INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

74HC/HCT574

Octal D-type flip-flop; positive edge-trigger; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990

Octal D-type flip-flop; positive edge-trigger; 3-state

74HC/HCT574

FEATURES

- 3-state non-inverting outputs for bus oriented applications
- 8-bit positive edge-triggered register
- Common 3-state output enable input
- Independent register and 3-state buffer operation
- · Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT574 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT574 are octal D-type flip-flops featuring separate D-type inputs for each flip-flop and non-inverting 3-state outputs for bus oriented applications. A clock (CP) and an output enable (OE) input are common to all flip-flops.

The 8 flip-flops will store the state of their individual D-inputs that meet the set-up and hold time requirements on the LOW-to-HIGH CP transition. When \overline{OE} is LOW, the contents of the 8 flip-flops are available at the outputs.

When \overline{OE} is HIGH, the outputs go to the high impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

The "574" is functionally identical to the "564", but has non-inverting outputs.

The "574" is functionally identical to the "374", but has a different pinning.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	DARAMETER WWW.1001.	CONDITIONS	TY	4160-	
	PARAMETER	CONDITIONS	HC	нст	UNIT
t _{PHL} / t _{PLH} propagation delay CP to Q _n		$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	14	15	ns
f _{max}	maximum clock frequency	M.TW W	123	76	MHz
C _I	input capacitance	DY.CO. TITW V	3.5	3.5	pF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	22	25	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

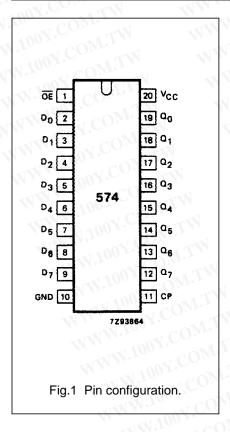
 $\sum (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

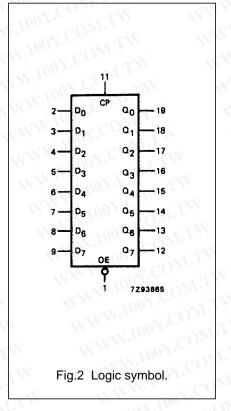
C_L = output load capacitance in pF

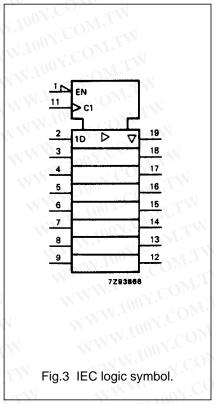
V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

ORDERING INFORMATION

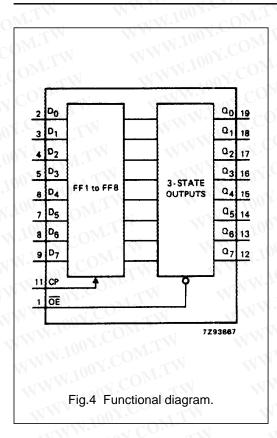

See "74HC/HCT/HCU/HCMOS Logic Package Information".


Octal D-type flip-flop; positive edge-trigger; 3-state


74HC/HCT574

PIN DESCRIPTION

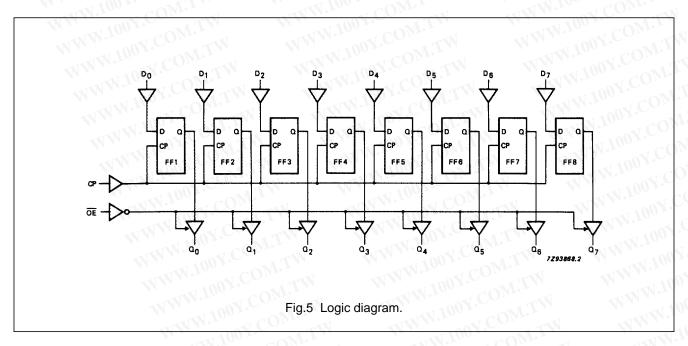
PIN NO.	SYMBOL	NAME AND FUNCTION					
T TW WWW	OE TO	3-state output enable input (active LOW)					
2, 3, 4, 5, 6, 7, 8, 9	D ₀ to D ₇	data inputs					
10 OM.	GND	ground (0 V)					
11 OM.	CP.	clock input (LOW-to-HIGH, edge-triggered)					
19, 18, 17, 16, 15, 14, 13, 12	Q ₀ to Q ₇	3-state flip-flop outputs					
20	V _{CC}	positive supply voltage					



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Octal D-type flip-flop; positive edge-trigger; 3-state

74HC/HCT574


FUNCTION TABLE

OPERATING	XV.11	NPUT	S	INTERNAL	OUTPUTS		
MODES	ŌĒ	СР	D _n	FLIP-FLOPS	Q ₀ to Q ₇		
load and read register	L	↑	T h	MITT	L H		
load register and disable outputs	H	↑	h C	ON H	Z Z		

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - L = LOW voltage level
 - I = LOW voltage level on set-up time prior to the LOW-to-HIGH CP transition
 - Z = HIGH impedance OFF-state
 - ↑ = LOW-to-HIGH clock transition

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Philips Semiconductors Product specification

Octal D-type flip-flop; positive edge-trigger; 3-state

74HC/HCT574

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	TIN MM	T _{amb} (°C)								TEST CONDITIONS	
	PARAMETER	74HC								T.TY	
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.	Direc	OM.	LW
t _{PHL} / t _{PLH}	propagation delay CP to Q _n	WWV	47 17 14	150 30 26	M.T	190 35 33	T T	225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE} to Q_n	W	44 16 13	140 28 24	COM:	175 35 30		210 42 36	ns	2.0 4.5 6.0	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE} to Q_n		39 14 11	125 25 21	V.CO	155 31 26		190 38 32	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time	V.	14 5 4	60 12 10	oy.C	75 15 13	TW	90 18 15	ns	2.0 4.5 6.0	Fig.6
t _W	clock pulse width HIGH or LOW	80 16 14	14 5 4	MAN.	100 20 17	N.CO.	120 24 20	Ĭ	ns	2.0 4.5 6.0	Fig.6
t _{su}	set-up time D _n to CP	60 12 10	6 2 2	MM	75 15 13	OV.C	90 18 15	LM M	ns	2.0 4.5 6.0	Fig.8
t _h	hold time D _n to CP	5 5 5	0 0 0	N	5 5 5	1007.	5 5 5	TW MTW	ns	2.0 4.5 6.0	Fig.8
f _{max}	maximum clock pulse frequency	6.0 30 35	37 112 133		4.8 24 28	N.100	4.0 20 24	OM.T	MHz	2.0 4.5 6.0	Fig.6

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

Philips Semiconductors Product specification

Octal D-type flip-flop; positive edge-trigger; 3-state

74HC/HCT574

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

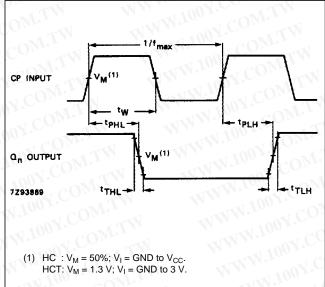
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

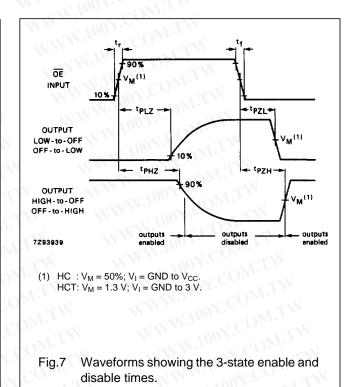
INPUT	UNIT LOAD COEFFICIENT
D _n	0.5
OE	1.25
CP (00)	1.5

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	WY.COM	W	MM.	100Y	- XI 1	TEST CONDITIONS					
	PARAMETER	74HCT								1003	CONTY
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.	NWN	10°	OY.COM.TV
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		18	33	100 Y	41	TW	50	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time OE to Q _n	W	19	33	1.100	41	VI.I.	50	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time OE to Q _n	TW	16	28	W.10	35	OM.T	42	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12	WW.	15	co_M	18	ns	4.5	Fig.6
t _W	clock pulse width HIGH or LOW	16	7	V	20	V.100	24	MIW	ns	4.5	Fig.6
t _{su}	set-up time D _n to CP	12	3		15	W.100	18	0M.T	ns	4.5	Fig.8
t _h	hold time D _n to CP	5	-1	51	5		5	co_{M}	ns	4.5	Fig.8
f _{max}	maximum clock pulse frequency	30	69		24	NWW	20	(CO)	MHz	4.5	Fig.6


Octal D-type flip-flop; positive edge-trigger; 3-state

74HC/HCT574

AC WAVEFORMS

Waveforms showing the clock input (CP) pulse width, the CP input to output (Qn) propagation delays, the output transition times and the maximum clock pulse frequency.

PACKAGE OUTLINES See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

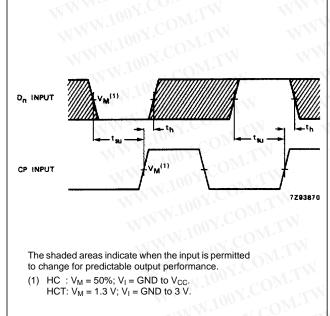


Fig.8 Waveforms showing the data set-up and hold times for D_n input to CP input.