

Current Transducer LAH 100-P

For the electronic measurement of currents: DC, AC, pulsed with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

Primary nominal r.m.s. c	urrent		100)		Α
Primary current, measuri	ng range 1)		0	160		Α
Measuring resistance @		$T_A =$	70°C	T _A =	= 85°C	;
		R _{M min}	$\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$	$\mathbf{R}_{\mathrm{M}\mathrm{min}}$	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	
with ± 12 V	@ I _{PN} [± A _{DC}]	0	63	0	57	Ω
	@ I _{PN} [A _{RMS}] 2)	0	11	0	5	Ω
with ± 15 V		20	120	45	114	Ω
	@ I _{PN} [A _{RMS}] 2)	20	51	45	45	Ω
	@ $I_{P} < I_{PN}^{3}$					
Secondary nominal r.m.s	s. current		50			mΑ
Conversion ratio			1:	2000		
	Primary current, measuring Measuring resistance @ with ± 12 V with ± 15 V Secondary nominal r.m.s	with \pm 12 V	Primary current, measuring range ¹) Measuring resistance @ $\mathbf{T}_{A} = \mathbf{R}_{M \text{min}}$ with ± 12 V @ $\mathbf{I}_{PN} [\pm A_{DC}]$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

I _{SN}	Secondary nominal r.m.s. current	50	mΑ
	Conversion ratio	1:2000	
	Supply voltage (± 5 %)	± 12 15	\
W. 7/	Current consumption	10 (@ ± 15 V)+I _s	m <i>P</i>
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	5	k٧
V _e	R.m.s. voltage for partial discharge extinction @ 10 po	C > 2	k۷
Ŷ _w	Impulse withstand voltage 1.2/50 µs	> 12	k۷
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Accuracy - Dynamic performance data

^	Accuracy W I I I = 25 C		± 0.23	70
$\mathbf{e}_{\scriptscriptstyle L}$	Linearity error		< 0.15	%
			Typ Max	
I _o	Offset current @ T _A = 25°C		± 0.15	m A
I _{OM}	Residual current @ I _P = 0, after an	overload of 5 x I _{PN}	± 0.10 ± 0.15	m A
I _{OT}	Thermal drift of Io	0°C + 70°C	$\pm 0.10 \pm 0.40$) mA
		- 25°C + 85°C	$\pm 0.10 \pm 0.50$) mA
t _{ra}	Reaction time @ 10 % of I _{PN}		< 200	ns
t,	Response time 5 @ 90 % of I _{PN}		< 500	ns
di/dt	di/dt accurately followed		> 200	A/µs
f	Frequency bandwidth (- 1 dB)		DC 200	kHz
G	eneral data			

$T_{_{A}}$	Ambient operating temperature		- 25 + 85	°C	
T _s	Ambient storage temperature		- 40 + 90	°C	
$\mathbf{R}_{\mathrm{s}}^{\mathrm{c}}$	Secondary coil resistance	@ $T_A = 70^{\circ}C$	115	Ω	
· ·		@ $T_A = 85^{\circ}C$	121	Ω	
	Insulating material group	0, 10	1		
m	Mass		24	g	
	Standards		EN 50178 : 1997		

$I_{PN} = 100 \text{ A}$

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Printed circuit board mounting
- · Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- · Low temperature drift
- · Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- · Current overload capability

Applications

- · AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- · Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

 $[\]frac{\text{Notes}: \ ^{1)} \text{ For 10 s, with } \mathbf{R}_{\text{\tiny M}} \leq 25 \ \Omega \ (\mathbf{V}_{\text{\tiny C}} = \pm \ 15 \ \text{V}) \ ^{-2)} \ 50 \ \text{Hz Sinusoidal -} }{\text{^{3)}} \ \text{The measuring resistance } \mathbf{R}_{\text{\tiny M min}} \ \text{may be lower (see "LAH Technical Information" leaflet) - ^{4)}} \ \text{Without } \mathbf{I}_{\text{\tiny O}} \ \& \ \mathbf{I}_{\text{\tiny OM}} \ ^{-5)} \ \text{With a di/dt of 100 A/µs.}$

Dimensions LAH 100-P (in mm. 1 mm = 0.0394 inch)

Number of primary turns	nominal	current maximum I _P [A]	Nominal output current I_{SN} [mA]	Turns ratio K _N		Primary insertion inductance L _P [µH]
1	100	160	50	1 : 2000	0.08	0.007

Mechanical characteristics

- General tolerance
- Fastening & connection of primary Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- ± 0.2 mm
- 6 pins 1.4 x 1 mm
- 2 mm
- 3 pins 0.7 x 0.6 mm 1.2 mm

Remarks

- \bullet $\, {\rm I}_{_{\rm S}}$ is positive when $\, {\rm I}_{_{\rm P}}$ flows from terminals "IN" to terminals "OUT".
- The jumper temperature and PCB should not exceed 100°C.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

060303/8