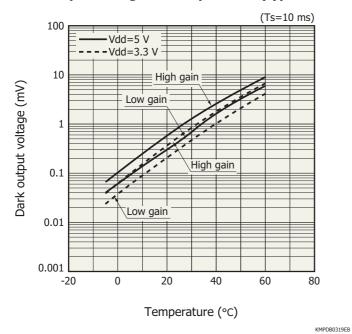
KMPDB0229EC

#### Resolution

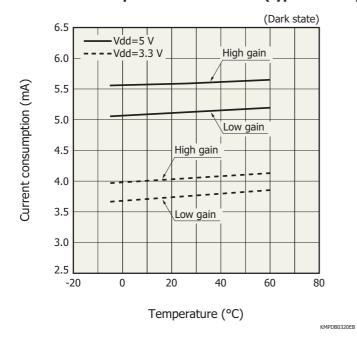

CTF: contrast transfer function

$$CTF = \frac{VWO - VBO}{VW - VB}$$

Vwo: output white level VBO: output black level

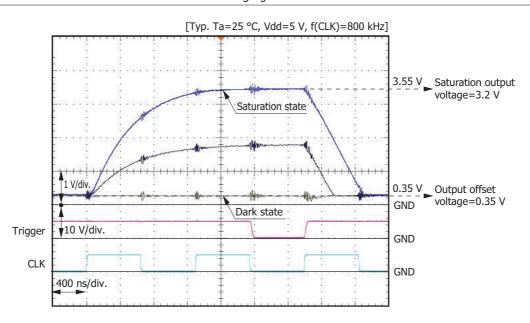

Vw : output white level (when input pattern pulse width is wide)
VB : output black level (when input pattern pulse width is wide)

# Contrast transfer function vs. spatial frequency (typical example)

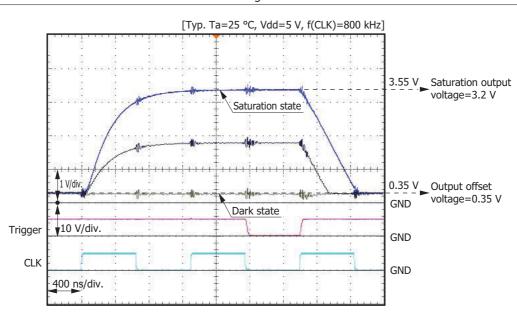



KMPDB0318EB

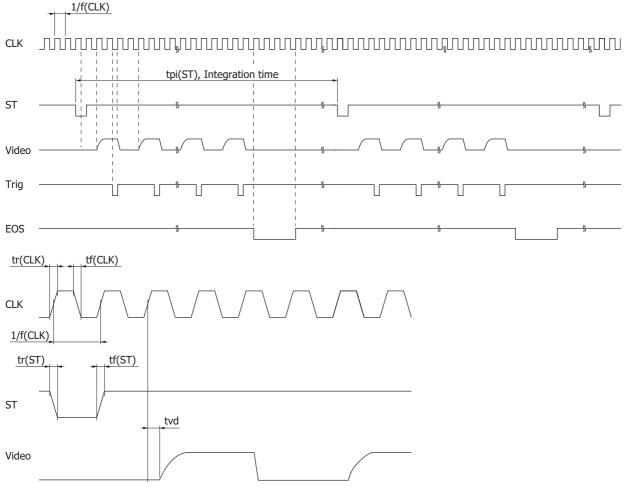
# Dark output voltage vs. temperature (typical example)




# Current consumption vs. temerature (typical example)




# Output waveform of one element


## High gain



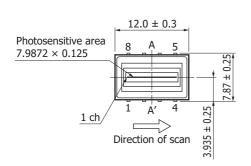
#### Low gain

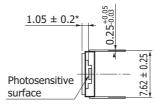


### Timing chart



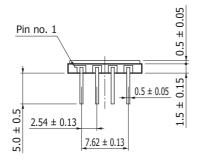
| Parameter                       | Symbol           | Min.        | Тур. | Max. | Unit |
|---------------------------------|------------------|-------------|------|------|------|
| Start pulse cycle               | tpi(ST)          | 4104/f(CLK) | -    | -    | S    |
| Start pulse rise and fall times | tr(ST), tf(ST)   | 0           | 20   | 30   | ns   |
| Clock pulse duty ratio          | -                | 40          | 50   | 60   | %    |
| Clock pulse rise and fall times | tr(CLK), tf(CLK) | 0           | 20   | 30   | ns   |
| Video delay time*9              | tvd              | 10          | 20   | 30   | ns   |


<sup>\*9:</sup> Ta=25 °C, Vdd=5 V, V(CLK)=V(ST)=5 V


Note: The CLK pulse should be set from high to low just once when the st pulse is low. The internal shift register starts operating at this timing.

The integration time is determined by the start pulse cycles. However, since the charge integration of each pixel is carried out between the signal readout of that pixel and the next signal readout of the same pixel, the start time of charge integration differs depending on each pixel. In addition, the next start pulse cannot be input until signal readout from all pixels is completed.

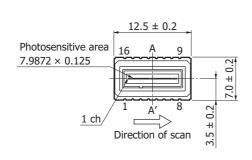
# Dimensional outlines (unit: mm)

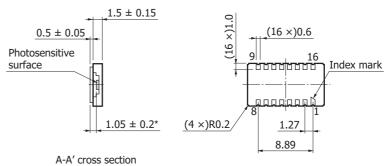

# S9226-03





\* A-A' cross section


\* Distance from upper surface of window to photosensitive surface




| Pin no. | Symbol | Pin name               | Input/Output |
|---------|--------|------------------------|--------------|
| 1       | GND    | Ground                 | Input        |
| 2       | CLK    | Clock pulse            | Input        |
| 3       | Trig   | Trigger pulse          | Output       |
| 4       | ST     | Start pulse            | Input        |
| 5       | Vg     | Gain selection voltage | Input        |
| 6       | Video  | Video output           | Output       |
| 7       | EOS    | End of scan            | Output       |
| 8       | Vdd    | Supply voltage         | Input        |

KMPDA0172E

# S9226-04





\* Distance from upper surface of window to photosensitive surface

KMPDA0258EC

| Pin no. | Symbol | Pin name      | Input/Output | Pin no. | Symbol | Pin name               | Input/Output |
|---------|--------|---------------|--------------|---------|--------|------------------------|--------------|
| 1       | NC     | No connection |              | 9       | NC     | No connection          |              |
| 2       | NC     | No connection |              | 10      | NC     | No connection          |              |
| 3       | GND    | Ground        | Input        | 11      | Vg     | Gain selection voltage | Input        |
| 4       | CLK    | Clock pulse   | Input        | 12      | Video  | Video output           | Output       |
| 5       | Trig   | Trigger pulse | Output       | 13      | EOS    | End of scan            | Output       |
| 6       | ST     | Start pulse   | Input        | 14      | Vdd    | Supply voltage         | Input        |
| 7       | NC     | No connection |              | 15      | NC     | No connection          |              |
| 8       | NC     | No connection |              | 16      | NC     | No connection          |              |

#### Precautions

#### (1) Electrostatic countermeasures

This device has a built-in protection circuit against static electrical charges. However, to prevent destroying the device with electrostatic charges, take countermeasures such as grounding yourself, the workbench and tools to prevent static discharges. Also protect this device from surge voltages which might be caused by peripheral equipment.

#### (2) Light input window

If the incident window is contaminated or scratched, the output uniformity will deteriorate considerably, so care should be taken in handling the window. Avoid touching it with bare hands.

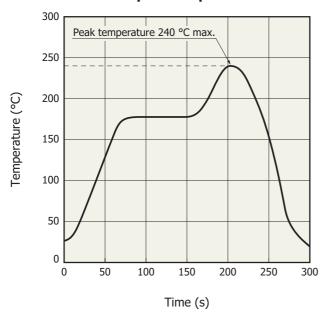
The window surface should be cleaned before using the device. If dry cloth or dry cotton swab is used to rub the window surface, static electricity may be generated, and therefore this practice should be avoided. Use soft cloth, cotton swab or soft paper moistened with ethyl alcohol to wipe off dirt and foreign matter on the window surface.

#### (3) Soldering

To prevent damaging the device during soldering, take precautions to prevent excessive soldering temperatures and times. Soldering should be performed within 5 seconds at a soldering temperature below 260 °C.

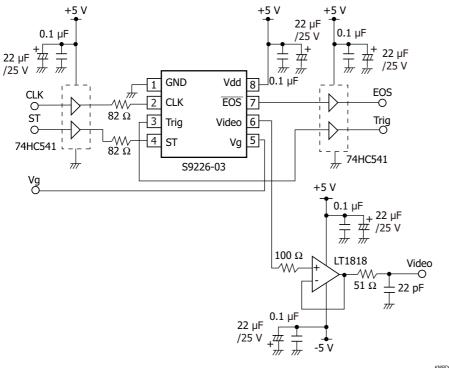
#### (4) Reflow soldering (S9226-04)

Soldering conditions may differ depending on the board size, reflow furnace, etc. Check the conditions before soldering. A sudden temperature rise and cooling may be the cause of trouble, so make sure that the temperature change is within 4 °C per second. The bonding portion between the ceramic base and the glass may discolor after reflow soldering, but this has no adverse effects on the hermetic sealing of the product.


#### (5) Operating and storage environments

Always observe the rated temperature range when handling the device. Operating or storing the device at an excessively high temperature and humidity may cause variations in performance characteristics and must be avoided.

#### (6) UV exposure


This product is not designed to prevent deterioration of characteristics caused by UV exposure, so do not expose it to UV light.

### Recommended temperature profile reflow soldering (S9226-04)



KAPDB0169EA

# - Application circuit example (S9226-03)\*10



KMPDC0416EA

\*10: The S9226-04 has a different pin connections, but uses the same circuit.

#### Related information

www.hamamatsu.com/sp/ssd/doc\_en.html

- Precautions
- · Notice
- · Image sensors/Precautions
- · Surface mount type products/Precautions

Information described in this material is current as of January, 2014.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

Type numbers of products listed in the delivery specification sheets or supplied as samples may have a suffix "(X)" which means preliminary specifications or a suffix "(Z)" which means developmental specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use.

Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

# **HAMAMATSU**

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184

U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P.O.Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218

Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 8152-375-0, Fax: (49) 8152-265-8

France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 1882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71