May 1995

54F/74F373 Octal Transparent

Latch with TRI-STATE Outputs

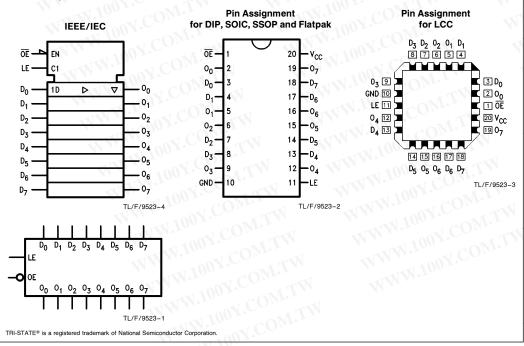
National Semiconductor

54F/74F373 Octal Transparent Latch with TRI-STATE® Outputs

General Description

The 'F373 consists of eight latches with TRI-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH the bus output is in the high impedance state.

Features


- Eight latches in a single package
- TRI-STATE outputs for bus interfacing
- Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description
74F373PC	I	N20A	20-Lead (0.300" Wide) Molded Dual-In-Line
N.100	54F373DM (QB)	J20A	20-Lead Ceramic Dual-In-Line
74F373SC (Note 1)	NTN.	M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC
74F373SJ (Note 1)	W.m.	M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ
74F373MSA (Note 1)	M	MSA20	20-Lead Molded Shrink Small Outline, EIAJ Type II
N . 100Y.C	54F373FM (QB)	W20A	20-Lead Cerpack
WW.	54F373LM (QB)	E20A 🔨	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX, SJX, and MSAX.

Logic Symbols

Connection Diagrams

©1995 National Semiconductor Corporation TL/F/9523

RRD-B30M75/Printed in U. S. A.

k.COM.TW

DY.COM.TW

boy.COM.TW

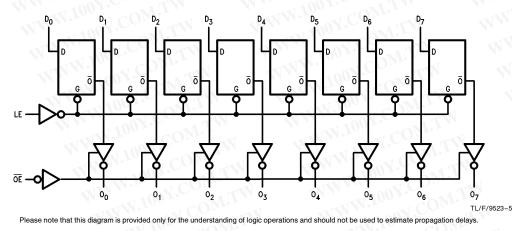
WWW.100Y.COM.TW **Unit Loading/Fan Out**

WW.100Y.COM.TW

Ma	L. 10	Mon	54F/74F		
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
0 ₀ -D ₇	Data Inputs	1.0/1.0	20 µA/−0.6 mA		
	Latch Enable Input (Active HIGH)	1.0/1.0	20 µA/−0.6 mA		
Ē	Output Enable Input (Active LOW)	1.0/1.0	20 µA/ −0.6 mA		
$D_0 - O_7$	TRI-STATE Latch Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA		

Functional Description

The 'F373 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable (OE) input. When OE is LOW, the buffers are in the bi-state mode. When OE is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.


Logic Diagram

Truth Table

ltu I	able		100 -
	Inputs	-	Output
	ŌĒ	D _n	On
н	L	н	H 10
нC	L	L	L VIL
L .	L	Х	O _n (no change)
X	H d	X	Z

= LOW Voltage Level = Immaterial

Z = High Impedance State

Y.COM.TW

4000V

WWW.100Y.COM.TW Absolute Maximum Ratings (Note 1)

WW.100Y.COM.TW

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

WWW.100Y.COM.TW

100X.COM.TV

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
Plastic	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Note 1: Absolute maximum ratings are value	s beyond which the device may

be damaged or have its useful life impaired. Functional operation under

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) -0.5V to V_{CC} Standard Output -0.5V to +5.5V **TRI-STATE Output** Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min)

Recommended Operating Conditions

Free Air Ambient Temperature Military 55°C to +125°C Commercial 0°C to +70°C Supply Voltage Military +4.5V to +5.5V Commercial +4.5V to +5.5V

DC Electrical Characteristics

these conditions is not implied.

Symbol	Parame	ter 📣	NN.	54F/74	E.COS	Units	v _{cc}	Conditions
Symbol	Faranie		Min	Тур	Max	Units	VCC	Conditions
VIH	Input HIGH Voltage		2.0	N 100	JY	v		Recognized as a HIGH Signal
VIL	Input LOW Voltage	W.		1	0.8	v		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Vo	oltage		W.r.	-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7			COM [.CVO] N.CO	Min	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}		WW	0.5 0.5	ov.C	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$
I _{IH}	Input HIGH Current	54F 74F	1		20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F	N	, N	100 7.0	μΑ	Max	V _{IN} = 7.0V
ICEX	Output HIGH Leakage Current	54F 74F	W		250 50	μΑ	Max	$v_{OUT} = v_{CC}$
V_{ID}	Input Leakage Test	74F	4.75		WV	v	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F	I.I.V		3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
IIL	Input LOW Current	1.100 r.	M.T		-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OZH}	Output Leakage Curre	ent	11	N	50	μA	Max	$V_{OUT} = 2.7V$
I _{OZL}	Output Leakage Curre	ent	OM.	Wm	-50	μΑ	Max	$V_{OUT} = 0.5V$
I _{OS}	Output Short-Circuit C	Current	-60		-150	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test	1001.		V.T.V	500	μΑ	0.0V	$V_{OUT} = 5.25V$
I _{CCZ}	Power Supply Curren	t in the second	.COr	38	55	mA	Max	V _O = HIGH Z
I _{ZZ}	Bus Drainage Test	100Y.	-60	38	500	μΑ	0.0V	$V_{OUT} = 5.25V$

M.COM.TW 3

WWW

AC Electrical Characteristics	
-------------------------------	--

WW.100Y.COM.TW

WWW.100Y

	M.T.W	THE REAL	$74F$ $\Delta = +25^{\circ}$	COM.	54	IF	7	4F	ϕ_{M}
Symbol	Parameter	V	$V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		T _A , V _{CC} = Mil C _L = 50 pF		T _A , V _{CC} = Com C _L = 50 pF		Units
	Min	Min	Тур	Max	Min	Max	Min	Max	COm
t _{PLH} t _{PHL}	Propagation Delay D _n to O _n	3.0 2.0	5.3 3.7	7.0	3.0 2.0	8.5 7.0	3.0 2.0	8.0 6.0	ns
t _{PLH} t _{PHL}	Propagation Delay LE to O _n	5.0 3.0	9.0 5.2	11.5 7.0	5.0 3.0	15.0 8.5	5.0 3.0	13.0 8.0	ns
t _{PZH} t _{PZL}	Output Enable Time	2.0 2.0	5.0 5.6	11.0 7.5	2.0 2.0	13.5 10.0	2.0 2.0	12.0 8.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time	1.5 1.5	4.5 3.8	6.5 5.0	1.5 1.5	10.0 7.0	1.5 1.5	7.5 6.0	ns

WWW.100Y.COM.TW

AC Operating Requirements

Symbol	Parameter	$74F$ $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		54F T _A , V _{CC} = Mil		74F T _A , V _{CC} = Com		Units
		t _s (H) t _s (L)	Setup Time, HIGH or LOW D _n to LE	2.0 2.0	1	2.0 2.0	oy.cor	2.0 2.0
t _h (H) t _h (L)	Hold Time, HIGH or LOW D _n to LE	3.0 3.0		3.0 4.0	100Y.CO	3.0 3.0		110
t _w (H)	LE Pulse Width, HIGH	6.0		6.0		6.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

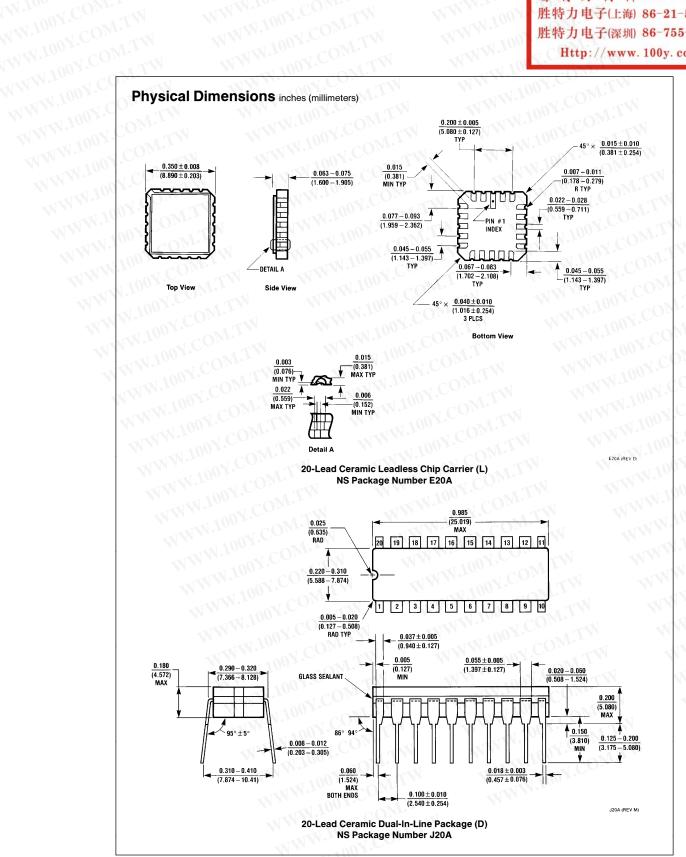
WW.100Y.COM.T

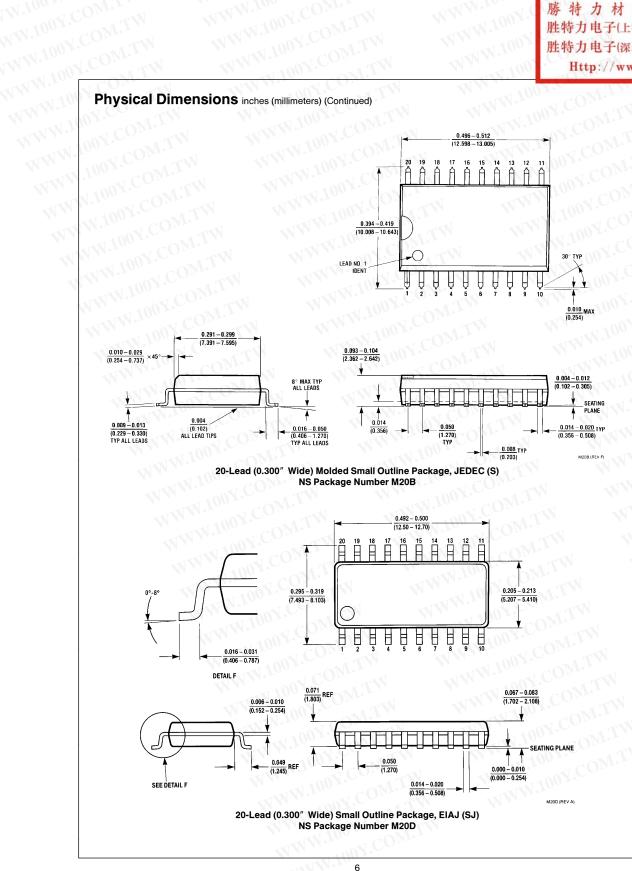
4

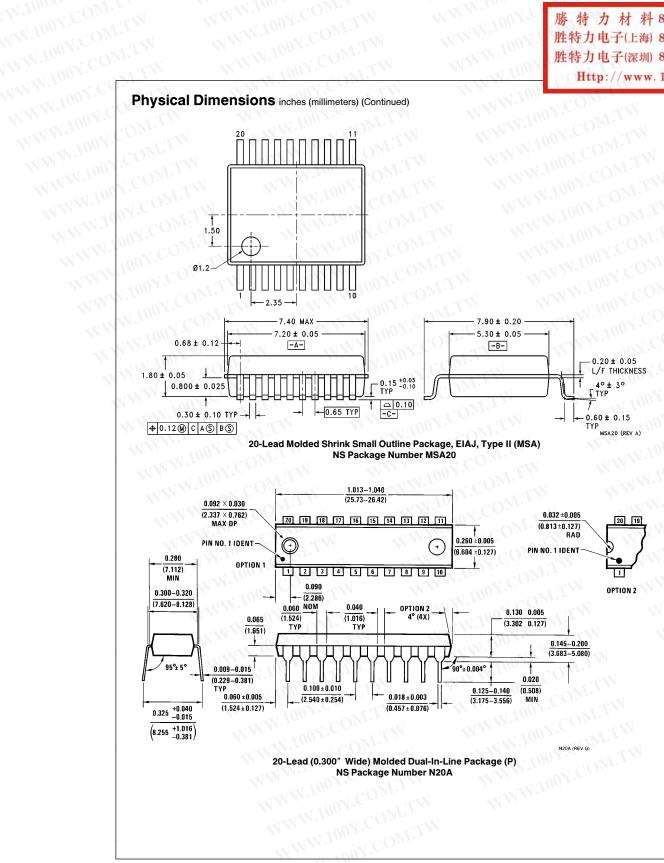
s Ç X

<u>74F</u> 373

Temperature Range Family 74F = Commercial 54F = Military


Device Type


Package Code


- P = Plastic DIP
- D = Ceramic DIP F = Flatpak
- L = Leadless Chip Carrier (LCC)

- us small Outline SOIC EIAJ MSA = Shrink Small Outline (EIAJ SSOP) WWW.100Y.COM.TW
- **Special Variations** QB = Military grade device with environmental and burn-in processing X = Devices shipped in 13" reel

Temperature Range C=Commercial (0°C to +70°C) $M = Military (-55^{\circ}C to + 125^{\circ}C)$ NOTE: Not required for MSA package code

7

be reasonably expected to result in a significant injury

to the user.

R