

Current Transducer LA 205-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data 200 Primary nominal r.m.s. current 0 .. ± 300 Primary current, measuring range Measuring overload 1) 600 $T_A = 85^{\circ}C$ Measuring resistance @ $T_A = 70^{\circ}C$ 66 with ± 12 V @ ± 200 A 0 68 Ω @ ± 300 A_{max} 0 33 0 30 Ω @ ± 200 A max 5 95 with ± 15 V 5 93 Ω @ ± 300 A 50 49 Ω Secondary nominal r.m.s. current 100 mΑ Conversion ratio 1:2000 Supply voltage (± 5 %) ± 12 .. 15 Current consumption $20(@ \pm 15V) + I_s mA$ R.m.s rated voltage 2), safe separation 1625 basic isolation 3250

Ac	ccuracy - Dynamic perform	ance data			
X _G	Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$ Linearity	MANA 10	± 0.8 < 0.1	$C_{O_{Z_{i}}}$	% %
I _O I _{OM} I _{OT}	Offset current @ $\mathbf{I}_{\rm p}=0$, $\mathbf{T}_{\rm A}=25^{\circ}{\rm C}$ Residual current $^{3)}$ @ $\mathbf{I}_{\rm p}=0$, after a Thermal drift of $\mathbf{I}_{\rm O}$	an overload of 3 x I _{PN} - 10°C + 85°C		Max ± 0.15 ± 0.50 ± 0.30	mA mA
t _{ra} t _r di/dt f	Reaction time @ 10 % of $\mathbf{I}_{\text{p max}}$ Response time 4 @ 90 % of $\mathbf{I}_{\text{p max}}$ di/dt accurately followed Frequency bandwidth (- 3 dB)		< 500 < 1 > 100 DC	100	ns µs A/µs kHz

	General data					
T_	Ambient operating temperature		- 10 + 85	°C		
T _s	Ambient storage temperature		- 40 + 90	°C		
R,	Secondary coil resistance @	$T_A = 70^{\circ}C$	35	Ω		
		$T_A = 85^{\circ}C$	37	Ω		
m 	Mass		110	g		
	Standards 5)	ON. W	EN 50178			

Notes : 1) 3 mn/hour @ $V_C = \pm 15 \text{ V}$, $R_M = 5 \Omega$

- Pollution class nr 2. With a non insulated primary bar which fills the through-hole
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- 5) A list of corresponding tests is available

$I_{DN} = 200 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Patent pending.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- · Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

980716/5

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

Dimensions LA 205-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary

 \pm 0.5 mm 2 holes \varnothing 5.5 mm 23 x 18 mm Molex 5046-04/AG

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.