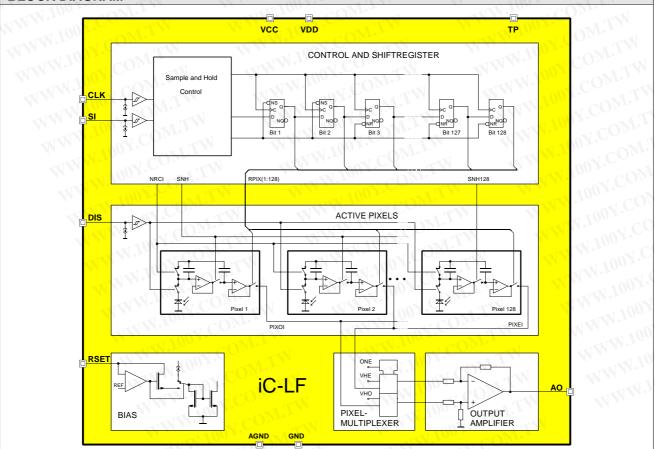


Rev A2, Page 1/8

chip size 8.5mm x 1.6mm


FEATURES APPLICATIONS 128 active pixels with 56µm x 200µm photodiodes in a ٠ Optical row sensors ٠ CCD substitute 63.5µm pitch (400DPI) ٠ ٠ Integrating L-V conversion followed by a sample-and-hold circuit High sensitivity and uniformity over wavelength High clock rates of up to 5MHz Shutter function enables flexible integration times Push-Pull output amplifier PACKAGES 5V single supply operation Can run off external bias to reduce power consumption Functions equivalent to and pin-to-pin compatible with TSL1401 (in an 8-pin oLGA LF2C package) •• • • • 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736

胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

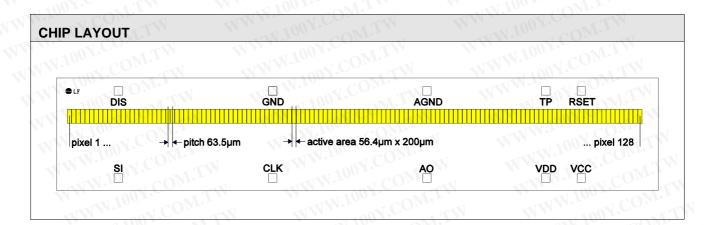
N.100

BLOCK DIAGRAM

© 2001 iC-Haus GmbH Integrated Circuits Am Kuemmerling 18, D-55294 Bodenheim

Tel +49-6135-9292-0 Fax +49-6135-9292-192 http://www.ichaus.com

Rev A2, Page 2/8


DESCRIPTION

iC-LF is an integrating light-to-voltage converter with a row of 128 pixels pitched at $63.5\mu m$ (center-to-center distance). Each pixel consists of a $56.4\mu m \times 200\mu m$ photodiode, an integration capacitor and a sample-and-hold circuit.

The integrated control logic makes operation very simple, with only a start and clock signal necessary. A third control input enables the integration period to be prematurely terminated at any time.

When the start signal is given hold mode is activated for all pixels simultaneously with the next rising clock edge; starting with pixel 1 the hold voltages are switched in sequence to the push-pull output amplifier. The second clock pulse deletes all integration capacitors and the integration period starts again in the background during the output phase. A run is complete after 128 clock pulses.

iC-LF is suitable for high clock rates of up to 5MHz. If this is not required the supply current can be reduced via the external bias setting.

Name	Function	勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736
SI	Start Integration Input	胜特力电子(深圳) 86-755-83298787
CLK	Clock Input	Http://www.100y.com.tw
AO	Analog Output (1mA push-pull)	
VDD	+5V Supply Voltage (digital)	
VCC	+5V Supply Voltage (analog)	
VCC RSET		CC; when linked to GND the internal bias setting
	Bias Current Adjust (by resistor from V	CC; when linked to GND the internal bias setting
RSET	Bias Current Adjust (by resistor from Ve activated)	CC; when linked to GND the internal bias setting
RSET TP	Bias Current Adjust (by resistor from V activated) Test Output	CC; when linked to GND the internal bias setting
RSET TP AGND	Bias Current Adjust (by resistor from Ve activated) Test Output Analog Ground	CC; when linked to GND the internal bias setting

WWW.100X

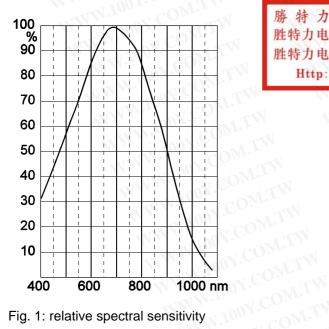
WWW.100X.COM.1

Rev A2, Page 3/8

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Parameter	Conditions	Fig.	Min.	Max.
G001	VDD	Digital Supply Voltage	NWW.100	COM.	-0.3	6
G002	VCC	Analog Supply Voltage	.1W W.1001.	NOD	-0.3	6
G003	V()	Voltage at SI, CLK, DIS, RSET, TP, AO	A.T.W. WWW.100)	v.CO	-0.3	VCC+0
G004	I()	Current in RSET, TP, AO	M.I.	J C	-10	10
E001	Vd()	ESD Susceptibility at all pins	MIL-STD-883, Method 3015, HBM 100pF/ 1.5kΩ	ony.C		2
TG1	TjOM-	Operating Junction Temperature	COMP.	No.	-40	125
TG2	Ti	Storage Temperature Range	see package specification	700	COM.	

W.100Y.COM.7


WW.10

W.100X.COM.

THERMAL DATA

tem	Symbol	Parameter	Conditions	Fig.		N.CO	17	Uni
1	N.1003	CONL'IN WITH	W100 L. COWL		Min.	Тур.	Max.	
T1	Та	Operating Ambient Temperature Range (extended range on request)	see package specification	WW	W.10	00Y.C	OM. ¹	LAN

OPTICAL CHARACTERISTICS: Diagrams

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM

Fig. 1: relative spectral sensitivity

Rev A2, Page 4/8

ELECTRICAL CHARACTERISTICS

Item	Symbol	Parameter	T= GND, Tj= -2585°C unless other Conditions	Tj Fig.	TN	1 1		Uni
)		WWW. COm	TH WWW	°C	Min.	Тур.	Max.	_
Total	Device	WW.WW.COM	V. W.W.W.W.	CO V	N.	1		_
001	VDD	Digital Supply Voltage Range	M'I	No - C	4.5	1	5.5	V
002	VCC	Analog Supply Voltage Range	M.T.W. WT.M.	100	4.5		5.5	V
003	I(VDD)	Supply Current in VDD	f(CLK)= 1MHz	1007.		200	300	μA
004	I(VCC)	Supply Current in VCC	COM. WW	Yoo	COm	8	13	mA
005	Vc()hi	Clamp Voltage hi at SI, CLK, DIS, TP, RSET	Vc()hi= V() - V(VCC); I()= 1mA	N.100	0.3	WT.IN	1.8	V
006	Vc()lo	Clamp Voltage lo at SI, CLK, DIS, TP, RSET	Vc()hi= V() - V(AGND); I()= -1mA	NV .10	-1.5	M.TV	-0.3	V
007	Vc()hi	Clamp Voltage hi at AO	Vc()hi= V(AO) - V(VCC); I(AO)= 1mA	VWW.1	0.3	OM.1	1.5	V
008	Vc()lo	Clamp Voltage lo at AO, VCC, VDD, GND	Vc()lo= V() - V(AGND); I()= -1mA	WALW.	-1.5	COM	-0.3	V
Photo	diode Arr	ay	100Y.COMITH	ANN.	J 100		MT.	
201	A()	Radiant Sensitive Area	200µm x 56.40µm per Pixel	NVV.	10	0.01128	VT.	mm
202	S(λ)max	Spectral Sensitivity	λ= 680nm	SVV.	W.10	0.5	N.L.	A/M
203	λar	Spectral Application Range	$S(\lambda ar) = 0.25 x S(\lambda) max$		400		1000	nm
Analo	g Output	AO	N.1001. ONLTW		N.	100 2.	M.	
301	Vs()lo	Saturation Voltage lo	I()= 1mA			1002.	0.5	v
302	Vs()hi	Saturation Voltage hi	Vs()hi= VCC - V(), I()= -1mA		NN V	1008	1	V
303	K	Sensitivity	λ = 680nm, package OLGA LF2C	1	WW	2.88		V/pW
304	V0()	Offset Voltage	integration time 1ms, no illumination	N	WW	400	800	m∨
305	∆V0()	Offset Voltage Deviation during integration mode	$\Delta V0() = V(AO)t1-V(AO)t2,$ $\Delta t = t2 - t1 = 1ms$	EM.	-250	NVN.1	50	mV
306	∆∨()	Signal Deviation during hold mode	$\Delta V0()=V(AO)t1-V(AO)t2,$ $\Delta t= t2 - t1= 1ms$	T.I.	-150	WWW.	150	mV
307	tp(CLK- AO)	Settle Time	CI(AO)= 10pF, CLK lo-> hi until V(AO)= 0.98xV(VCC)	WI.I.M		WWV	200	ns
Powe	r-On-Rese	et WW	WR TODY.C	VT.		A. I.	10	1.
801	VCCon	Power-On Release by VCC	WWW.L.	One	N	W	4.4	V
802	VCCoff	Power-Down Reset by VCC	N NWW.IVe	COMP	1	-	NN.	V
803	VCChys	Hysteresis	VCChys= VCCon - VCCoff	COM.	0.4	1	2	V
Bias (Current Ad	djust RSET	IN N. 100	Man	I.M			10
901	lbias()	Permissible External Bias Current	TW WW 100	N.C	20	1	100	μA
902	Vref	Reference Voltage	I(RSET)= Ibias	N.CO.	2.5	3	3.5	V
Input	Interface	SI, CLK, DIS	M		Nr.	N	N/N	N.
B01	Vt()hi	Threshold Voltage hi	M.I.		1.4		1.8	V
B02	Vt()lo	Threshold Voltage lo	M.T.W.	1002.	0.9		1.2	V
B03	Vt()hys	Hysteresis	Vt()hys= Vt()hi - Vt()lo	1100%	300	IN	800	m∖
	I()	Pull-Down Current		1001	10	30	50	μA
DU4	ΡV				10	30	50	μΑ

WW.100Y.COM.T

WWW.10

NW.100Y.COM.

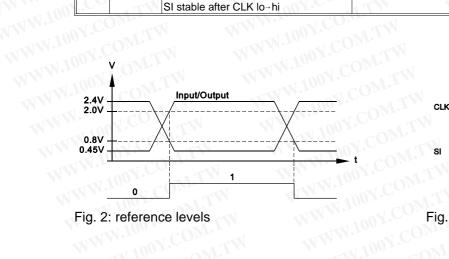
COM.TW

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

WWW.100 iC-LF 1401 128x1 LINEAR IMAGE SENSOR WWW.10

Rev A2, Page 5/8


OPERATING REQUIREMENTS: Logic

		itions: VCC= VDD= 5V ±10%, Tj= - 00.45V, hi= 2.4VVCC, see Fig. 2		N.COMI.	N	
ltem	Symbol	Parameter	Conditions	Fig.	Min.	Max.
11	tset	Setup Time: SI stable before CLK lo⊸hi	DWEW WWW	2	50	
12	thold	Hold Time: SI stable after CLK lo⊸hi	WW WT	2	50	

NW.100Y.COM.T

NW.100Y.COM.

COM.TW

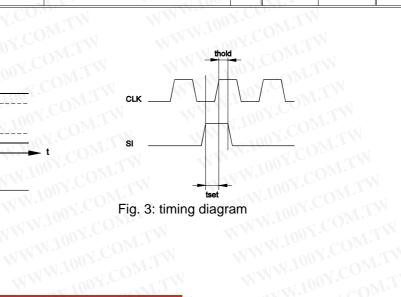


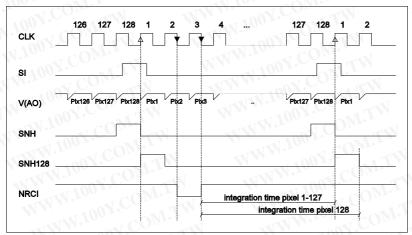
Fig. 2: reference levels WWW.100Y.CON

WWW.100Y.COM.TW

WWW.100Y.COM.TW 勝 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

100Y.COM.TW

WWW.100Y.COM.TW



DESCRIPTION OF FUNCTIONS

Normal operation

Following an internal power-on reset the integration and hold capacitances are deleted and the sample-and-hold circuit is set to sample mode. A high at SI and a rising edge at CLK triggers a readout cycle and with it a new integration cycle.

In this process the hold capacitances of pixels 1 to 127 are switched to hold mode immediately (SNH= 1), with pixel 128 (SNH128= 1) following suit one clock pulse later. This special procedure allows all pixels to be read out with just 128 clock pulses. The integration capacitances are deleted by a pulse-long reset signal (NRCI= 0) which occurs between the 2nd and 3rd falling edge of the readout clock pulse (see Figure 4). After the 127 pixels have been read out these are again set to sample mode (SNH= 0), likewise for pixel 128 one clock pulse later (SNH128= 0).

料 886-3-5753170 特力材 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Fig. 4: readout cycle and integration sequence

If prior to the 128th clock pulse a high occurs at SI the present readout is halted and immediately reinitiated with pixel 1. In this instance the hold capacitances retain their old value i.e. hold mode prevails (SNH/SNH128= 0).

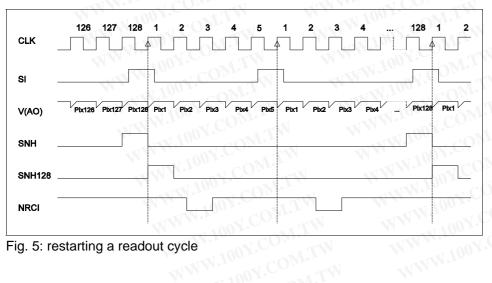
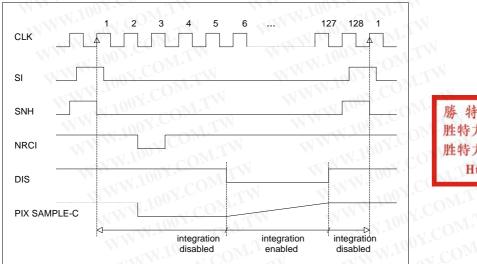


Fig. 5: restarting a readout cycle

Rev A2, Page 7/8


If there are over 128 clock pulses until the next SI signal pixel 1 is output without entering hold mode; the output voltage tracks the voltage of the pixel 1 integration capacitance.

N.T.V	W	001.00	U.L.			100 %	COM.	L. Y.
N. N.	126 127 128	1 2 3	4		127	128 129	130	131
CLK							<u>1.00</u>	L
	The second	L. LUN CO						
SI		4.100 1.	OM.I.			WN.10		\overline{W}
M.T			1.1			1	001.	M
V(AO)	Pix126 Pix127 Pix128	Pix1 Pix2 P	rix3	L-M	Pix127	Pix128	Pix1	
	WT WT	WW. 100			- L	NN	100Y.	
SNH		NWW.10	N.CON	W				
CO1		ALV N.LV				NIN	N.10	 C
SNH128 _	M.L.Y		~1 C	DW-F	S.	 V		
NRCI	ONTIN		100 X.~	-MO			W.L	<u>, , , , , , , , , , , , , , , , , , , </u>
INRU			100	- ONE	integr	ation time		

Fig. 6: clock pulse continued without giving a new integration start signal

Operation with the shutter function

Integration can be disabled at any time via pin DIS, i.e. the photodiodes are switched away from their corresponding integration capacitance when DIS is high and the current integration capacitance voltages are maintained. If this pin is open or switched to GND the pixel photocurrents are summed up by the integration capacitances until the next successive SI signal follows.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Fig. 7: defining the integration time via shutter input DIS

External bias current setting

In order to reduce the power consumption of the device an external reference current can be supplied to pin RSET what reduces the maximum readout frequency, however. To this end a resistor must be wired from VCC to RSET. If this pin is not used it should be linked to GND.

Rev A2, Page 8/8

ORDERING INFORMATION

100Y.CO		V1002 ONLT	W.1003. COM.1 .
100Y.CO		N.100Y.COM.TW	WWW.100Y.CCOM.TW
W.100Y.CC	Туре	Package	Order designation
VW.100Y.C	iC-LF	- OLGA	iC-LF chip <mark>iC-LF OLGA LF2C</mark>
W.100 -		MM.Ine COM.	WWW.ICOM

For information about prices, terms of delivery, options for other case types, etc., please contact:

iC-Haus GmbH **Am Kuemmerling 18** D-55294 Bodenheim GERMANY

WWW.100Y.COM.

Tel +49-6135-9292-0 +49-6135-9292-192 Fax http://www.ichaus.com

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

This specification is for a newly developed product. iC-Haus therefore reserves the right to modify data without further notice. Please contact us to ascertain the current data. The data specified is intended solely for the purpose of product description and is not to be deemed guaranteed in a legal sense. Any claims for damage against us - regardless of the legal basis - are excluded unless we are guilty of premeditation or gross negligence.

We do not assume any guarantee that the specified circuits or procedures are free of copyrights of third parties. Copying - even as an excerpt - is only permitted with the approval of the publisher and precise reference to source.