Current Transducer LC 1000-S/SP7 For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). ## **Electrical data** | I _{PN} | Primary nominal r.m.s. current | | 1000 | | Α | |-----------------|---|---------------------------|---------------------|-----------------------|----| | I _P | Primary current, measuring range | | 0 ± 3000 | | Α | | R _M | Measuring resistance | | $R_{_{ m Mmin}}$ | $\mathbf{R}_{M\;max}$ | | | | with ± 24 V | @ ± 1000 A _{max} | 1 | 59 | Ω | | | | @ ± 3000 A _{max} | TV1 | 3 | Ω | | I _{SN} | Secondary nominal r.m.s. current | | 250 | | mΑ | | K _N | Conversion ratio | | 1:400 | 0 | | | V _C | Supply voltage (± 10 %) | | ± 24 | | V | | I_{c} | Current consumption | | 45 + I _s | | mΑ | | V _d | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn | | 0 3 | | k۷ | | | | | | | | # **Accuracy - Dynamic performance data** | \mathbf{x}_{G} | Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity | | ± 0.2
< 0.1 | %
% | |------------------------------|--|------------|--|-------------------| | I _o | Offset current @ $I_p = 0$, $T_A = 25$ °C
Thermal drift of I_O | 0°C + 70°C | Typ Max
 ± 0.5
 ± 0.25 ± 0.4 | m A
m A | | t _,
di/dt
f | Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB) | | <1
> 50
DC 100 | μs
A/μs
kHz | #### General data | T_{A} | Ambient operating temperature | 0 + 70 | °C | |---------------------------|---|-----------|----| | T _s | Ambient storage temperature | - 25 + 85 | °C | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 70°C | 25 | Ω | | m | Mass | 760 | g | | | Standards | EN 50178 | | | | | | | Notes: 1) With a di/dt of 100 A/µs. # $I_{PN} = 1000 A$ #### **Features** - Closed loop (compensated) current transducer using the Hall effect - Printed circuit board mounting 200 x 108 mm. # Special features - $I_p = 0.. \pm 3000 \text{ A}$ - $\mathbf{K}_{N} = 1:4000$ - $V_c = \pm 24 (\pm 5 \%) V$ - Connection of secondary on type B3P-VH connector (or equivalent). ## **Advantages** - Excellent accuracy - Very good linearity - · Low temperature drift - Short response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - Current overload capacity. ### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. 030318/2 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw ## **Dimensions LC 1000-S/SP7** (in mm. 1 mm = 0.0394 inch) ### **Mechanical characteristics** - General tolerance - Fastening Fastening torque max - Primary through-hole - Connection of secondary ± 0.5 mm 6 holes Ø 4.3 mm 6 M4 steel screws 3.4 Nm or 2.51 Lb.-Ft. Ø 40 mm B3P-VH connector (or equivalent) #### Remarks - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 100°C. - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.