Operating instructions
 Electronic LED
 Preset Counter Type Series 715

1．Description

-5 digit preset counter， 1 preset point，add．／subtr．
－bright LED display with 7.5 mm high characters
－count and preset range－ 19999 to 99999 ，over－or under－ flow without count loss up to 1 decade（will be indicated by flashing of the display with 1 Hz frequency）
－programmable as impulse counter，frequency meter or timer
－relay or optocoupler output（refer to ordering code）
－prescaling factor 0．001．．．9．999
－programming of count functions／operating parameters via the preset keys．During programming the display guides the user with text prompts．
－programmable are：
operating mode（output signal at zero or at preset point，with or without automatical reset
decimal point
polarity of the inputs（NPN or PNP）
input mode and factor
output signal to be permanent or timed
gate time when programmed as a frequency meter
resolution when programmed as a timer（s，min or h）
－supply voltage 230 VAC， 115 VAC or $11 \ldots 30$ VDC

2．Inputs

2．1 INP A，INP B
Count inputs；max．count frequency 30 Hz or 10 kHz separ－ ately selectable for both inputs via programming switches C and D at the right side of the housing．

22 Gate

Static input；no counting while this input is activated．
If operated as a timer（only h，min and 0.1 min resolutions）， the decimal point between the 4th and 5th decade flashes while gate input is not activated（operating indication）．

2．3 Reset

Dynamic input；it is connected in parallel to the red reset key and sets the counter to zero（adding mode）or to the preset value（subtracting mode）．

2．4 Latch
Static input for display stop．If this input is activated，the cur－ rent count value will be retained until the latch input will be released again．Counting continues in the background

2．5 Key

Static keyboard lock input
While this input is activated，all front keys are locked

3．Output

Relay with potentialfree change－over contact or optocou－ pler with open collector and emitter
When this output is activated，an annunciator（decimal point）will appear on the right of the first decade．
For safety circuits the operation of the relay，resp．the opto－ coupler may be inversed in operating modes 1 and 2 （per－ manent signal only ）by programming 99.99 for duration of output signal．Thus the relay coil will be dead，resp．the op－ tocoupler will be locked when reaching the preset point／ zero．

4．Programming procedure

a．connect to supply voltage
b．set microswitch＂A＂（righ side of the housing）to＂ON＂for a short time．Display will show 1st menu point．

OFF

A B C
\square
\square

c．select required functions via preset key 1，resp．ente data（prescaling factor，duration of timed signal，gate time） directly via preset keys $1-4$
d．press preset key 5 to store selected function／enter data and to change over to next menu point
e．After programming the last menu point（permanen signal or timed signal）by pressing key 5 ，the routine will be left if microswitch＂A＂is set to＂OFF＂．If it is still set to＂ON＂ the programming routine will be passed through once again．

5．Menus in detail

5．1 Selection of basic function

After microswitch＂A＂has been set to＂ON＂for a short time one of the basic functions will be displayed：

5．2．1 Programming routine Impulse Counter

Operating mode 1：
Output signal when count value \geqq preset value

Reset to zero

Operating mode 2：
Output signal when count value \leqq zero
Reset to preset value

Operating mode 3：

Timed signal when count value $=$ preset value and automatical rese to zero
Reset to zero．
Operating mode 4：
Timed signal when count value $=$ zero and automatical reset to pre set value
Reset to preset value．

Decimal point：
only optical function！
$\mathrm{dP0}=$ no decimal poin
P1 $=0000.0$
$\mathrm{dP} 2=000.00$
$\mathrm{dP} 3=00.000$

Polarity of the inputs： negative polarity（NPN） switching to 0 V
positive polarity（PNP）
switching to +24 V

Input modes：
E 1：INP A＝count input INP $B=$ count direction input

E 2：INP A＝count input，adding INP B＝count input，subtract－ ing

E 3：Quadrature input
INP A＝count input 0°
INP $B=$ count input 90°

E 4：same as E3 but with pulse doubling
Each pulse edge of INP A will be counted．

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www． 100 y．com．tw

Scaling factor：

0．001．．．9．999
to be entered via keys 1－4
Factor 0.000 won＇t be accepted．
Please note：In operating mode 2 and 4 （output signal when count value＝zero）the preset value has to be integerly divisible by the fa－ ctor，otherwise the counter－when resetted－will be set to the following integer multiple of the factor．

Duration of the output signal

$00.00=$ permanent signal in operat－ ing modes 1 and 2 ．
$0.01 \ldots 99.98 \mathrm{~s}=$ timed signal in op－ erating modes 1 to 4
$99.99 \mathrm{~s}=$ permanent signal in oper－ ating modes 1 and 2，but with in－ verted operation of the relay or op－ tocoupler（relay coil will be dead at preset value／zero，optocoupler will be locked）．

If microswitch＂A＂is set to＂OFF＂，the programming routine will be left now and the counter is ready to work
If microswitch＂ A ＂is still set to＂ ON ＂，the programming rou－ tine has to be passed through once again．

5．2．2 Programming routine Timer

Operating mode 1：Permanent signal when count value \geqq preset value or timed signal when count value＝preset value
Reset to zero
Operating mode 2：Permanent signal when count value \leqq zero or timed signal when count value $=$ zero
Reset to preset value
Operating mode 3：Timed signal when count value $=$ preset value and automatical reset to zero Reset to zero
Operating mode 4：Timed signal when count value＝zero and auto－ matical reset to preset value． Reset to preset value

Decimal point（resolution）
$\mathrm{dP} 0=$ no decimal point
$\mathrm{dP} 1=0000.0$
$d P 3=00.00$

Polarity of the inputs

negative polarity（NPN），switching to 0 V
positive polarity（PNP），switching to +24 V

Duration of the output signal

$00.00=$ permanent signal in operat－ ing modes 1 and 2

0．01．．． $99.98 \mathrm{~s}=$ timed signal in operating modes 1 to 4
99.99 ＝permanent signal in operating modes 1 and 2，but with inverted operation of the relay or optocoupler（relay coil will be dead at preset value／zero，optocoupler will be locked）．
If microswitch＂ A ＂is set to＂OFF＂，the programming routine will be left now and the counter is ready for operation．

If microswitch＂ A ＂is still set to＂ON＂，the programming routi－ ne has to be passed through once again．

5．2．3 Programming routine Frequency Meter （output is activated when counter value \geq preset value）

Polarity of the inputs： negative polarity（NPN）， switching to 0 V
positive polarity（PNP）， switching to +24 V

Input modes：

E1
INP A＝count input
INP $B=$ count direction input

E2：
INP A＝count input，adding INP B＝count input，subtracting E3：
Quadrature input
INP A＝count input 0° INP B $=$ count input 90°

E4：
same as E3 but with pulse doub－ ling．
Each pulse edge of INP A will be counted．

Scaling factor：

F9．999－5m
0．001．．．9．999
to be entered via keys 1－4． Factor 0.000 won＇t be accepted

Duration of the output signal：
$00.00=$ permanent signal in opera－ ting modes 1 and 2 ．
$0.01 \ldots 99.98 \mathrm{~s}=$ timed signal in ope－ rating modes 1 to 4 ．
$99.99 \mathrm{~s}=$ permanent signal in ope－ rating modes 1 and 2，but with inver－ ted operation of the relay or opto－ coupler（relay coil will be dead at preset value／zero，optocoupler will be locked）．

If microswitch＂ A ＂is set to＂OFF＂，the programming routine will be left now and the counter is ready to work．
If microswitch＂ A ＂is still set to＂ON＂，the programming rou－ tine has to be passed through once again．

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www． 100 y．com．tw

6．Programming of the Preset Value：
00000 Atter pressing one of the 5 preset keys 03909 the preset value will be displayed．This
 （one key for each digit）．
4 seconds after release of the last key pressed the preset value will disappea 99999 from the display and the count value will be shown again．

6．1 Characteristics of 5 th decade：

98888	Preset value $+9 \times X X X$
(A) (A) (A)	
-8888	Preset value－XXXX
$\text { (B) (A) (B) }(\Delta)$	not when programmed as a timer
79888	Preset value $-1 \times X X X$
$\text { (} B \text { (A) (B) (A) }(B)$	
9898	Preset value $+0 \times X X X$

7．Examples for application connections：

Count pulses from contact closure （programmed polarity PNP）

Count pulses from a light barrier

Count pulses from a shaft encoder

8．Connections

Plug connection X1

Terminal No．	115／230 VAC version	11．．． 30 VDC version
1	$+24 \mathrm{VDC}$ transmitter voltage	－
2	0 VDC（GND）	－
3	Relay output common contact（C） Optocoupler output emitter	
4	Relay output normally open contact（NO）	
5	Relay output normally closed contact（NC） Optocoupler output collector	
6	115 VAC／230 VAC	＋11．．． 30 VDC
7	115 VAC／ 230 VAC	0 VDC （GND）

Please note：If permanent signal $=99.99 \mathrm{~s}$（inverted opera－ tion of relay resp．optocoupler），the connections of terminal 4 and 5 are as follows：

Terminal No．	AC－and DC version
4	Relay output normally closed contact（NC）
5	Relay output normally open contact（NO）

Plug connection X2

Terminal No．	Designation	Function
1	INP A	count input A
2	INP B	count input B
3	GATE	gate input
4	RESET	reset input
5	LATCH	display stop input
6	KEY	keyboard lock input

9．Technical Data

Supply voltage
230 VAC， 115 VAC，max． 4 VA or $11 \ldots 30$ VDC，max．0．1 A
Display：$\quad 5$ digit 7 segment red LED display with 7.5 mm high characters
Polarity of input signals： programmable，all inputs in common Input resistance：

$$
\begin{aligned}
& \text { approx. } 10 \text { kOhm }
\end{aligned}
$$

Count frequency
via DIL switches separately selectable for
INP A and INP B
30 Hz
$10 \mathrm{kHz}(7.5 \mathrm{kHz}$ in input mode E4）
automatical reset 1 kHz without count los－
ses（ 600 Hz in input mode E4）
Min．pulse length of the control inputs：
5 ms
Input sensitivity：
AC supply voltages
Log＂0＂：0．．． 4 VDC
Log＂1＂：12．．． 30 VDC
DC supply voltages U_{b}
Log＂0＂： $0 \ldots 0.2 \times \mathrm{U}_{\mathrm{b}}$
Log＂1＂： $0.6 \times U_{b} \ldots 30$ VDC
Pulse shape：variable（Schmitt Trigger characteristic）
Output：relay with potentialfree change－over con－ tact
switching voltage max． 250 VAC／ 300 VDC
switching current max． 3 A
switching current for DC min． 30 mA
switching performance max． 50 W for DC max． 2000 VA for AC
or
optocoupler with open collector and emitter
switching performance： 30 VDC／ 15 mA
$U_{\text {cesat }}$ at $I_{C}=15 \mathrm{~mA}$ ：max． 2.0 V
$U_{\text {cesat }}$ at $I_{C}=5 \mathrm{~mA}: \max .0 .4 \mathrm{~V}$
Responding time of output：
relay：\quad approx． 6 ms
optocoupler：approx． 1 ms
Data retention：
$\min .10$ years or 10^{6} memory cycles
Transmitter voltage：
24 VDC－40\％／＋15\％， 80 mA unstabilized
for AC－versions
Noise immunity：
EN 55011 class B and prEN 50082－2
Ambient temperature：
$0 . .50^{\circ} \mathrm{C}$
Storage temperature：
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Weight：approx． 240 g （AC－version with relay）
Protection：IP 54 （front）
Colour of housing：
black

10．Ordering Code

6．715．01X．X00

Supply voltage
$\begin{aligned} & 0=230 \mathrm{VAC} \\ & 1=115 \mathrm{VAC} \\ & 3=11 \ldots . .30 \mathrm{VDC} \end{aligned}$
Output
$\begin{aligned} & 0=\text { relay } \\ & 1=\text { optocoupler } \end{aligned}$

