## INTEGRATED CIRCUITS

## DATA SHEET

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

# **74LVC04A**Hex inverter

Product specification
Supersedes data of 1997 Mar 28
IC24 Data Handbook

1997 Jun 30





Hex inverter **74LVC04A** 

#### **FEATURES**

- Wide supply range of 1.2V to 3.6V
- Complies with JEDEC standard no. 8-1A
- Inputs accept voltages up to 5.5V
- CMOS low power consumption
- Direct interface with TTL levels
- 5-volt tolerant inputs, for interfacing with 5-volt logic

#### DESCRIPTION

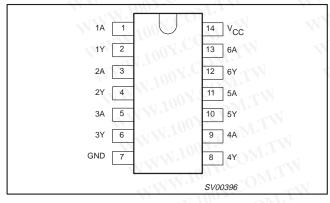
The 74LVC04A is a high-performance, low-power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in a mixed 3.3 V/5 V environment.

The 74LVC04A provides six inverting buffers.

#### QUICK REFERENCE DATA

| SYMBOL                             | PARAMETER                              | CONDITIONS                                         | TYPICAL | UNIT |
|------------------------------------|----------------------------------------|----------------------------------------------------|---------|------|
| t <sub>PHL</sub> /t <sub>PLH</sub> | Propagation delay nA to nY             | $C_L = 50 \text{ pF};$<br>$V_{CC} = 3.3 \text{ V}$ | 2.5     | ns   |
| Cı                                 | Input capacitance                      | MMM. ON.CO.                                        | 5.0     | pF   |
| C <sub>PD</sub>                    | Power dissipation capacitance per gate | Notes 1 and 2                                      | 25      | pF   |


#### NOTES:

- 1.  $C_{PD}$  is used to determine the dynamic power dissipation (P  $_{\!D}$  in  $\mu W)$  $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$  where:  $f_i$  = input frequency in MHz;  $C_L$  = output load capacity in pF;  $f_0$  = output frequency in MHz;  $V_{CC}$  = supply voltage in V;  $\sum (C_L \times V_{CC}^2 \times f_0)$  = sum of the outputs.
- The condition is V<sub>I</sub> = GND to V<sub>CC</sub>.

#### ORDERING INFORMATION

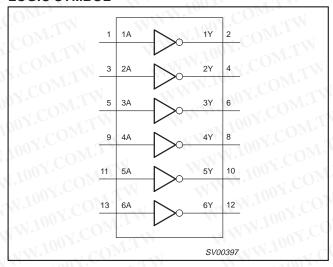
| $\sum_{c} (C_L \times V_{CC}^2 \times f_0) = \text{sum of the}$<br>2. The condition is $V_I = GND$ to $V_{CC}$ . | outputs.          |                       |               |            |
|------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|---------------|------------|
| PACKAGES                                                                                                         | TEMPERATURE RANGE | OUTSIDE NORTH AMERICA | NORTH AMERICA | DWG NUMBER |
| 14-Pin Plastic SO                                                                                                | -40°C to +85°C    | 74LVC04A D            | 74LVC04A D    | SOT108-1   |
| 14-Pin Plastic SSOP Type II                                                                                      | -40°C to +85°C    | 74LVC04A DB           | 74LVC04A DB   | SOT337-1   |
| 14-Pin Plastic TSSOP Type I                                                                                      | -40°C to +85°C    | 74LVC04A PW           | 74LVC04APW DH | SOT402-1   |

#### PIN CONFIGURATION

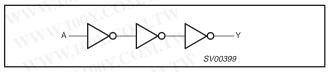


#### PIN DESCRIPTION

| PIN NUMBER         | SYMBOL          | NAME AND FUNCTION       |
|--------------------|-----------------|-------------------------|
| 1, 3, 5, 9, 11, 13 | 1A to 6A        | Data inputs             |
| 2, 4, 6, 8, 10, 12 | 1Y to 6Y        | Data outputs            |
| 7                  | GND             | Ground (0 V)            |
| 14                 | V <sub>CC</sub> | Positive supply voltage |


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.


WWW.100Y.COM.

WWW.100X IW.100Y.COM.T 74LVC04A Hex inverter

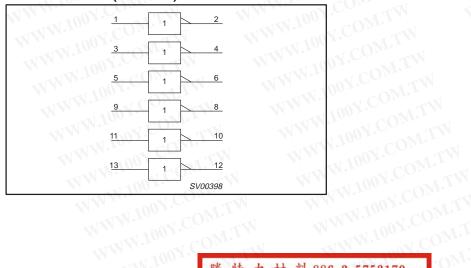
#### LOGIC SYMBOL



#### LOGIC DIAGRAM (ONE GATE)



#### **FUNCTION TABLE**


| INPUTS     | OUTPUTS |
|------------|---------|
| nA         | nY      |
| MIEW. OOY. | H W     |
| HNW. I     | CONT.   |

#### NOTES:

WWW.100Y.COM.TW H = HIGH voltage level WWW.100Y.COM.TW L = LOW voltage level

WW.100Y.COM.TW

#### LOGIC SYMBOL (IEEE/IEC)



WWW.100Y.COM.TW 力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW THE TOOY.COM.TW 1997 Jun 30

WWW.100Y.COM

74LVC04A Hex inverter

#### RECOMMENDED OPERATING CONDITIONS

| OVMDOL                          | MANN'IL COMP.                                    | CONDITIONS                                                                         | CONTAL     | MITS            |      |
|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|------------|-----------------|------|
| SYMBOL                          | PARAMETER                                        | CONDITIONS                                                                         | MIN        | MAX             | UNIT |
| V <sub>CC</sub>                 | DC supply voltage (for max. speed performance)   | TWW.IO.                                                                            | 2.7        | 3.6             | V    |
| V <sub>CC</sub>                 | DC supply voltage (for low-voltage applications) | W.W.10                                                                             | 1.2        | 3.6             | V    |
| VI                              | DC Input voltage range                           | N N TIN.                                                                           | 0          | 5.5             | V    |
| Vo                              | DC output voltage range                          | M. M.                                                                              | 00 0       | V <sub>CC</sub> | V    |
| T <sub>amb</sub>                | Operating ambient temperature range in free-air  | TW WWW                                                                             | -40        | +85             | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input rise and fall times                        | $V_{CC} = 1.2 \text{ to } 2.7 \text{V}$<br>$V_{CC} = 2.7 \text{ to } 3.6 \text{V}$ | N 10 0 V C | 20<br>10        | ns/V |

### ABSOLUTE MAXIMUM RATINGS<sup>1</sup>

| SYMBOL                             | PARAMETER                                                                                            | CONDITIONS                                                                        | RATING                | UNIT            |
|------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------|-----------------|
| Vcc                                | DC supply voltage                                                                                    | CONT.                                                                             | -0.5 to +6.5          | V               |
| I <sub>IK</sub>                    | DC input diode current                                                                               | V <sub>1</sub> < 0                                                                | -50                   | <sub>≪</sub> mA |
| VI                                 | DC input voltage                                                                                     | Note 2                                                                            | -0.5 to +5.5          | V               |
| lok                                | DC output diode current                                                                              | $V_{O} > V_{CC}$ or $V_{O} < 0$                                                   | ±50                   | mA              |
| Vo                                 | DC output voltage                                                                                    | Note 2                                                                            | V <sub>CC</sub> + 0.5 | V               |
| lo                                 | DC output source or sink current                                                                     | $V_O = 0$ to $V_{CC}$                                                             | ±50                   | mA              |
| I <sub>GND</sub> , I <sub>CC</sub> | DC V <sub>CC</sub> or GND current                                                                    | M. Ing. COM.                                                                      | ±100                  | mA              |
| T <sub>stg</sub>                   | Storage temperature range                                                                            | W.100 x. COW. I.                                                                  | -65 to +150           | √ °C            |
| P <sub>TOT</sub>                   | Power dissipation per package  – plastic mini-pack (SO)  – plastic shrink mini-pack (SSOP and TSSOP) | above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K | 500<br>500            | mW              |

#### NOTES:

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM.TV WWW.100Y.COM.T 100Y.CO.4 1997 Jun 30

<sup>1.</sup> Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 Hex inverter 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

74LVC04A

#### DC CHARACTERISTICS

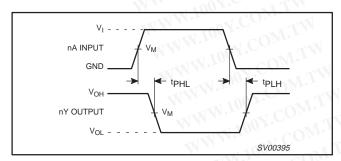
Over recommended operating conditions voltages are referenced to GND (ground = 0V)

| T.Mo.           | W. 100x.                                          | WI.TW. 100 1.                                                           | M                    | IMITS            |       |            |
|-----------------|---------------------------------------------------|-------------------------------------------------------------------------|----------------------|------------------|-------|------------|
| SYMBOL          | PARAMETER                                         | TEST CONDITIONS                                                         | Temp = -             | ·40°C to         | +85°C | וואט 🖥     |
|                 | TW WWW. 100Y.                                     | CONTEM WWW. 100X.C                                                      | MIN                  | TYP <sup>1</sup> | MAX   | 1          |
| A.COM           | LHCLI level lenut veltege                         | V <sub>CC</sub> = 1.2V                                                  | V <sub>CC</sub>      |                  |       |            |
| V <sub>IH</sub> | HIGH level Input voltage                          | V <sub>CC</sub> = 2.7 to 3.6V                                           | 2.0                  | N                |       | 7 °        |
| w c0            | LOW layed langer yellows                          | V <sub>CC</sub> = 1.2V                                                  | A.COM.               | W                | GND   | \ \        |
| VIL             | LOW level Input voltage                           | V <sub>CC</sub> = 2.7 to 3.6V                                           | COM.                 |                  | 0.8   | 1 '        |
| 1007.           | ON.TH WY                                          | $V_{CC} = 2.7V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = -12mA$            | V <sub>CC</sub> -0.5 | 1                |       |            |
| 100Y.           | LUCI Haval autout valtage                         | $V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -100\mu\text{A}$ | V <sub>CC</sub> -0.2 | V <sub>CC</sub>  |       | ] ,        |
| V <sub>OH</sub> | HIGH level output voltage                         | $V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -18\text{mA}$    | V <sub>CC</sub> -0.6 | M.T.W            |       | 1 °        |
|                 | COM. WAL                                          | $V_{CC} = 3.0V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = -24$ mA           | V <sub>CC</sub> -0.8 | MIT              |       | 1          |
| Miros           | V.COM. WW                                         | $V_{CC} = 2.7V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = 12mA$             | " CI                 | D2"              | 0.40  |            |
| V <sub>OL</sub> | LOW level output voltage                          | $V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$       | M. T. CON.           | OMr.             | 0.20  | <b>1</b> v |
|                 | M. CONTIN                                         | $V_{CC} = 3.0V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = 24$ mA            | MANTON               | $CO_{M_I}$       | 0.55  | 1          |
| N IL            | Input leakage current                             | V <sub>CC</sub> = 3.6V; V <sub>I</sub> = 5.5V or GND                    | W.100                | ±0.1             | ±5    | μΑ         |
| I <sub>CC</sub> | Quiescent supply current                          | $V_{CC} = 3.6V; V_{I} = V_{CC} \text{ or GND}; I_{O} = 0$               | W.100                | 0.1              | 10    | μΑ         |
| $\Delta I_{CC}$ | Additional quiescent supply current per input pin | $V_{CC} = 2.7V$ to 3.6V; $V_I = V_{CC} - 0.6V$ ; $I_O = 0$              | N 10                 | 5                | 500   | μА         |

#### **AC CHARACTERISTICS**

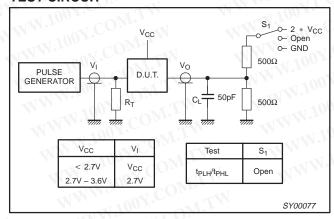
GND = 0 V;  $t_r = t_f \le 2.5 \text{ ns}$ ;  $C_L = 50 \text{ pF}$ 

|                                        | 1001                          | W.T.     | 1                            | TW 10    | CC   | LIMI      | TS                     | -41   | W.Too                  | $O_{Mr}$ . |
|----------------------------------------|-------------------------------|----------|------------------------------|----------|------|-----------|------------------------|-------|------------------------|------------|
| SYMBOL                                 | PARAMETER                     | WAVEFORM | V <sub>CC</sub>              | = 3.3V ± | 0.3V | TIL       | V <sub>CC</sub> = 2.7\ | V /// | V <sub>CC</sub> = 1.2V | UNIT       |
|                                        | TWW.In                        | ONI.     | MIN TYP <sup>1</sup> MAX MIN |          | TYP  | P MAX TYP |                        | COR   |                        |            |
| t <sub>PHL</sub> /<br>t <sub>PLH</sub> | Propagation delay<br>nA to nY | COM-1    | 1.5                          | 2.5      | 4.5  | 1.5       | 3.2                    | 5.5   | 16.0                   | Cns        |


#### NOTE:

## **AC WAVEFORMS**

 $V_M$  = 1.5 V at  $V_{CC} \ge 2.7$  V


 $V_M = 0.5 \cdot V_{CC}$  at  $V_{CC} < 2.7 \text{ V}$ 

V<sub>OL</sub> and V<sub>OH</sub> are the typical output voltage drop that occur with the output load.



Waveform 1. Input (nA) to output (nY) propagation delays.

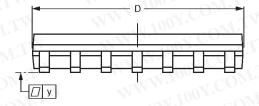
#### **TEST CIRCUIT**

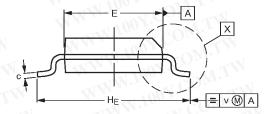


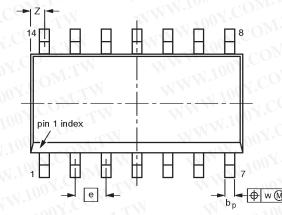
Waveform 2. Load circuitry for switching times.

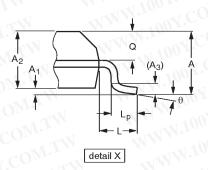
100X.COM 1997 Jun 30

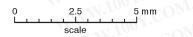
<sup>1.</sup> All typical values are at  $V_{CC}$  = 3.3V and  $T_{amb}$  = 25°C.


<sup>1.</sup> These typical values are at  $V_{CC}$  = 3.3V and  $T_{amb}$  = 25°C.


Hex inverter 74LVC04A


#### SO14: plastic small outline package; 14 leads; body width 3.9 mm


#### SOT108-1











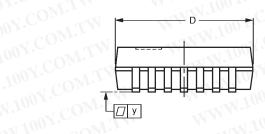


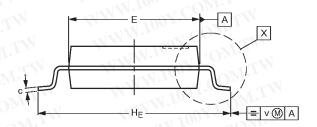

#### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

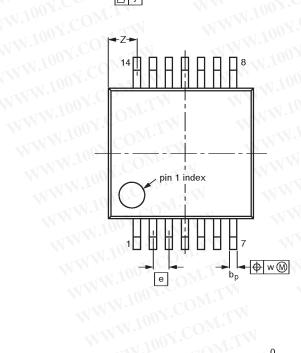
| A<br>max. | Α1           | A <sub>2</sub>                | A <sub>3</sub>                                                                                  | bp                                                                                                                                                     | c                                                                                                                                                                                                                                                 | D <sup>(1)</sup>                                                                                                                                                                                                                                                                                     | E <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                         | е                                                                                                                                                                                                                                                                                                              | HE                                                                                                                                                                                                                                                                                                                                                | 750                                                                                                                                                                                                                                                                                                                                                                                     | Lp                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | θ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|--------------|-------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.75      | 0.25<br>0.10 | 1.45<br>1.25                  | 0.25                                                                                            | 0.49<br>0.36                                                                                                                                           | 0.25<br>0.19                                                                                                                                                                                                                                      | 8.75<br>8.55                                                                                                                                                                                                                                                                                         | 4.0                                                                                                                                                                                                                                                                                                                                                      | 1.27                                                                                                                                                                                                                                                                                                           | 6.2<br>5.8                                                                                                                                                                                                                                                                                                                                        | 1.05                                                                                                                                                                                                                                                                                                                                                                                    | 1.0<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| กกผิน     |              |                               | 0.01                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                   | 0.35<br>0.34                                                                                                                                                                                                                                                                                         | 0.16<br>0.15                                                                                                                                                                                                                                                                                                                                             | 0.050                                                                                                                                                                                                                                                                                                          | 0.24<br>0.23                                                                                                                                                                                                                                                                                                                                      | 0.041                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.028<br>0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | 1.75         | nax. A1 1.75 0.25 0.10 0.0098 | max.         A1         A2           1.75         0.25         1.45           0.10         1.25 | nax.         A1         A2         A3           1.75         0.25<br>0.10         1.45<br>1.25         0.25           0.098         0.057         0.01 | max.         A1         A2         A3         bp           1.75         0.25         1.45         0.25         0.49           0.10         1.25         0.25         0.36           0.009         0.0098         0.057         0.01         0.019 | max.         A1         A2         A3         bp         c           1.75         0.25         1.45         0.25         0.49         0.25           0.10         1.25         0.25         0.36         0.19           0.069         0.0098         0.057         0.01         0.019         0.0098 | nax.         A1         A2         A3         bp         c         D(1)           1.75         0.25         1.45         0.25         0.49         0.25         8.75           0.00         1.25         0.25         0.36         0.19         8.55           0.009         0.0098         0.057         0.01         0.019         0.0098         0.35 | max.         A1         A2         A3         bp         c         D(1)         E(1)           1.75         0.25         1.45         0.25         0.49         0.25         8.75         4.0           1.069         0.0098         0.057         0.01         0.019         0.0098         0.35         0.16 | max.         A1         A2         A3         bp         c         D00         E00         e           1.75         0.25         1.45         0.25         0.49         0.25         8.75         4.0         1.27           1.069         0.0098         0.057         0.01         0.019         0.0098         0.35         0.16         0.050 | max.         A1         A2         A3         bp         c         D(1)         E(1)         e         HE           1.75         0.25         1.45         0.25         0.49         0.25         8.75         4.0         1.27         6.2           1.069         0.0098         0.057         0.01         0.019         0.0098         0.35         0.16         0.050         0.24 | max.         A1         A2         A3         bp         C         D(1)         E(1)         e         HE         L           1.75         0.25         1.45         0.25         0.49         0.25         8.75         4.0         1.27         6.2         5.8         1.05           1.05         0.0098         0.057         0.01         0.019         0.0098         0.35         0.16         0.050         0.24         0.041 | max.         A1         A2         A3         bp         c         D(1)         E(1)         e         HE         L         Lp           1.75         0.25         1.45         0.25         0.49         0.25         8.75         4.0         1.27         6.2         1.05         1.0         0.4           1.069         0.0098         0.057         0.01         0.019         0.0098         0.35         0.16         0.050         0.24         0.041         0.039 | max.         A1         A2         A3         bp         c         D(1)         E(1)         e         HE         L         Lp         Q           1.75         0.25         1.45         0.25         0.49         0.25         8.75         4.0         1.27         6.2         1.05         1.0         0.7         0.4         0.6           1.069         0.0098         0.057         0.01         0.019         0.0098         0.35         0.16         0.050         0.24         0.041         0.039         0.028 | max.         A1         A2         A3         bp         c         D(7)         E(7)         e         HE         L         Lp         Q         V           1.75         0.25         1.45         0.25         0.49         0.25         8.75         4.0         1.27         6.2         1.05         1.0         0.7         0.6         0.25           0.069         0.0098         0.057         0.01         0.019         0.0098         0.35         0.16         0.050         0.24         0.041         0.039         0.028         0.01 | max.         A1         A2         A3         bp         c         D(1)         E(1)         e         HE         L         Lp         Q         V         W           1.75         0.25         1.45         0.25         0.49         0.25         8.75         4.0         1.27         6.2         1.05         1.0         0.7         0.25         0.25         0.25         0.36         0.19         8.55         3.8         1.27         5.8         1.05         0.4         0.6         0.25         0.25         0.25           1.069         0.0098         0.057         0.01         0.019         0.0098         0.35         0.16         0.050         0.24         0.041         0.039         0.028         0.01         0.01 | max.         A1         A2         A3         bp         c         D(1)         E(1)         e         HE         L         Lp         Q         V         W         Y           1.75         0.25         1.45         0.25         0.49         0.25         8.75         4.0         1.27         6.2         1.05         1.0         0.7         0.25         0.25         0.1           1.05         0.00         1.05         0.04         0.6         0.25         0.25         0.1           1.06         0.0098         0.057         0.01         0.019         0.0098         0.35         0.16         0.050         0.24         0.04         0.039         0.028         0.01         0.01         0.004 | max.         A1         A2         A3         bp         c         D(1)         E(1)         e         HE         L         Lp         Q         V         W         y         Z(1)           1.75         0.25         1.45         0.25         0.49         0.25         8.75         4.0         1.27         6.2         1.05         1.0         0.7         0.25         0.25         0.1         0.7         0.3           1.069         0.0098         0.057         0.01         0.019         0.0098         0.35         0.16         0.050         0.24         0.041         0.039         0.028         0.01         0.01         0.004         0.028 |

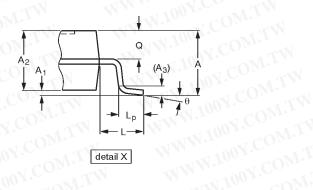
| OUTLINE  | WW       | REFERE      | NCES |          | EUROPEAN   | IOOUE DATE                      |
|----------|----------|-------------|------|----------|------------|---------------------------------|
| VERSION  | IEC      | JEDEC       | EIAJ | TANNI. I | PROJECTION | ISSUE DATE                      |
| SOT108-1 | 076E06\$ | MS-012AB    | VII  | MMM'II   |            | <del>91-08-13</del><br>95-01-23 |
|          |          | MAN JOAN CO | W.   | WWW.     | TO COMP.   |                                 |
|          |          |             |      |          |            |                                 |

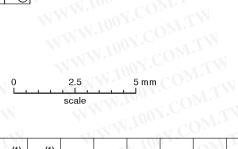
100Y.CO% 1997 Jun 30


## Hex inverter


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw


74LVC04A


SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm


SOT337-1











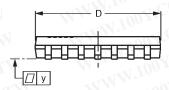
#### DIMENSIONS (mm are the original dimensions)

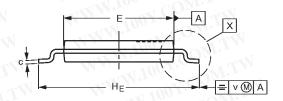
| TINI | A<br>max. | Α1           | A <sub>2</sub> | A <sub>3</sub> | b <sub>p</sub> | c            | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | HE         | 1.50 | Lp           | Q          | ٧   | w    | у   | Z <sup>(1)</sup> | θ        |
|------|-----------|--------------|----------------|----------------|----------------|--------------|------------------|------------------|------|------------|------|--------------|------------|-----|------|-----|------------------|----------|
| mm   | 2.0       | 0.21<br>0.05 | 1.80<br>1.65   | 0.25           | 0.38<br>0.25   | 0.20<br>0.09 | 6.4<br>6.0       | 5.4<br>5.2       | 0.65 | 7.9<br>7.6 | 1.25 | 1.03<br>0.63 | 0.9<br>0.7 | 0.2 | 0.13 | 0.1 | 1.4<br>0.9       | 8°<br>0° |

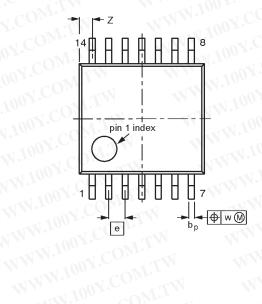
| OUTLINE  |     | REFERE      | NCES |         | EUROPEAN   | IOOUE DATE                      |
|----------|-----|-------------|------|---------|------------|---------------------------------|
| VERSION  | IEC | JEDEC       | EIAJ | TWW.Io. | PROJECTION | ISSUE DATE                      |
| SOT337-1 | - N | MO-150AB    | VII  | MMM.10  |            | <del>95-02-04</del><br>96-01-18 |
|          |     | WW.100 Z CC | W.r. | I.WWW.  | ON COM     |                                 |
|          |     |             |      |         |            |                                 |

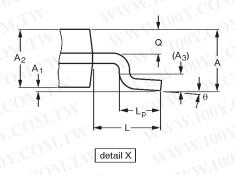
WWW.100Y.CO THE TONY, CONT. TW 1997 Jun 30

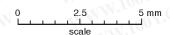
Hex inverter


特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787


Http://www. 100y. com. tw


74LVC04A


TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm


SOT402-1











#### DIMENSIONS (mm are the original dimensions)

| UNIT                        | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bр           | C          | D (1)      | E (2)      | е    | HE         | 150 | Lp           | Q          | v   | w    | у   | Z (1)        | θ        |
|-----------------------------|-----------|----------------|----------------|----------------|--------------|------------|------------|------------|------|------------|-----|--------------|------------|-----|------|-----|--------------|----------|
| mm                          | 1.10      | 0.15<br>0.05   | 0.95<br>0.80   | 0.25           | 0.30<br>0.19 | 0.2<br>0.1 | 5.1<br>4.9 | 4.5<br>4.3 | 0.65 | 6.6<br>6.2 | 1.0 | 0.75<br>0.50 | 0.4<br>0.3 | 0.2 | 0.13 | 0.1 | 0.72<br>0.38 | 8°<br>0° |
| Notes 1. Plastic 2. Plastic |           |                |                |                |              |            |            |            |      | W          | MA  | 100°         | y.Cu       | OM. | TW   |     | W            | WW       |

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE  |     | REFERE      | EUROPEAN | ICCUE DATE |            |                                 |  |
|----------|-----|-------------|----------|------------|------------|---------------------------------|--|
| VERSION  | IEC | JEDEC       | EIAJ     | WWW.I      | PROJECTION | ISSUE DATE                      |  |
| SOT402-1 | W   | MO-153      | M.I.     | MMM.In     |            | <del>94-07-12</del><br>95-04-04 |  |
|          |     |             |          |            |            |                                 |  |
|          | 41  | IWW.Too.Y.C | OM       | WWW        | .100       |                                 |  |

TATEN 1007.COM. 1997 Jun 30

Hex inverter 74LVC04A

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

| DEFINITIONS               |                        |                                                                                                                                                                                                                                                     |  |  |  |  |  |
|---------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Data Sheet Identification | Product Status         | Definition                                                                                                                                                                                                                                          |  |  |  |  |  |
| Objective Specification   | Formative or in Design | This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.                                                                                                  |  |  |  |  |  |
| Preliminary Specification | Preproduction Product  | This data sheet contains preliminary data, and supplementary data will be published at a later date. Phi Semiconductors reserves the right to make changes at any time without notice in order to improve des and supply the best possible product. |  |  |  |  |  |
| Product Specification     | Full Production        | This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.                                               |  |  |  |  |  |

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-04478

Let's make things better.

Philips Semiconductors



