

Current Transducer LA 25-NP/SP11

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

$I_{PN} = 1 A$

Electrical data

I _{PN}	Primary nominal r.m.s	s. current	1		Α
I _P V	Primary current, measuring range		0 ± 1.5		Α
\mathbf{R}_{M}	Measuring resistance	WWW.IOOY.COM	\mathbb{R}_{Mmin}	$R_{\text{M ma}}$	x
	with ± 15 V	$@ \pm 1.0 A_{max}$	100	320	Ω
		@ $\pm 1.5 A_{max}^{max}$	100	190	Ω
I _{SN}	Secondary nominal r.	m.s. current	25		mΑ
K _N	Conversion ratio		25 : 1000		
V _c	Supply voltage (± 5 %	%) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	± 15		V
Ic	Current consumption		10 + I	3	mΑ
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		2.5	,	kV
V _b	R.m.s. rated voltage 1), safe separation		600		V
		basic isolation	1700		V

Features

- Closed loop (compensated) multiturns current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

	۱,	_N =	1 A O
Ì	٠l,	<u>``</u> 1	0 ± 1.5 A
			25:1000.

Accuracy - Dynamic performance data

X	Typical accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$		± 0.5		%
e L	Linearity		< 0.2	. TV	%
	NAME OF THE PROPERTY OF THE PR		77	Max	ov .
I_{\circ}	Offset current ²⁾ @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}$ C		± 0.05 ±		
I _{OM}	Residual current 3) @ $I_p = 0$, after ar	n overload of 3 x I _{PN}	± 0.05 ±	0.15	mΑ
I _{OT}	Thermal drift of I _o	0°C + 25°C	± 0.06 ±	0.25	mΑ
		+ 25°C + 70°C	± 0.10 ±	0.35	mA
t _r	Response time 4) @ 90 % of I _{P max}		< 10		μs
f	Frequency bandwidth (- 1 dB)		DC 15	0	kHz

Advantages

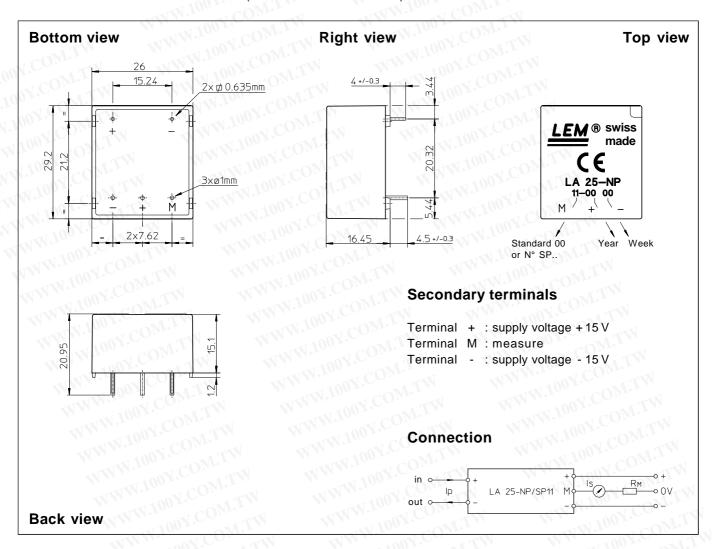
- Excellent accuracy
- Very good linearity
- Low temperature drift
- · Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

General data

$T_{_{A}}$	Ambient operating temperature	0+70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
R ̈́∍	Primary coil resistance @ T _a = 25°C	< 51	$m\Omega$
R _s	Secondary coil resistance @ T ₄ = 70°C	110	Ω
LP	Primary insertion inductance	31	μH
R _{IS}	Isolation resistance @ 500 V, T _A = 25°C	> 1500	ΜΩ
m	Mass	22	100 g
	Standards 5)	EN 50178	

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) Pollution class 2

- ²⁾ Measurement carried out after 15 mn functionning
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available

990125/1

Dimensions LA 25-NP/SP11 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance

± 0.2 mm Fastening & connection of primary 2 pins

Fastening & connection of secondary

Recommended PCB hole

Remark

0.635 x 0.635 mm

3 pins Ø 1 mm

1.2 mm

• Is positive when Ip flows from terminal + to terminal -.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice. WWW.100Y.COM