Current Transducer LA 305-S For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). #### **Electrical data** Primary nominal r.m.s. current 300 Primary current, measuring range $0.. \pm 500$ Measuring resistance @ $T_{\Lambda} = 70^{\circ}C$ $T_{\Delta} = 85^{\circ}C$ 52 50 with ± 12 V $@ \pm 300 A$ Ω @ ± 500 A max 17 Ω 0 0 15 @ ± 300 A max 73 0 75 5 Ω with ± 15 V @ ± 500 A may 31 29 Ω mΑ Secondary nominal r.m.s. current 120 Conversion ratio 1:2500 Supply voltage (± 5 %) ± 12 .. 15 Current consumption 20 (@ ±15 V) + I_s mΑ R.m.s. rated voltage 1), safe separation 1750 basic isolation 3500 | A | ccuracy - Dynamic performance data | | | | |-----------------|--|--------|--------|------| | X _G | Overall accuracy @ I _{PN} , T _A = 25°C | ± 0.8 | | % | | e _ | Linearity | < 0.1 | | % | | | | Тур | Max | | | I ₀ | Offset current @ $I_p = 0$, $T_A = 25$ °C | | ± 0.20 | mΑ | | I _{OM} | Residual current $^{2)}$ @ $I_{p} = 0$, after an overload of 3 x I_{pN} | 00 | ± 0.40 | mA | | I _{OT} | Thermal drift of I _o - 10°C + 85°C | ± 0.12 | ± 0.30 | mΑ | | t _{ra} | Reaction time @ 10 % of I _{P max} | < 500 | | ns | | t, | Response time 3 @ 90 % of I _{P max} | < 1 | | μs | | di/dt | di/dt accurately followed | > 100 | | A/µs | | f | Frequency bandwidth (- 3 dB) | DC | 100 | kHz | | | | | | | | G | General data | | | | | | |------------------|-------------------------------|---------------------|-----------|----|--|--| | T _△ | Ambient operating temperature | TW | - 10 + 85 | °C | | | | T _s | Ambient storage temperature | | - 40 + 90 | °C | | | | \mathbf{R}_{s} | Secondary coil resistance @ | $T_A = 70^{\circ}C$ | 35 | Ω | | | | Ü | | $T_A = 85^{\circ}C$ | 37 | Ω | | | | m | Mass | | 200 | g | | | | | Standards 4) | | EN 50178 | | | | Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole - ²⁾ The result of the coercive field of the magnetic circuit - 3) With a di/dt of 100 A/µs - ⁴⁾ A list of corresponding tests is available # $I_{PN} = 300 A$ #### **Features** - Closed loop (compensated) current transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0 - Copyright protected. # **Advantages** - Excellent accuracy - Very good linearity - Low temperature drift - Optimized response time - · Wide frequency bandwidth - No insertion losses - High immunity to external interference - · Current overload capability. ### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - · Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. 980707/6 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw # **Dimensions LA 305-S** (in mm. 1 mm = 0.0394 inch) ## **Mechanical characteristics** - General tolerance - Fastening - Primary through-hole - Connection of secondary ± 0.5 mm 2 holes ∅ 5.5 mm 25.5 x 25.5 mm Molex 5046-04/AG ## Remarks - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 100°C - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.