

Current Transducer LC 1000-S/SP7

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current		1000		Α
I _P	Primary current, measuring range		0 ± 3000		Α
R _M	Measuring resistance		$R_{_{ m Mmin}}$	$\mathbf{R}_{M\;max}$	
	with ± 24 V	@ ± 1000 A _{max}	1	59	Ω
		@ ± 3000 A _{max}	TV1	3	Ω
I _{SN}	Secondary nominal r.m.s. current		250		mΑ
K _N	Conversion ratio		1:400	0	
V _C	Supply voltage (± 10 %)		± 24		V
I_{c}	Current consumption		45 + I _s		mΑ
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		0 3		k۷

Accuracy - Dynamic performance data

\mathbf{x}_{G}	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.2 < 0.1	% %
I _o	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	0°C + 70°C	Typ Max ± 0.5 ± 0.25 ± 0.4	m A m A
t _, di/dt f	Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		<1 > 50 DC 100	μs A/μs kHz

General data

T_{A}	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	25	Ω
m	Mass	760	g
	Standards	EN 50178	

Notes: 1) With a di/dt of 100 A/µs.

$I_{PN} = 1000 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting 200 x 108 mm.

Special features

- $I_p = 0.. \pm 3000 \text{ A}$
- $\mathbf{K}_{N} = 1:4000$
- $V_c = \pm 24 (\pm 5 \%) V$
- Connection of secondary on type B3P-VH connector (or equivalent).

Advantages

- Excellent accuracy
- Very good linearity
- · Low temperature drift
- Short response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capacity.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

030318/2

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Dimensions LC 1000-S/SP7 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening

Fastening torque max

- Primary through-hole
- Connection of secondary

± 0.5 mm

6 holes Ø 4.3 mm

6 M4 steel screws

3.4 Nm or 2.51 Lb.-Ft.

Ø 40 mm

B3P-VH connector (or equivalent)

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.