Product specification

Octal D-type transparent latch; 3-state

74HC/HCT573

FEATURES

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors/microcomputers
- 3-state non-inverting outputs for bus oriented applications
- Common 3-state output enable input
- Functionally identical to the "563" and "373"
- · Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT573 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT573 are octal D-type transparent latches featuring separate D-type inputs for each latch and 3-state outputs for bus oriented applications.

A latch enable (LE) input and an output enable (OE) input are common to all latches.

The "573" consists of eight D-type transparent latches with 3-state true outputs. When LE is HIGH, data at

the D_n inputs enter the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its corresponding D-input changes.

When LE is LOW the latches store the information that was present at the D-inputs a set-up time preceding the HIGH-to-LOW transition of LE. When \overline{OE} is LOW, the contents of the 8 latches are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the latches.

The "573" is functionally identical to the "563" and "373", but the "563" has inverted outputs and the "373" has a different pin arrangement.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}\text{C}$; $t_r = t_f = 6 \, \text{ns}$

CVMDOL		DADAMETER	CONDITIONS	T	100Y.C		
SYMBOL		PARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	W	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	7	MA	1 100Y.	
		D _n to Q _n	MM. 100X.COM	14	17	ns	
		LE to Q _n	MAM. Inc. COM.	15	15	ns	
Cı		input capacitance	COM COM	3.5	3.5	pF	
C _{PD}		power dissipation capacitance per latch	notes 1 and 2	26	26	pF 1.10	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz; f_o = output frequency in MHz

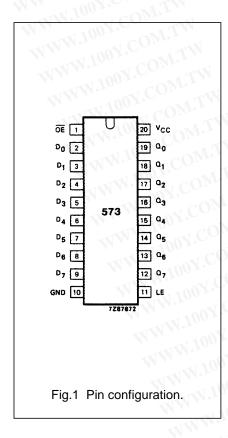
$$\sum (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$$

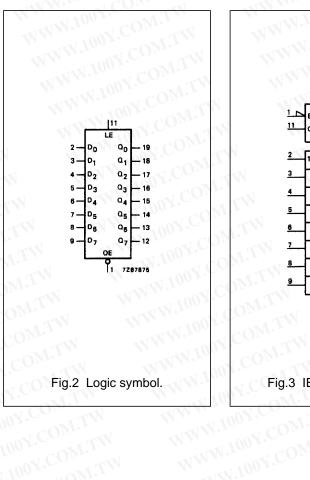
C_L = output load capacitance in pF; V_{CC} = supply voltage in V

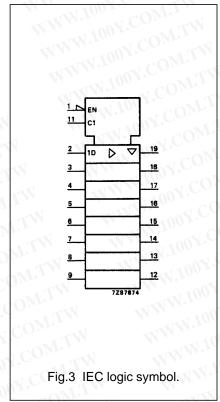
2. For HC the condition is $V_1 = GND$ to V_{CC} ; for HCT the condition is $V_1 = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

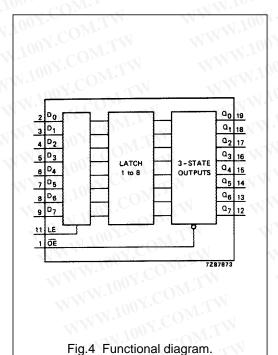

Http://www.100y.com.tw


Octal D-type transparent latch; 3-state


74HC/HCT573

PIN DESCRIPTION

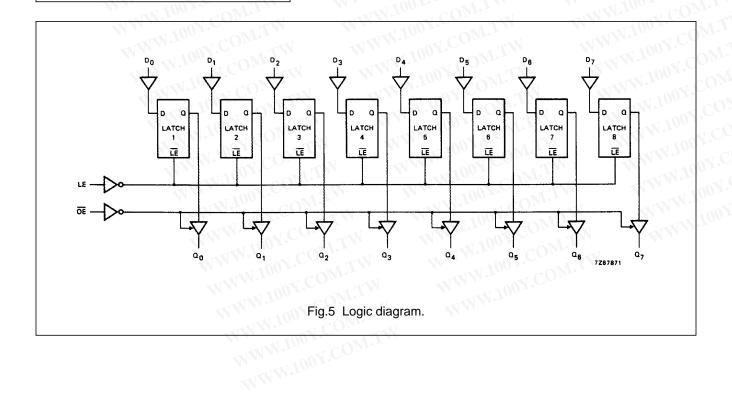
PIN NO.	SYMBOL	NAME AND FUNCTION
2, 3, 4, 5, 6, 7, 8, 9	D ₀ to D ₇	data inputs
11 OV.COM	LE	latch enable input (active HIGH)
IN.100 COM.	ŌĒ	3-state output enable input (active LOW)
10 V.100 COM.	GND	ground (0 V)
19, 18, 17, 16, 15, 14, 13, 12	Q ₀ to Q ₇	3-state latch outputs
20	V _{CC}	positive supply voltage



Http://www.100y.com.tw

Octal D-type transparent latch; 3-state

74HC/HCT573



FUNCTION TABLE

OPERATING		NPUT	S	INTERNAL	OUTPUTS Q ₀ to Q ₇ L H	
MODES	ŌĒ	LE	D _N	LATCHES		
enable and read register (transparent mode)		H	H (1,100	OX.CH COM.		
latch and read register	L	L	l h	100 H ON	TVH	
latch register and disable outputs	H	Ly	l h	1.100 H. CO	Z Z	

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition
 - Z = high impedance OFF-state

Http://www.100y.com.tw

Octal D-type transparent latch; 3-state

74HC/HCT573

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
										01.	COWILM
		+25			-40 t	to +85	-40 t	-40 to +125		V _{CC} (V)	WAVEFORMS
	V.100Y.COM.TW	min.	typ.	max.	min.	max.	min.	max.	TWW.	100	COMITY
t _{PHL} / t _{PLH}	propagation delay D _n to Q _n		47 17 14	150 30 26	100X.	190 38 33	TW	225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		50 18 14	150 30 26	1.100 1.100	190 38 33	M.T.	225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE} to Q_n	LTW	44 16 13	140 28 24	MM· ₁	175 35 30	co_{M_1}	210 42 36	ns	2.0 4.5 6.0	Fig.8
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE} to Q_n	OM.T	55 20 16	150 30 26	MAN	190 38 33	Y.CO	225 45 38	ns	2.0 4.5 6.0	Fig.8
t _{THL} / t _{TLH}	output transition time	COM	14 5 4	60 12 10	MA	75 15 13	00.X°C	90 18 15	ns	2.0 4.5 6.0	Fig.6
t _W	enable pulse width HIGH	80 16 14	14 5 4	N	100 20 17	MM	120 24 20	CON	ns	2.0 4.5 6.0	Fig.7
t _{su}	set-up time D _n to LE	50 10 9	11 4 3	TW	65 13 11	WW	75 15 13	0Y.C	ns	2.0 4.5 6.0	Fig.9
t _h	hold time D _n to LE	5 5 5	3 1.	M.TV OM.T	5 5 5	N.	5 5 5	700X	ns M	2.0 4.5 6.0	Fig.9

Product specification

Octal D-type transparent latch; 3-state

74HC/HCT573

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

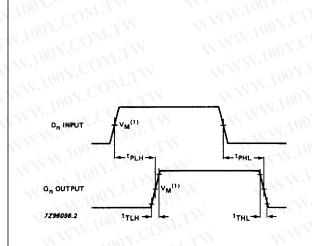
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
D _n	0.35
LE OE	0.65
ŌĒ	1.25

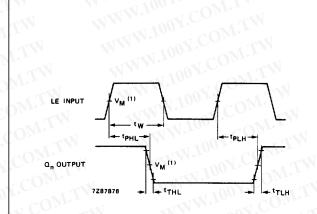
AC CHARACTERISTICS FOR 74HCT

SYMBOL	MMM.100X.COM	T _{amb} (°C)								TEST CONDITIONS		
		74HCT								MM	W.1007.CC	
	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
	WWW.100Y.CC	min.	typ.	max.	min.	max.	min.	max.		(1)	W 1. 100 Y.C	
t _{PHL} / t _{PLH}	propagation delay D _n to Q _n	COM	20	35	WW	44	V.C	53	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay LE to Q _n	CON	18	35	W	44	00Y.	53	ns	4.5	Fig.7	
t _{PZH} / t _{PZL}	3-state output enable time OE to Q _n	N.CO	17	30	7	38	N.100	45	ns	4.5	Fig.8	
t _{PHZ} / t _{PLZ}	3-state output disable time OE to Q _n	700X	18	30		38	W.10	45	ns	4.5	Fig.8	
t _{THL} / t _{TLH}	output transition time	1.100	5	12	N	15	WW	18	ns	4.5	Fig.6	
t _W	enable pulse width HIGH	16	5	$O_{M_{I}}$	20		24	W.100	ns	4.5	Fig.7	
t _{su}	set-up time D _n to LE	13	7	.coM	16		20		ns	4.5	Fig.9	
t _h	hold time D _n to LE	9	4	N.CO	11		14		ns	4.5	Fig.9	


Http://www. 100y. com. tw

Octal D-type transparent latch; 3-state

Ñ


74HC/HCT573

AC WAVEFORMS

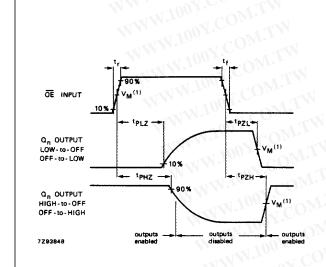

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the data input (D_n) to output (Q_n) propagation delays and the output transition times.

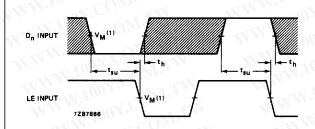

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the latch enable input (LE) pulse width, the latch enable input to output (Q_n) propagation delays and the output transition times.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.8 Waveforms showing the 3-state enable and disable times.

The shaded areas indicate when the input is permitted to change for predictable output performance.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.9 Waveforms showing the data set-up and hold times for D_n input to LE input.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".