\ Safety Precautions

Important Notes on exporting this product or equipment containing this product；

If the end－user or application of this product is related to military affairs or weapons，its export may be controlled by＂Foreign Exchange and Foreign Trade Control Law＂of Japan where export license will be required before product can be exported from Japan．
This product is designed and manufactured for use in General Purpose Industrial Equipment and it is not intended to be used in equipment or system that may cause personal injury or death．
－All servicing such as installation，wiring，operation，maintenance and etc．，should be performed by qualified personnel only Tighten mounting screws with an adequate torque by taking into consideration strength of the screws and the characteristics of material to which the product will be mounted．Over tightening can damage the screw and／or material；under tightening can result in loosening
＊Example：apply $2.7 \mathrm{~N} \cdot \mathrm{~m}-3.3 \mathrm{~N} \cdot \mathrm{~m}$ torque when tightening steel screw（M5）to steel surface，
Example：apply $2.7 \mathrm{~N} \cdot \mathrm{~m}-3.3 \mathrm{~N} \cdot \mathrm{~m}$ torque when tightening steel screw（M5）to steel surface．
Install safety equipment to prevent serious accidents or loss that is expected in case of failure of this product．
Consult us before using this product under such special conditions and environments as nuclear energy control，aerospace， transportation，medical equipment，various safety equipments or equipments which require a lesser air contamination． We have been making the best effort to ensure the highest quality of our products，however，some applications with exceptionally large external noise disturbance and static electricity，or failure in input power，wiring and components may result in unexpected action．It is highly recommended that you make a fail－safe design and secure the safety in the operative range If the motor shaft is not electrically grounded，it may cause an electrolytic corrosion to the bearing，depending on the condition of the machine and its mounting environment，and may result in the bearing noise．Checking and verification by customer is required．
Fequired． the application of the machine is clean room related．
Please be careful when using the product in an environment with high concentrations of sulfur or sulfuric gases，as sulfuration can lead to disconnection from the chip resistor or a poor contact connection．
Do not input a supply voltage which significantly exceeds the rated range to the power supply of this product．Failure to heed this caution may lead to damage of the internal parts，causing smoke and／or fire and other troubles．
The user is responsible for matching between machine and components in terms of configuration，dimensions，life expectancy， characteristics，when installing the machine or changing specification of the machine．The user is also responsible for complying with applicable laws and regulations．
Manufacturer＇s warranty will be invalid if the product has been used outside its stated specifications．
Component parts are subject to minor change to improve performance．
Read and observe the instruction manual to ensure correct use of the product．

Repair \begin{tabular}{l}

Consult to the dealer from whom you have purchased this product for details of repair work．
When the product is incorporated to the machine you have purchased，consult to the machine manufacturer or its dealer．

\hline URL

Electric data of this product（Instruction Manual，CAD data）can be download from the following web site；

http：／／industrial．panasonic．com／ww／products／motors－compressors／fa－motors
\end{tabular}

Contact to：

iso 9001	$\begin{aligned} & \text { ISO } \\ & 14001 \end{aligned}$
ISO9001 Certificate division	ISO14001 Certificate division
Panasonic Corporation， Automotive \＆Industrial Systems Company， Smart Factory Solutions Business Division， Motor Business Unit 1－1 Morofuku 7－chome，Daito，Osaka 574－0044，Japan Tel ：＋81－72－871－1212 Fax：＋81－72－870－3151	
The content to the produ	of this catalog apply cts as of April 2015.

Servo motor that brings out potential of
Two-degree-of-freedom control system
All-in-one type
$A 5 \coprod_{\text {series }}$
Rated output: $\mathbf{5 0} \mathbf{W}$ to $\mathbf{1 5 . 0} \mathbf{~ k W}$ - 20 bit incremental encoder,
17 bit absolute/ incremental 17 bit absolute/ incremental encoder
All-in-one-- All-in-one: Speed, Position, Torque ${ }^{1}$, Fuli-Closed control type

All-in-one type
$\mathrm{A} 5_{\text {series }}$
Rated output: $\mathbf{5 0} \mathbf{W}$ to $\mathbf{1 5 . 0} \mathbf{~ k W}$ - 20 bit incremental encoder, 17 bit absolute/ incremental encoder - All-in-one: Speed, Position, Torque, Full-closed control type
Two-degree-of-freedom control system Position control type
A5IIE
Rated output: $50 \mathbf{W}$ to $\mathbf{5 . 0} \mathbf{~ k W}$

- 20 bit incremental encoder
- Position control (pulse train commands)

Position control type
A5E
Rated output: $\mathbf{5 0} \mathbf{W}$ to $\mathbf{5 . 0} \mathbf{~ k W}$ - 20 bit incremental encoder Position control (pulse train commands)

Slim design and position control type

4 series
series

Rated output: $\mathbf{5 0} \mathbf{~ W}$ to $\mathbf{4 0 0} \mathbf{~ W}$ Ultra-small design and pulse train command type only
Real-time auto gain tuning
DIN-rail mountable (using mounting Kit)

Quicker, Wiser and Friendlier
 A5 II series

Two-degree-of-freedom
control system control system All-in-one type - Full-closed control and torque control are not
applicable to $2 D O$ control system.

Realizes quick and accurate movement. Fast response \& High-precision positioning

Adopted New Algorithm "Two-degree-of-freedom contro" (2DOF) to
improve productivity and machining accuracy. In the conventional model, because we could not adjust separately feedforward control and feedback controls, in other words even if we only adjust "Approach" of feedforward, it had connection with "Settling" of

- Full-closed control and torque control are not applicable to 2DOF control system.
feedback control, mutual adjustment was required. In 2DOF adopted A5II series, feedforward and feedback controls are adjusted separately, meaning "Approach" reaction to the given command, and the "Settling" can be adjusted separately.
Realized low vibration and reduction of settling time Realizes tact speed of the electronic component mounting matal processing machines allows furface treatment of meta High speed industrial robots for smooth operation
Waveform of PANATERM
- Waveform of PANATERM
(the case of the ball screw: $0 \mathrm{~ms} /$ waveform measured settling time)

Easy and quick adjusting time. 5 times faster* than conventional
Greatly improved "operability",
easy-to-use software "PANATERM".
We have upgraded setup support software PANATERM, We have upgraded setup support software PANATERM,
the convenient tool for parameter setting and monitoring the convenient tool for parameter setting and monitoring
often required during start-up of the machine for adjustment motor and driver. Improved to more
easy-understandable screen.
Equipped with "Fit Gain" function to realize speedy setup.
Newly developed feature "Fit Gain" maximizes the characteristics of A5II series. And adaptive notch filter
function can reduce the vibration that occurs when the function can reduce the vibration that occurs when the
rigidity of the device is rigidity of the device is low, you can set and adjust

in only 3 processes

-Fit gain adjustment window

Realized 2.3 kHz frequency response to improve productivity
Comparison* 1.15 times faster than conventional Realized 2.3 kHz response makes possible
high-speed operation and improves productivity.

Smart

2.0 kHz Frequency Response

A5 A.5E
Example application Semiconductor production equipment, packaging, etc.

Achieves the industry's leading frequency response of 2.0 kHz .
Operation speed up by new developed LSI and high responsible control. By the industry's leading speed and positioning response, a highly advanced system can positioning response, a highly advanced system can be realize an extremely lower vibration.

20 bits/revolution, 1.04 million pulses (At incermenal type) A5II A5 A5IIE A5E
Example application Machine tools, textile machinery, etc.

Ensures smoother operation and reduced vibration at stopping.
Ensures accurate positioning in a short time.
New proprietary signal processing technology achieves
1.04 million pulses with a 20 -bit incremental encoder.

Low Cogging Torque

Example application Semiconductor production equipment, textile machinery, etc.

For the industry's most stable speed and lowest cogging
We've achieved the industry's lowest cogging by minimizing the pulse width by a new design incorporating a 10 -pole rotor for the motor and a magnetic field parsing technique. Positioning and stability are greatly improved by the minimal torque variation. This results to improved speed stability and positioning of motor rotation.

The Input/Output Pulse 4 Mpps

Vibration reduced to only $1 / 8$

Example application Semiconductor production equipment, machine tools, etc.
\square

Accommodates the industry's leading positioning resolution commands (with pulse train commands). The command input and feedback output operate at the high speed of 4 Mpps. Accommodates high-resolution and high-speed operation, including standard full closed operation (Provided with A5I, A5 only)

Highly Functional Real-time Auto-Gain Tuning A5II A5 A5IIE A5E
Example application Semiconductor production equipment, food processing machinery, etc.
Auto tuning
High-performance real-time auto-gain tuning featuring simple setup. After installation, tuning will be completed automatically after several operations. When the response is adjusted, simple tuning is supported with a change of one When the response is adjusted, smple thng is suppored wha change of one parameutes to optimum adjustment The built-in auto vibration suppression function reduces equipment damage. Appropriate modes are provided for various machines such as vertical axis machines and high friction machines with belts.
This makes it possible to perform simple optima adjustments simply by selecting the mode and stiffness.

	---1
B.	
	atwow
	.
	\because

Manual/Auto Notch Filters

A5II A5 A5IIE A5E
example application Semiconductor production equipment, food processing machinery, etc.

Equipped with auto-setting notch filters for greater convenience.

Now there is no need to measure troublesome
vibration frequencies. Our notch filters automatically
detect vibration and provide simple auto-setting.
These notch filters greatly reduce noise and vibration caused by equipment resonance and respond quickly

$((\vec{\square}\rangle))$
Damping filter

Manua//Auto Damping Filter
A5II A5 A5IIE A5E
Example application Chip mounters, food processing machinery, robots, general production machinery, etc

Equipped with a damping filter featuring simplified Without Damping Filter automatic setup
The setup software features automatic setup of the damping filter. This filter removes the natural vibration frequency component from the command input, greatly reducing vibration of the axis when stopping. The number of filters has been increased to four from the conventional two ilers (two for simultaneous use). The adaptive frequency has also been significantly expanded from 1 Hz to 200 Hz .

Motion Simulation

A5II A5 A5IIE A5E
Example application General production machinery, etc.
Simulation
Equipped with a simplified machine simulation function.
The setup software uses frequency response data acquired from the actual machine. In addition, it features a machine simulation function for performing simulated operation. This allows you to easily confirm the effects of gain and various filters without adjusting the actual equipment.

Light

New Structure/ Innovative Core/ Innovative Encoder A5II A5 A5IIE A5E

Example application Robots, chip mounters, general production machinery, etc.

New structure

Featuring significantly reduced reaturing significantly reduced weight and a more compact motor ompact motors and large motors. meact mors and large motors. ucceeded in compact. The addition f an innovative compact encoder has contributed to a 10% to 25% 1 kg to 6 kg) reduction in motor wight in the 1 kW and larger clas en compared with motors.

Gomplies with European Saieiv Standercs.

A5II A5
Example application Semiconductor and LCD production equipment, etc.

4

Sato

Compliance with EU safety standards.
Features non-software-based independent redundant circuitry for motor power isolation. independent redundant circuitry for motor power isolation. This obviates the need for magnetic contactors to isolate
the required motor in order to accommodate low-voltage machinery commands.
The final safety compliance must be applied as machine.)

Low noise
Example application Semiconductor and LCD production equipment, etc.

Complies with the European EMC Directive
By incorporating the latest circuit technology, A5II, A5 series
achieves a further noise reduction of 3 dB compared with the
conventional A4 series, which also features noise suppression.
(The A4 series also conforms to the EMC Directive.)

IP67 Enclosure Rating (Products are build to order items.) A5II A5 A5IIE A5E
Example application Machine tools, robots, printing machines, etc.

P67 enclosure rating for increased environmental resistance Our improved motor seals and direct-mount connectors in the motor power supply and encoder input-output areas contribute to this unit's |P67 enclosure rating.

IP 67

- Protection against water - Protection against temporary immersion in water
- Protection against dust Protected against
dust penetration in full contact
- Motors of MSMD and MHMD series and 0.9 kW or higher standard stock items have IP65 rating
- Motors of IP67 have smaller encoder connector that requires cable compatible with IP67 motor. *IP67 motor is build to order items.

5

Last

PANATERM Set-up Support Software
A5II A5 A5IIE A.5E
The PANATERM Set-up Support Software, with many added features.
The PANATERM assists users in setting parameters, monitoring control conditions, setup support, and analyzing mechanical operation data on the PC screen, when installed in commercially available personal computer, and connected to the MINAS A5 Family through the USB interface.

- Localized in 4 languages

Choose either English, Japanese, Chinese, or Korean-language display

Setup Wizard

This wizard supports fundamental settings in each control mode step by step, includeing reading of default setting. In on-line condition, input data related to each step can be monitored in real time.

Fit gain
This function automatically searches the This function automatically searches the est suitable stifnness setting and mod m-position range and setting time

The fit gain function for setting two-degree-of-freedom control. 1) Select the adjustment method
2) Load measurement
3) Adjust gain to meet your needs by confirming results. (for A5II, A5IE)

Service Life Prediction
The service life prediction function considers the internal temperature for main components such as the fan and condenser. If the rated value is exceeded an alarm is displayed. This approach prevents unexpected suspension of peration and allows for planning of systemized maintenance.

Note: The life span prediction value should be considered as a guide only.

Encoder Temperature Monitor

The Encoder Temperature Monitor is a new function capable of real-time measurement of the interior temperature of the encoder, something that has been difficult to achieve in the
malfunction (provided with 20 -bit encoder only).
Other New Function
The software offers a wide range of convenient features including motor and driver data such as features including motor and driver data such
load factor, voltage, and driver temperature. load factor, voltage, and driver temperature,
Moreover, the logging function records the interface history. As well, a non-rotating contributing factor display function.

Frequency characteristics measurement function
Can check frequency response characteristics of the mechanism and motor. Since resonance frequency of the mechanism is measurable, it is effective for start-up time reduction.

Added New screen for gain adjustment equipped with stiffness oscillation auto-reduction function

Trial run
This function supports positioning with the Z-phase search and software limit.

Significant increase of measuring objects Multi-functional waveform graphic

<CAUTION>
This software is applicable only to A5II, A5, A5IE, A5E series.
To apply this software to conventional product (A, AII, E or A4 series), consult our distributors.

Hardware configuration		
Personal computer	CPU	Pentium III 512MHz or more
	Memory	256MB or more (512MB recommended)
	Hard disk capacity	Vacancy of 512 MB or more recommended
	OS	Windows ${ }^{\circledR}$ XP SP3 (32-bit Ver.), Windows ${ }^{\circledR}$ VISTA SP1 (32-bit Ver.) Windows 7 (32-bit Ver., 64-bit Ver.) [English, Japanese, Chinese or Korean version]
	Serial communication port	USB port
Display	Resolution	1024×768 pix or more (desirably 1024×768)

[^0] http://industrial.panasonic.com/ww/products/motors-compressors/fa-motors

Other
Functions

Command Control Mode A5II A5

Command control mode is available for Position, Speed (including eight internal velocities) and Torque. Using parameter settings, you can set up one optional command control mode or two command control modes by switching
According to suitable application utility, proper optional command control mode can be chosen.

Full-closed Control

\qquad
AB-phase linear scale (for general all-purpose products) or serial scale (for products with Panasonic's exclusive format) scales can be used (P.14).

SEMI F47

A5II A5 ASIIE A5E
Includes a function in compliance with the SEMI F47 standard for voltage sag immunity under no load or light load
deal for the semiconductor and LCD industries. Notes:

1) Excluding the single-phase $100-\mathrm{V}$ type
2) Please verify the actual compliance with your
machine checking the F47 standard for voltage sag immunity.

Inrush Current
 Preventive Function

A5II A5 ASIIE ASE
This driver is equipped with a rush current preventive esistor to prevent the circuit breaker from shutting off the power supply as a result of inrush current occurring at power-on.

Regenerative Energy A5II A5 A5IIE A5L Discharge

A regenerative resistor is used to discharge
regenerative energy, which is the energy generated when stopping a load with a large moment of inertia or when using this unit in vertical operation. This energy is returned to the driver from the motor. Frame A, B, G and frame H model drivers do not contain a regenerative resistor. Optional regenerative resisters are recommended
Frame C to frame F model drivers contain one regenerative resistor; however, adding an optiona egenerative resistor provides additional regeneration capability.

6000-rpm capability

The MSME motor (under 750 W) can accommodate a maximum speed of $6000 \mathrm{r} / \mathrm{min}$.

Comparison of new and conventional 200 W$]$

Gear head
Gear heads for $6000 \mathrm{r} / \mathrm{min}$ and $5000 \mathrm{r} / \mathrm{min}$ motors are available. Set $5000 \mathrm{r} / \mathrm{min}$ gear head only to 5000 $\mathrm{r} / \mathrm{min}$ motor, and set $6000 \mathrm{r} / \mathrm{min}$ gear head only to
$6000 \mathrm{r} / \mathrm{min}$ motor.
When customers prepare a gear head,
use it as follows:
MSME $\rightarrow 6000 \mathrm{r} / \mathrm{min}$
$\left.\begin{array}{l}\text { MSMD } \\ \text { MHMD }\end{array}\right] \rightarrow 5000 \mathrm{r} / \mathrm{min}$

Dynamic Braking A5II A5 A5IIE A5E

With parameter settings, you can select dynamic braking, which shorts servomotor windings U, V and W at Servo-OFF, during positive direction/ negative direction, and during power shutdown and tripping of the circuit breaker for over travel inhibition.

* The dynamic brake circuit of H -frame is externa The desired action sequence can be set up to accommodate your machine requirements.

Parameter Initialization ASII A5 A5IIE A5E
Using the front panel or by connecting a PC, you can estore the parameters to the factory settings.

Disturbance Observer A5II A5 A5IIE A5E

By using a disturbance observer to add an estimated isturbance torque value to the torque canceling command, this function diminishes the impact of the disturbance torque, reduces vibration, and offsets any speed decline.

Disturbance observer function not in effect

Torque Feed Forward A5II A5 A5IIE A5E

The Torque Feed Forward function performs a comparison with feedback and calculates the amount of torque to add to the necessary torque command in he command for actuation.

Compensation

A5II A5 A5IIE A5E
This function reduces the effect of machine-related friction and improves responsiveness. Two kinds of friction compensation can be set up: unbalanced load compensation, which compensates with a constant perational offset torque; and kinetic friction, which changes direction in response to the direction of movement.

3-Step Gain
A 3-step gain switch is available in addition to the normal gain switch.
This chooses appropriate gain tunings at both stopping and running.
The 3-step gain switch gives you choices of 3 different tunings for normal running, stopping for faster
positioning and at stopping.
The right gaining tunings achieve lower vibration and quicker positioning time of your application.

Inertia Ratio Conversion A5II A5 A5IIE A5

You can adjust right inertia ratio by Inertia Ratio
Conversion input(J-SEL)
When you have significant load inertia changes, it can adjust unbalanced speed and position gain turning combination
It ends up quicker response of your system.

Input/Output

Signal Assignment
A5II A5 A5TIE ASE
ou can use the parameters to arbitrarily allocate the universal 10 inputs and 6 outputs. (Inputs can be selected as either A contacts or B contacts). The Panaterm setup software provides an exclusive screen for a more simplified setup.

Torque Limiter Switching A5II A5 A5IIE ASE

You can use the I/Os to set up torque limits. These can be used for applications such as simplified pressure, tension control, and sensor-less homing

Applicable international safety standards

A5II A5 A5IIE A5E

		Driver	Motor
EC Directives	EMC Directives	EN55011 EN61000-6-2 IEC61800-3	-
	Low-Voltage Directives	EN61800-5-1	$\begin{aligned} & \text { EN60034-1 } \\ & \text { EN60034-5 } \end{aligned}$
	Machinery Directives Functional safety ${ }^{* 1}$	ISO13849-1(PL d) (Cat. 3) EN61508(SIL2) EN62061(SILCL 2) EN61800-5-2(STO) IEC61326-3-1	-
UL Standards		UL508C (E164620)	UL1004-1, UL1004-6 (E327868)
CSA Standards		C22.2 No. 14	C22.2 No. 100
Radio Waves Act (South Korea) (KC) ${ }^{\text {² }}$		KN11 KN61000-4-2, 3, 4, 5, 6, 8, 11	-

IEC : International Electrotechnical Commission Pursuant to the directive 2004/108/EC, article 9(2)

EMC • Electromagnetic Com
EMC : Electromagnetic Compatibiity
CSA : Canadian Standards Association
Panasonic Testing Centre
Panasonic Service Europe, a division of
Panasonic Marketing Europe GmbH
Winsbergring 15, 22525 Hamburg, F.R. Germany

- When export this product, follow statutory provisions of the destination country
*1 A5IIE and A5E series doesn't correspond to the functional safety standard.
*2 Information related to the Korea Radio Law
This servo driver is a Class A commercial broadcasting radio wave generator not designed for home use.
The user and dealer should be aware of this fact.
A 급 기기 (업무용 방송통신기자재)
이 기기는 업무용(A 급) 전자파적합기기로서 판매자
또는 사용자는 이 점을 주의하시기 바라며, 가정외의
지역에서 사용하는 것을 목적으로 합니다.
(대상기종 : Servo Driver)
This product is not an object of China Compulsory Certification (CCC).

Applicable External Scales

Applicable External Scale	Manufacturer	Model No.	Resolution [$\mu \mathrm{s}$]	Maximum Speed $(\mathrm{m} / \mathrm{s})^{-3}$
Parallel Type (AB-phase)	General	-	Maximum speed after $4 \times$ multiplication: 4 Mpps	
Serial Type (Incremental)	Magnescale Co., Ltd.	SR75	0.01 to 1	3.3
		SR85	0.01 to 1	3.3
		SL700-PL101RP/RHP	0.1	10
		SL710-PL101RP/RHP	0.1	10
		BF1	0.001/0.01	0.4/1.8
	Nidec Sankyo Corporation	PSLH	0.1	6
Serial Type (Absolute)	DR. JOHANNES HEIDENHAIN GmbH	LIC2197P/LIC2199P	0.05/0.1	10
		LIC4193P/LIC4195P LIC4197P/LIC4199P	$\begin{gathered} 0.001 \\ 10.005 \\ 10.01 \end{gathered}$	10
	Fagor Automation S.Coop.	SVAP	0.05	2.5
		SAP	0.05	2.5
		GAP	0.05	2.5
		LAP	0.1	2
	Magnescale Co., Ltd.	SR77	0.01 to 1	3.3
		SR87	0.01 to 1	3.3
	Mitutoyo Corporation	AT573A	0.05	2.5
		ST778A(L)	0.1	5
	Renishaw plc	RESOLUTE	0.001	0.4
			0.05	20
			0.1	40

3 The maximum speed is a characteristic of the driver. It is limited by the configuration of the machine and the system.

Motor Line-up

(*1) Except for output shaft, and connector. (*2) IP67 motor is also available. (*3) Only IP67 motor is avilable.
*See the P .21 to P .28 , driver and motor combination

Servo Motor
M S M E 5 A Z G 1 S $* *$

Symbol	Type
MSMD	Low inertia (50 W to 750 W)
MSME	Low inertia (50 W to 5.0 kW)
MDME	Middle inertia (400 W to 15.0 kW)
MFME	Middle inertia (1.5 kW to 4.5 kW)
MGME	Middle inertia (0.9 kW to 6.0 kW)
MHMD	High inertia (200 W to 750 W)
MHME	High inertia (1.0 kW to 7.5 kW)

Motor rated output
\qquad Voltage specifications

				Symbol	Specifications
01	100 W	30	3.0 kW	1	100 V
02	200 W	40	4.0 kW	2	200 V
04	400 W	45	4.5 kW	4	400 V
06	600 W	50	5.0 kW		$100 \mathrm{~V} / 200 \mathrm{~V}$
08	750 W	60	6.0 kW	z	(50 W Onmon

	1.0 kW	C 1	11.5 kW
10	1.0 kW	C	1.0
15	1.5 kW	C	150 kW

20	2.0 kW

Rotary encoder specifications

Symbol Format Pulse counts Resolution Wires | G | Incremental | 20 -bit | 1048576 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| S | Absolute | 17 -bit | 131072 | 7 |

S : can be used in incremental.
$\mid{ }_{\text {Motor specifications }}$ Special specifications
MSME(50 W to $750 \mathrm{~W}[200 \mathrm{~V}]$), MSMD, MHMD

MSME(750 W [400 V], 1.0 kW to 15.0 kW),
MDME, MFME, MGME, MHME

Design ord
Symbol

C	IP65 motor
1	IP67 motor (MSMD, MHMD: IP65)

Motor with reduction gear

M S M E O 1 1 1 G 31 N

Germal	Pulse counts	Resolution	Wires	
G	Incremental	20 -bit	1048576	5

S: can be used in incremental

Symbol	Shaft	Holding brake	
3	Key-way	without	with

Servo Driver

[Connector type (100/200 V: A-frame to E-frame)]

[Connector type (400 V: D, E-frame)]
Monitor output (Digital : 1, Analog : 2)
Connection to Monitor output

<Note>
Initial setup of rotational direction: positive $=\mathrm{CCW}$ and negative $=\mathrm{CW}$. Pay an extra attention.

* Select peripheral equipments for single/3phase common specification according to the power source

2 For the external dynamic brake resistor, use the magnetic contactor with the same rating as that for the main circuit.
3 When use the external regenerative resistor of the option (DVOPM20058, DVOPM20059), use the cable with the same diameter as the main circuit cable.
4 For the ground screw, use the same crimp terminal as that for the main circuit terminal block.
The motor cable is a shield cable, which conforms to the EC Directives and UL Standards. (G, H-frame only)
6 Use thses products to suit an international standard.

- Related page

Noise filter. \qquad P. 250 "Composition of Peripheral Equipments Surge absorber. \qquad P. 253 "Composition of Peripheral Equipments" Noise filter for signal............. 254 "Composition of Peripheral Equipments"
Motor/brake connectorP.186, P. 187 "Specifications of Motor connector"
About circuit breaker and magnetic contactor
To comply to EC Directives, install a circuit break er between the power and the noise filter without fail, and the circuit breaker should conform to IEC Standards and UL recognized (Listed and ©LL marked).
Suitable for use on a circuit capable of delivering not more than 5000 Arms symmetrical amperes, below the maximum input voltage of the product
If the short-circuit current of the power supply exceeds this value, install a current limit device (current limiting fuse, current limiting circuit breaker, transformer, etc.) to limit the short-circuit current.
<Remarks>
Select a circuit breaker and noise filter which match to the capacity of power supply (including a load condition).

- Terminal block and protective earth terminals
- Use a copper conductor cables with temperature rating of $75^{\circ} \mathrm{C}$ or higher.
- Use the attached exclusive connector for A-frame to E-frame, and maintain the peeled off length of 8 mm to 9 mm .
Fastening torque list (Terminal block screw/Terminal cover fastening screw)

	Driver	Terminal block screw		Terminal cover fastening screw	
Frame	Terminal name	$\begin{aligned} & \text { Nominal } \\ & \text { size } \end{aligned}$	Fastening torque ($\mathrm{N} \cdot \mathrm{m}$)	$\begin{aligned} & \text { Nominal } \\ & \text { size } \end{aligned}$	Fastening torque ($\mathrm{N} \cdot \mathrm{m}$)
F(200 V)	L1, L2, L3, L1C, L2C, B1, B2, B3, NC, U, V, W	M5	1.0 to 1.7	M3	0.19 to 0.21
F(400 V)	$24 \mathrm{~V}, 0 \mathrm{~V}$	M3	0.4 to 0.6		
	L1, L2, L3, B1, B2, B3, NC, U, V, W	M4	0.7 to 1.0		
G	L1C, L2C, 24V, 0V, DB1, DB2, DB3, DB4, NC	M5	1.0 to 1.7		
	L1, L2, L3, B1, B2, NC, U, V, W	M5	2.0 to 2.4	M3	0.3 to 0.5
H	L1C, L2C, 24V, OV, DB1, DB2	M4	0.7 to 1.0	M5	2.0 to 2.5
	L1, L2, L3, B1, B2, NC, U, V, W	M6	2.2 to 2.5		

Fastening torque list (Ground terminal screw/Connector to host controller [X4])

Driver frame	Ground screw		Connector to host controller (X4)	
	$\begin{gathered} \text { Nominal } \\ \text { size } \end{gathered}$	Fastening torque ($\mathrm{N} \cdot \mathrm{m}$)	$\begin{aligned} & \text { Nominal } \\ & \text { size } \end{aligned}$	Fastening torque ($\mathrm{N} \cdot \mathrm{m}$)
A to E	M4	0.7 to 0.8	M2.6	0.3 to 0.35
G	M5	1.4 to 1.6		
H	M6	2.4 to 2.6		

<Caution>

- Applying fastening torque larger than the maximum value may result in damage to the product.

Do not turn on power without tightening all terminal block screws properly, otherwise, loose contacts may generate heat (smoking, firing).

<Remarks>

- To check for looseness, conduct periodic inspection of fastening torque once a year.

A5 Family

Note) 1 Rotary encoder specifications: \square Motor specification: * (refer to P.16)
Note) $2 \diamond$: Drivers series K: A5II series $\quad H: A 5$ series
Note) $3 \diamond$: Drivers series K : A5IIE series $H \cdot A 5 E$ series
Note) 4 Because A5IIE, A5E series drivers (dedicated for position control) do not support the 17-bit absolute specification,
only 20 -bit incremental type can be used in combination.
Note) 5 Cable length: ** ($03: 3 \mathrm{~m}, 05: 5 \mathrm{~m}, 10: 10 \mathrm{~m}, 20: 20 \mathrm{~m}$), (Example. 3 m : MFECA0030EAM)
Note) 6 Recommend to get the connector kit of options.
Note) 7 Reactor should be prepared by the user.
Ote) 8 Other combinations exist, and refer to P. 210 for details.
Note) 9 Please note that a battery is not supplied together with 17 -bit absolute encoder cable (with battery box)
Please buy the battery part number "DVOP2990" separately.

- Options (IP67 motor)

Title			Part No.	Page
Interface Cable			DV0P4360	-197
Interface Conversion Cable			DV0P4120	
			DV0P4121	
			DVOP4130	
			DV0P4131	
			DV0P4132	
Connector Kit for Power Supply Input Connection			DVOPM20032	200
			DVOPM20033	
	E-frame (200 V)		DVOPM20044	
			DVOPM20051	
	$\begin{array}{\|l\|l\|} \hline \text { D-frame (400 V) } \\ \hline \text { E-frame (400 } \end{array}$		DVOPM20052	
Connector Kit for Control Powe Supply Input Connection	D-frame andE-frame (400 V)		DVOPM20053	201
Connector Kit for Motor Connection	A-frame to D-frame		DVOPM20034	
	E-frame (200 V)		DVOPM20046	
			DVOPM20054	
Connector Kit for Regenerative Resistor	E-frame		DVOPM20045	
	D-frame	(400 V)	DVOPM20055	
Connector Kit for Motor/Encoder Connection			DVOPM20036	203
			DVOPM20037	20
			DVOPM20038	
			DVOPM20039	205
Connector Kit	RS485, RS232		DVOPM20024	19
	Satety		DVOPM20025	
	Interface		DV0P4350	
	External Scale		DVOPM20026	19
	Encoder		DVOPM20010	
	Analog N	Monitor Signal	DVOPM20031	
Battery For Absolute Encoder			DVOP2990	
Battery Box Note) 9			DV0P4430	
Mounting Bracket	D-frame		DVOPM20030	208
Encoder Cable	without Battery Box		MFECA0**ETD	19
	with Battery Box Note) 9		MFECA0*0ETE	
Motor Cable	without Brake		MFMCA0*2ECD	191
			MFMCDO*2ECD	192
			MFMCE0*2ECD	192
			MFMCFO*2ECD	
			MFMCA0*3ECT	19
			MFMCDO*3ECT	
	with Brake		MFMCA0*2FCD	
			MFMCE0*2FCD	
			MFMCA0*3FCT	195
External Regenerative Resistor	$50 \Omega 25 \mathrm{~W}$		DVOP4280	
	$\frac{100 \Omega 25 \mathrm{~W}}{25050 \mathrm{~W}}$		DV0P4281	
			DV0P4282	21
	$50 \Omega 50 \mathrm{~W}$		DV0P4283	
	$30 \Omega 100 \mathrm{~W}$		DVOP4284	
			DV0P4285	
	$120 \Omega 80 \mathrm{~W}$		DVOPM20048	
	$80 \Omega 190 \mathrm{~W}$		DVOPM20049	
Reactor	DVOP220, DVOP221, DVOP222, DVOP223, DVOP224, DVOP225, DVOP227, DVOP228, DVOPM20047			209
Noise Filter	DVOP4170, DVOPM20042 DVOP4220, DVOPM20043			250
	DVOP3410			251
Surge Absorber	Single phase		DV0P4190	
	$\begin{array}{\|l} \hline \text { 3-phase (200 V) } \\ \hline \text { 3-phase (400 V) } \\ \hline \end{array}$		DVOP1450	25
			DVOPM20050	
	Signal Lin		DVOP1460	254

A5II, A5 series $\binom{$ Speed, Position, Torque, }{ Full-Closed type }

		100 V	Main circuit		Single phase, 100 V to 120 V	${ }_{-15}^{+10}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
			Control circuit		Single phase, 100 V to 120 V	$+10 \%$ -15%	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
		200 V	Main circuit	$\begin{gathered} \text { A-frame } \\ \text { D-forame } \end{gathered}$	Single/3-phase, 200 V to 240 V	$+10 \%$ -15%	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
				$\begin{aligned} & \text { E-frame } \\ & \text { to } \\ & \text { H-frame } \\ & \hline \end{aligned}$	3 -phase, 200 V to 230 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
			Control circuit	$\begin{gathered} \text { A-frame } \\ \text { D-trame } \\ \hline \end{gathered}$	Single phase, 200 V to 240 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
				$\begin{aligned} & \text { E-frame } \\ & \text { to } \\ & \text { H-frame } \end{aligned}$	Single phase, 200 V to 230 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
		400 V	Main circuit	$\begin{aligned} & \text { D-frame } \\ & \text { to } \\ & \text { H-frame } \end{aligned}$	3-phase, 380 V to 480 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
			Control circuit	D-frame to H-frame	DC $24 \mathrm{~V} \pm 15 \%$		
	Environment		temperature		Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (free from freezing) Storage temperature: $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (Max.temperature guarantee: $80^{\circ} \mathrm{C}$ for 72 hours free from condensation ${ }^{\circ}$)		
			humidity		Both operating and storage : 20% to 85% RH (free from condensation ${ }^{-1}$)		
			Altitude		Lower than 1000 m		
			Vibration		$5.88 \mathrm{~m} / \mathrm{s}^{2}$ or less, 10 Hz to 60 Hz (No continuous use at resonance frequency)		
$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 . \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	Control method				IGBT PWM Sinusoidal wave drive		
	Encoder feedback				17-bit (131072 resolution) absolute encoder, 7 -wire serial 20-bit (1048576 resolution) incremental encoder, 5 -wire serial		
	Feedback scale feedback			A/B phase	A/B phase, initialization signal defferential input.		
				serial	Manufacturers that support serial communication scale: DR. JOHANNES HEIDENHAIN GmbH Fagor Automation S.Coop. Magnescale Co., Ltd. Mitutoyo Corporation Nidec Sankyo Corporation Renishaw plc		
		Control signal		Input	General purpose 10 inputs The function of general-purpose input is selected by parameters.		
				Output	General purpose 6 outputs The function of general-purpose output is selected by parameters.		
		Analog signal		Input	3 inputs (16Bit A/D : 1 input, 12Bit A/D : 2 inputs)		
				Output	2 outputs (Analog monitor: 2 output)		
		Pulse signal		Input	2 inputs (Photo-coupler input, Line receiver input)		
				Output	4 outputs (Line driver: 3 output, open collector: 1 output)		
	Communication function			USB	Connection with PC etc.		
				RS232	1:1 communication		
				RS485	$1: \mathrm{n}$ communication up to 31 axes to a host.		
	Safety function				Used for functional safety.		
	Front panel				(1) 5 keys (2) LED (6-digit) (3) Connector for monitor (Analog monitor output (2ch), Digital monitor output (1ch))		
	Regeneration				$\mathrm{A}, \mathrm{B}, \mathrm{G}$ and H -frame: no built-in regenerative resistor (external resistor only) C-frame to F-frame: Built-in regenerative resistor (external resistor is also enabled.)		
	Dynamic brake				A-frame to G-frame: Built-in (external resistor is also available to G-frame) H-frame: External only		
	Control mode				Switching among the following 7 mode is enabled, (1) Position control (2) Speed control (3) Toque control (4) Position/Speed control (5) Position/Torque control (6) Speed/Torque control (7) Full-closed control		

1 Air containing water vapor will become saturated with water vapor as the temperature falls, causing dew. *2 Not applicable to 2DOF control system.

		Control inp		(1) Deviation counter clear (2) Command pulse inhibitation (3) Electric gear (4) Damping control switching etc.
		Control out		Positioning complete (In-position) etc.
			Max. command pulse frequency	Exclusive interface for Photo-coupler: 500 kpps Exclusive interface for line driver : 4 Mpps
	\%	Pul	Input pulse signal format	Differential input ((1) Positive and Negative direction, (2) A and B-phase, (3) Command and direction)
	-		Electronic gear (Division/Multiplication of command pulse)	1/1000 times to 1000 times
			Smoothing filter	Primary delay filter or FIR type filter is adaptable to the command input
			Torque limit command input	Individual torque limit for both positive and negative direction is enabled.
		input	Torque feed forward input	Analog voltage can be used as torque feed forward input.
		Instantaneo	us Speed Observer	Available
		Damping C	ontrol	Available
		2DOF settin		Only available at A5II Series
		Control inp		(1) Selection of internal velocity setup 1 (2) Selection of internal velocity setup 2 (3) Selection of internal velocity setup 3 (4) Speed zero clamp etc.
		Control out		Speed arrival etc.
			Velocity command input	Speed command input can be provided by means of analog voltage. Parameters are used for scale setting and command polarity. ($6 \mathrm{~V} /$ Rated rotational speed Default)
	$\stackrel{\sim}{\circ}$		Torque limit command input	Individual torque limit for both positive and negative direction is enabled.
	\bigcirc		Torque feed forward input	Analog voltage can be used as torque feed forward input.
	雨	Internal vel	city command	Switching the internal 8speed is enabled by command input.
		Soft-start/d	wn function	Individual setup of acceleration and deceleration is enabled, with 0 s to $10 \mathrm{~s} / 1000 \mathrm{r} / \mathrm{min}$. Sigmoid acceleration/deceleration is also enabled.
		Zero-speed	clamp	Speed zero clamp input is enabled.
		Instantaneo	us Speed Observer	Available
		Speed Con	rol filter	Available
		2DOF settin		Only available at A5II Series
		Control inpu		Speed zero clamp, Torque command sign input etc.
	-	Control out		Speed arrival etc.
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Analog input	Torque command input	Speed command input can be provided by means of analog voltage. Parameters are used for scale setting and command polarity. (3 $\mathrm{V} / \mathrm{rated}$ torque Default)
		Speed limit	function	Speed limit value with parameter is enabled.
		Control inp		(1) Deviation counter clear (2) Command pulse inhibition (3) Command dividing gradual increase switching (4) Damping control switching etc.
		Control out		Full-closed positioning complete etc.
			Max. command pulse frequency	Exclusive interface for Photo-coupler: 500 kpps Exclusive interface for line driver: 4 Mpps
	O		Input pulse signal format	Differential input
		input	Electronic gear (Division/ Multiplication of command pulse)	1/1000 times to 1000 times
	흉		Smoothing filter	Primary delay filter or FIR type filter is adaptable to the command input
		Analo	Torque limit command input	Individual torque limit for both positive and negative direction is enabled.
		input	Torque feed forward input	Analog voltage can be used as torque feed forward input.
		Setup range feedback sc	of division/multiplication of ale	1/40 times to 160 times
		Damping C	ontrol	Available
		Auto tuning		The load inertia is identified in real time by the driving state of the motor operating according to the command given by the controlling device and set up support software "PANATERM". The gain is set automatically in accordance with the rigidity setting.
	앙	Division of	ncoder feedback pulse	Set up of any value is enabled (encoder pulses count is the max.).
	O		Hard error	Over-voltage, under-voltage, over-speed, over-load, over-heat, over-current and encoder error etc.
		function	Soft error	Excess position deviation, command pulse division error, EEPROM error etc.
		Traceabilit	alarm data	The alarm data history can be referred to.

Driver Specifications A5IIE, A5E series (Position control type)

| | Control input | (1) Deviation counter clear (2) Command pulse inhibitation
 (3) Electric gear (4) Damping control switching etc. |
| :--- | :--- | :--- | :--- |
| | Control output | Positioning complete (In-position) etc. |

In Case of Single phase, A-frame to D-frame, 100 V / 200 V type

- In Case of MSME

In Case of 3-phase, A-frame to D-frame, 200 V type

* Refer to P.186, P.187, Specifications of Motor connector.

In Case of 3-phase, E-frame, 200 V type

In Case of 3-phase, G-frame, 200 V type

Note.1) About regenerative resistor

 Note.2) About dynamic brake resistor

 <common for G \& H frame> $\xrightarrow{\text { resiso }}$
Note.4) Magnetic contactor MC2 must be the same rating as the contactor MC1 in the main circul.
Note.4) Servo may be turned on in the external sequence if the contact deposits: to protect the system, provide the auxiliary contac Note.5) Provide an external protective device (e.g. thermal fuse) to monitor the temperature of the external dynamic brake resistor.
Note.6) Reactor should be prepared by the customer. Note.6) Reactor should be prepared by the customer.

* Refer to P.186, P.187, Specifications of Motor connector

A5 Family
Wiring Diagram
Wiring to Connector, XA, XB, XC, XD and Terminal Block

In Case of 3-phase, G-frame, 400 V type

Note.1) About regenerative resistor

In Case of 3-phase, F-frame, 400 V type

In Case of 3-phase, H-frame, 400 V type

Note.1) About regenerative resistor

Nocticteation of external egeenerative resistor,
 $\stackrel{\text { H.tame }}{\text { Hetion. }}$

Note.3) Shielding the circuit is recommended for the purpose of noise reduction.
Note.4) Magnetic contactor MC2 must be the same rating as the contactor MC1 in the main circuit.
Note.4) Magnetic contactor MC2 must be the same rating as the contactor Mccisi in the main circuit.
Note.5) Servo may be turned on in the external sequence if the contact deposits: to protect the system, provide the auxiliary contact. Note.6) Provide an external protective device (e.g. thermal fuse) to monitor the temperature of the external dynamic brake resistor. Note.7) Reactor should be prepared by the customer.

* Refer to P.186, P. 187, Specifications of Motor connector.

Connecting the host controller can configure a safety circuit that controls the safety functions. When not constructing the safety circuit, use the supplied safety bypass plug

Outline Description of Safe Torque Off (STO)

The safe torque off (STO) function is a safety function that shuts the motor current and turns off motor output torque by forcibly turning off the driving signal of the servo driver internal power transistor. For this purpose, the STO uses safety input signal and hardware (circuit).
When STO function operates, the servo driver turns off the servo ready output signal (S-RDY) and enters safety state.
This is an alarm condition and the 7 -seg LED on the front panel displays the error code number.

Safety Precautions

When using the STO function, be sure to perform equipment risk assessment to ensure that the system conforms to the safety requirements.
Even while the STO function is working, the following potential safety hazards exist. Check safety in risk assessment.

- The motor may move when external force (e.g. gravity force on vertical axis) is exerted on it. Provide an external brake, etc., as necessary to secure the motor. Note that the purpose of motor with brake is holding and it cannot be used for braking application.
When parameter Pr5. 10 Sequence at alarm is set to free run (disable dynamic brake), the motor is free run state and requires longer stop distance even if no external force is applied. Make sure that this does not cause any problem.
When power transistor, etc., becomes defective, the motor will move to the extent equivalent of 180 electrical angle (max.). Make sure that this does not cause any problem.
The STO turns off the current to the motor but does not turn off power to the servo driver and does not isolate it. When starting maintenance service on the servo driver, turn off the driver by using a differen disconnecting device.
- External device monitor (EDM) output signal is not a safety signal. Do not use it for an application other than failure monitoring.
Dynamic brake and external brake release signal output are not related to safety function. When designing the system, make sure that the failure of external brake release during STO condition does not result in danger condition.
- When using STO function, connect equipment conforming to the safety standards.

A5 Family

Control Circuit Diagram Wiring to the Connector, X4

Wiring Example of Position Control Mode

Wiring Example of Velocity Control Mode (Excluding A5IIE, ASE series)

Wiring Example of Torque Control Mode (Excluding A5IE, A5E series)

Wiring Example of Full-closed Control Mode (Excluding A5IIE, A5E series)

A5 Family

Control Circuit Diagram Wiring to the Connector, X5 (Excluding asine asE series)

Applicable External Scale

The manufacturers applicable external scales for this product are as follows

- DR. JOHANNES HEIDENHAIN GmbH
- Fagor Automation S.Coop
- Magnescale Co., Ltd

Mitutoyo Corporation

- Nidec Sankyo Corporation
- Renishaw plc
* For the details of the external scale product, contact each company.

Wiring Diagram of X5

<A-phase/B-phase>

<Serial>

Wiring to the Connector, X6
Control Circuit Diagram
In Case of 20-bit Incremental Encoder

MSME 50 W to $750 \mathrm{~W}(200 \mathrm{~V})$

[Connector pin assignment] Refer to P.186, P. 187 "Specifications of Motor connector"

A5 Family
Control Circuit Diagram Wiring to the Connector, X6

In Case of 17-bit Absolute Encoder (A5IE, A5E series does not correspond.)

MSME 50 W to $750 \mathrm{~W}(200 \mathrm{~V})$

Connector pin assignment] Refer to P.186, P. 187 "Specifications of Motor connector"

A-frame

B-frame

C-frame

D-frame (200 V)

D-frame (400 V)

E-frame (200 V)

F-frame ($200 \mathrm{~V} / 400 \mathrm{~V}$)

G-frame ($200 \mathrm{~V} / 400 \mathrm{~V}$) *A5IE, A5E series is out of the lineup.

H-frame (200 V/400 V)

A5 Family

Specifications			
Motor model ${ }_{* 1}$		AC100 V	
	IP65	MSMD5AZG1 \square	MSMD5AZS1 \square
	IP67	-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{l\|l\|} \hline \begin{array}{l\|l\|} \hline \text { Model } & \text { A5II, A5 series } \\ \text { No. } & \text { A5IE, A5E series } \\ \hline \end{array} \end{array}$	MAD \triangle T1105	
		MAD \triangle T1105E	-
		A-frame	
Power supply capacity (kVA)		0.5	
Rated output (W)		50	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		0.16	
Momentary Max. peak torque (N.m)		0.48	
Rated current (A(rms))		1.1	
Max. current (A) $(0-\mathrm{p})$)		4.7	
Regenerative brake frequency (times/min) Note)!	brake Without option	No limit Note)2	
	(min) Note) 1 DVOP4280	No limit Note)2	
Rated rotational speed (r/min)		3000	
Max. rotational speed (r/min)		5000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	0.025	
	kg.m²) With brake	0.027	
Recommended moment of inertia ratio of the load and the rotor Note) 3		30 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
Resolution per single turn		1048576	131072

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |

Engaging time (ms)	35 or less
Releasing time (ms) Note)	20 or less
Exciting current $(\mathrm{DC})(\mathrm{A})$	0.3
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

" 1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.16.
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC100 V of power voltage <Dotted line represents the torque at 10% less supply volage.>)

Dimensions

<Without Brake>
Mass: 0.32 kg

* For the dimensions with brake, refer to the right page
finertia ratio if high speed response operation is required.

Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

Brake specifications (For details, reter to P.183) This brake will be released when it is energized. | Static friction torque $(\mathrm{N} \cdot \mathrm{m})$ | 0.29 or more |
| :--- | :--- | Engaging time (ms)

\square 35 or less Releasing time (ms) Notel4 20 or less Exciting current (DC) (A) Releasing voltage (DC) (V)
(v) or more

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

*1 Motor specifications: \square
2 The product that the end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the in number of applicable driver represents the
series. For more information about the part number
please refer to P.16. please refer to P. 16 .

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<With Brake>
<|P65>

(a) Encoder connector (b) Brake connector
(c) Motor connector
$\left[\begin{array}{c}1 \\ 1 \\ \text { Use hexagon socket head } \\ \text { screw for installation. }\end{array}\right]$

<Key way, center tap shafb

* For the dimensions without brake, refer to the left page.

[^1]<Cautions> Reduce the moment of inertia ratio if high speed response operation is required. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 0.29 or more |

Engaging time (ms)	35 or less
Releasing time (ms) Note)	20 or less
Exciting current $(\mathrm{DC})(\mathrm{A})$	0.3
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

${ }^{*} 1$ Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC100 V of power voltage $<$ Doted line represents the torque at 10% less supply voltage.)

Dimensions

<Without Brake>
Mass: 0.47 kg
<|P65>

* For the dimensions with brake, refer to the right page. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

Brake specifications (For details, refer to P.183) $\left(\begin{array}{l}\text { This brake will be released when it is energized. } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right.$

| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 0.29 or more |
| :--- | :--- | Engaging time (ms) Releasing time (ms) Note) Exciting current (DC) (A) 35 or less 20 or less Releasing voltage (DC) (V)

\square or more

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

${ }^{*} 1$ Motor specifications: \square
2 The product that the end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \forall in number of applicable driver represents the
series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC200 V of power voltage)

Dimensions

<With Brake>
Mass: 0.68 kg

<|P65>

(a) Encoder connector (b) Brake connector

 (c) Motor connector
<Key way, center tap shaft>

For the dimensions without brake, refer to the left page.
[Unit: mm] <Cautions> Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice Contact us or a deale for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- Brake specifications (For details, refer to P. 183) $\left.\begin{array}{l}\text { This brake will be released when it is energized. } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right)$ | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |

Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

Luring assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P. 42.
*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.16.
$3 \diamond$ in number of applicable driver represents the \diamond in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC100 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
<Without Brake>

Specifications

Brake specifications (For details, refer to P.183) (This brake will be released when it is energized.

| Static friction torque $(\mathrm{N} \cdot \mathrm{m})$ | 1.27 or more |
| :--- | :--- | Engaging time (ms)

1.27	
	50

\square 0.36 Releasing voltage (DC) (V)
(v) or more

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

*1 Motor specifications: \square
" 2 The product that the end of driver model
designation has " E " is "Position control type"
Detail of model designation refer tr t
$3 \diamond$ in number of applicable driver represents
series. For more inflormation about the part number
please refer to P. 16 . series. For more infor
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<With Brake>

<1P65>

<Key way, center tap shaft>

For the dimensions without brake, refer to the left page. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
				AC100 V	
Motor model		IP65		MSMD041G1 \square	MSMD041S1 \square
	IP67			-	-
Applicable driver *2	Model No.	A5II, A5	5 series	MCD \diamond T3120	
		A5IE, A	A5E series	MCD $>$ T3120E	-
	Frame symbol			C-frame	
Power supply capacity			(kVA)	0.9	
Rated output			(W)	400	
Rated torque		-	($\mathrm{N} \cdot \mathrm{m}$)	1.3	
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)	3.8	
Rated current			(A(rms))	4.6	
Max. current			(A(o-p))	19.5	
Regenerative brake frequency (times/min) Note)		Without	ut option	No limit Note)2	
		DVOP	P4282	No lim	Note)2
Rated rotational speed		d	(r/min)	3000	
Max. rotational speed			(r/min)	5000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without	ut brake	0.26	
		With b	brake		
Recommended moment of inertia ratio of the load and the rotor Note)3				30 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \end{gathered}$
	Resolution per single turn			1048576	131072

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 1.27 or more |
| :--- | :--- |

Engaging time (ms)	50 or less
Releasing time (ms) Note)	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43.
*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.16
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC100 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage..)

Dimensions

<Without Brake>

(a) Encoder connector b) Motor connector

<Key way, center tap shafb

For the dimensions with brake, refer to the right page. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P.183)	
(This brake will be released when it is energized.) Do not use this for braking the motor in motion.	
Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	1.27 or more
Engaging time (ms)	50 or less
Releasing time (ms) Note) ${ }^{4}$	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24さ1.2

- Permissible load (For details, refer to P.183)

During assembly	Radia load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

*1 Motor specifications: \square
" 2 The product that the end of driver model
designation has " E " is "Position control type"
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

For the dimensions without brake, refer to the left page Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
200 V MSMD 750 W [Low inertia, Small capacity]

Specifications

			AC200 V	
Motor model	IP65		MSMD082G1 \square	MSMD082S1 \square
	IP67		-	-
Applicable driver	Model No.	A5II, A5	MCD $>$ T3520	
		A5IE, A	MCD \triangle T3520E	-
	Frame symbol		C-frame	
Power supply capacity				
Rated output				
Rated torque				
Momentary Max. peak torque				
Rated current				
Max. current				
Regenerative brake frequency (times/min) Note) 1		Without	No limit Note)2	
		DVOP4283	No limit Note)2	
Rated rotational speed		-	3000	
Max. rotational speed			4500	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	0.87	
		With b	0.97	
Recommended moment of inertia			20 times or less	
Rotary encoder specifications			$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
	esolution	per sing	1048576	131072

- Brake specifications (For details, refer to P. 183 $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	2.45 or more
Engaging time (ms)	70 or less
Releasing time (ms) Notes 4	20 or less
Exciting current (DC) (A)	0.42
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	686
	Thrust load A-direction (N)	294
	Thrust load B-direction (N)	392
During operation	Radial load P-direction (N)	392
	Thrust load A, B-direction (N)	147
- For details of Note 1 to Note 5, refer to P.182, P.183.		

1 Motor specifications:
2 The product that the end of driver model designation has " E " is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

Figures in [] represent the dimensions without brake
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
		AC100 V			
Motor model	IP65	MHMD021G1 \square	MHMD021S1 \square		
	IP67	-	-		
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{l\|l\|} \hline \begin{array}{l} \text { Model } \end{array} & \text { A5II, A5 series } \\ \hline \text { No. } & \text { A5IIE, A5E series } \\ \hline \end{array}$	{MBD $\$ T2110} \hline & & MBD \triangle T2110E		-	
		B-frame			
	Power supply capacity (kVA)		0.5		
Rated output (W)		200			
Rated torque (N.m)		0.64			
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)		1.91			
Rated current (A(rms))		2.5			
Max. current (A(o-p))		10.6			
Regenerative brake frequency (times/min) Note)!	brake Without option	No limit Note)2			
	(min) Note) 1 DVOP4283	No limit Note)2			
Rated rotational speed $(r / m i n)$ Max. rotational speed $(r / m i n)$		3000			
		5000			
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	0.42			
	kg.m²) With brake	0.45			
Recommended moment of inertia ratio of the load and the rotor Note)3		30 times or less			
Rotary encoder specifications Note)5		$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$		
Resolution per single turn		1048576	131072		

Torque characteristics (at AC100 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

- Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 1.27 or more |
| :--- | :--- |

Engaging time (ms)	50 or less
Releasing time (ms)	Noete4
Exciting current (DC) (A)	15 or less
Releasing voltage (DC) (V)	0.36
Exciting voltage (DC) (V)	1 or more

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During	Radial load P-direction (N)	245
operation	Thrust load A, B-direction (N)	98
- For		

* 1 Motor specifications: \square

2 The product that the end of driver model designation has "E" is "Position control type"
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P.16. pease refer to P. 16 .

Dimensions

<Without Brake>

Specifications

- Brake specifications (For details, refer to P.183)	
(This brake will be released when it is energized.) Do not use this for braking the motor in motion.	
Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	1.27 or more
Engaging time (ms)	50 or less
Releasing time (ms) Note) ${ }^{4}$	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24さ1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

${ }^{*} 1$ Motor specifications: \square
" 2 The product that the end of driver model
designation has "E" is "Position control type".
$3 \diamond$ in number of applicable driver represents the
\triangleleft in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

For the dimensions without brake, refer to the left page.
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications				
Motor model			AC100 V	
		IP65	MHMD041G1 \square	MHMD041S1 \square
	IP67		-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Model } \\ \text { No. } \\ \hline \end{array}$	A5II, A5 seres	MCD \diamond T3120	
		A5IE, A5E series	MCD \triangle T3120E	-
	Frame symbol		C-frame	
Power supply capacity (kVA)			0.9	
Rated output (W)			400	
Rated torque (N.m)			1.3	
Momentary Max. peak torque (N.m)			3.8	
Rated current		(A(rms))	4.6	
Max. current		(A(0-p))	19.5	
Regenerative brake frequency (imes/min) Note)!		Without option	No limit Note)2	
		DVOP4282	No lim	Nooe)2
Rated rotational speed		d (r/min)	3000	
Max. rotational speed		(r/min)	5000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	0.67	
		With brake		. 70
Recommended moment of inertia ratio of the load and the rotor Note)3			30 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

Torque characteristics (at AC100 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 1.27 or more |
| :--- | :--- |

Engaging time (ms)	50 or less
Releasing time (ms) Note)	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

${ }^{1} 1$ Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Dimensions
<IP65>

Mass: 1.4 kg
<Without Brake>

(a) Encoder connector (b) Motor connector

<D-cut shaft $>$

Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion. $)$

Static friction torque (N.m)	1.27 or more
Engaging time (ms)	50 or less
Releasing time (ms) Note)	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radia load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

*1 Motor specifications: \square
" 2 The product that the end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.16.
${ }^{*} 3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part numbe
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<With Brake> <lP65> (b) (b) (b)

 (b) (a)
<D-cut shaft>

<Key way, center tap shafम
[Unit: mm <Cautions> Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
200 V MHMD 750 W [High inertia, Small capacity]

Specifications

			AC200 V	
Motor model	IP65		MHMD082G1 \square	MHMD082S1 \square
	IP67		-	-
Applicable driver	Model No.	A5II, A5	MCD $>$ T3520	
		A5IE, A	MCD \triangle T3520E	-
	Frame symbol		C-frame	
Power supply capacity				
Rated output				
Rated torque				
Momentary Max. peak torque				
Rated current				
Max. current				
Regenerative brake frequency (times/min) Note) 1		Without	No limit Note)2	
		DVOP	No lim	Note)2
Rated rotational speed		-	3000	
Max. rotational speed			4500	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	1.51	
		With b	1.61	
Recommended moment of inertia ratio of the load and the rotor			20 times or less	
Rotary encoder specifications			$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
	esolution	per sing	1048576	131072

- Brake specifications (For details, refer to P.183) $\left(\begin{array}{l}\text { This brake with e released when it is energized. } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right.$

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	2.45 or more
Engaging time (ms)	70 or less
Releasing time (ms) Notes 4	20 or less
Exciting current (DC) (A)	0.42
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	686
	Thrust load A-direction (
	Thrust load B-direction (N)	
During operation	Radial load P-direction (N)	
	Thrust load A, B-direction (N)	
- For details of Note 1 to Note 5, refer to P.182, P. - Dimensions of Driver, refer to P. 43. *1 Motor specifications: *2 The product that the end of driver model designation has " E " is "Position control type". Detail of model designation, refer to P.16.		
*3 \diamond in number of applicable driver represents the series. For more information about the part number please refer to P.16.		

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

Mass: Without brake/ 2.5 k

<|P65>
(a) Encoder connector (b) Brake connector
(c) Motor connector
$\left[\begin{array}{c}1 \\ 1 \\ \text { Use hexagon socket head } \\ \text { screw for instalalation. }\end{array}\right]$

<Key way, center tap shatt:

Figures in [] represent the dimensions without brake.
[Unit: mm

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Torque characteristics (at AC100 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 0.29 or more |

Engaging time (ms)	35 or less
Releasing time (ms) Notel4	20 or less
Exciting current (DC) (A)	0.3
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

1 Motor specifications: \square
*2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
\diamond in number of applicable driver represents the series. .or morere inficormation about the part number,
please refer to P.16.

Dimensions <ln Case of Without Brake, Cable direction to output shaft.>

Motor cables for opposite to output shaft cannot be used with 50 W motor.

Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications				
Motor model			AC200 V	
		IP65	-	-
	IP67		MSME5AZG1 \square	MSME5AZS1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Mode No.\qquad	A5II, A5 seres	MAD \diamond T1505	
		A5IE, A5E series	MAD \triangle T1505E	-
		Frame symbol	A-frame	
Power supply capacity (kVA)			0.5	
Rated output (W)			50	
Rated torque (N.m)			0.16	
Momentary Max. peak torque (N.m)			0.48	
Rated current		(A(rms))	1.1	
Max. current		(A(0-p))	4.7	
Regenerative brake frequency (times/min) Note) 1		Without option	No limit Note)2	
		DVOP4280	No limit Note)2	
Rated rotation	nal speed	d (r/min)	3000	
Max. rotational speed (r/min)			6000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	0.025	
		With brake		027
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$			30 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

- Brake specifications (For details, refer to P .183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.
- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During	Radial load P-direction (N)	68.6
operation	Thrust load A, B-direction (N)	58.8

*1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to series. For more intor
please refer to P. 16 .

Torque characteristics (at AC200V of power voltage)

Dimensions <ln Case of With Brake, Cable direction to output shaft.>

- Motor cables for opposite to output shaft cannot be used with 50 W motor

Torque characteristics (at AC100 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 0.29 or more |

Engaging time (ms)	35 or less
Releasing time (ms) Notel4	20 or less
Exciting current (DC) (A)	0.3
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

1 Motor specifications: \square
*2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 6.
$3 \diamond$ in number of applicable driver represents the series. For more inftormation about the part number,
please refer to P.16.

Dimensions <ln Case of Without Brake, Cable direction to output shaft.>

Motor cables for opposite to output shaft cannot be used with 100 W motor

Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- Brake specifications (For details, refer to P (This brake will be released when it is energized. Do not use this for braking the motor in motion.	
Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	0.29 or mo
Engaging time (ms)	35 or le
Releasing time (ms) Note)4	20 or
Exciting current (DC) (A)	0.3
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

1 Motor specifications: \square

* 2 The product that the end of driver model
designation has " "" is "Position control type".
$3 \diamond$ in number of applicable driver represents the
\diamond in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.
Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions <ln Case of With Brake, Cable direction to output shaft.>
Motor cables for opposite to output shaft cannot be used with 100 W motor

[Unit: mm]

Reduce the moment of inertia ratio if high speed response operation is required.

Specifications					
				AC100 V	
Motor model		IP65		-	-
	IP67			MSME021G1 \square	MSME021S1 \square
Applicable driver *2	ModelNo.	A5I, A5	series	MBD $>$ T2110	
		A5IE, A5	5E series	MBD \triangle T2110E	-
	Frame symbol			B-frame	
Power supply capacity (kVA)				0.5	
Rated output (W)				200	
Rated torque (N.m)				0.64	
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)				1.91	
Rated current (A(rms))				2.5	
Max. current (A) $(0-\mathrm{p})$)				10.6	
Regenerative brake frequency (times/min) Note) 1		Without	option	No limit Note)2	
		DVOP4	4283	No lim	it Note)2
Rated rotational speed		d	(r/min)	3000	
Max. rotational speed			(r/min)	6000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without	t brake	0.14	
		With b	brake		16
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$				30 times or less	
Rotary encoder specifications				$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{aligned} & \text { 17-bit } \\ & \text { Absolute } \end{aligned}$
Resolution per single turn				1048576	131072

Torque characteristics (at AC100 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |

Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98
- For		

For details of Note 1 to Note 5, refer to P.182, P.183. Dimensions of Driver, refer to P. 42.
1 Motor specifications: \square
*2 The product that the end of driver model designation has " E " i " "Position control type"
Detail of model designation, refer to 16 .
$3 \diamond$ in number of applicable driver represents the
series. For more information about the part number
please refer to P.16. please refer to P. 16 .

Dimensions <ln Case of Without Brake, Cable direction to output shaft.>

Specifications					
				AC100 V	
Motor model		IP65		-	-
	IP67			MSME041G1 \square	MSME041S1 \square
Applicable driver *2	ModelNo.	A5I, A5	series	MCD \diamond T3120	
		A5IE, A5	5E series	MCD \triangle T3120E	-
	Frame symbol			C-frame	
Power supply capacity (kVA)				0.9	
Rated output (W)				400	
Rated torque (N.m)				1.3	
Momentary Max. peak torque (N.m)				3.8	
Rated current (A(rms))				4.6	
Max. current (A) $(0-\mathrm{p})$)				19.5	
Regenerative brake frequency (times/min) Note) 1		Without	option	No limit Note)2	
		DVOP4	4282	No lim	it Note)2
Rated rotational speed		d	(r/min)	3000	
Max. rotational speed			(r/min)	6000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without	t brake	0.26	
		With b	brake		28
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$				30 times or less	
Rotary encoder specifications				$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{aligned} & \text { 17-bit } \\ & \text { Absolute } \end{aligned}$
Resolution per single turn				1048576	131072

Torque characteristics (at AC100 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98
- For details of Note 1 to Note 5 refer to P.182, P.183		

For details of Note 1 to Note 5, refer to P.182, P. 183.
Dimensions of Driver, refer to P. 43.
*1 Motor specifications: \square
The product that the end of driver model designation has "E" is "Position control type"
\diamond in number of applicable driver represents the
series. For more information about the part number
rake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Engaging time (ms)	50 or less
Releasing time (ms) Note) 4	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more

 " Deraiting curve
\qquad
ambient temperature [C ' C]

Dimensions <ln Case of Without Brake, Cable direction to output shaft.>
Mass: 1.2 kg

<1P67>
(a) Encoder connector
(b) Motor connector
$\left[\begin{array}{c}\left.\text { } \begin{array}{c}1 \\ 1 \\ \text { Use herexagon socket head } \\ \text { screw oro instalation. }\end{array}\right]\end{array}\right.$
 Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

For the dimensions with brake, refer to the right pag
[Unit: mm]
<Cautions>
Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice . Contact us or a dealer for the latest information

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

- Brake specifications (For details, refer to P. 183)
This brake will be released when it is energized. (Do not use this for braking the motor in motion.
Static friction torque (N.m) 1.27 or more Engaging time (ms) 50 or less Releasing time (ms) Note)4 15 or less Exciting current (DC) (A) 0.36 Releasing voltage (DC) (V) 1 or more Exciting voltage (DC) (V) 24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

*1 Motor specifications: \square

* 2 The product that the end of driver model
designation has "E" is "Position control type"
$3 \diamond$ in number of applicable driver represents the
series. For more information about the part numbe

$$
\begin{aligned}
& \text { series. For more information about the part number } \\
& \text { olease refer to P. } 16 \text {. } \\
& \text { line represents the torque at } 10 \% \text { less supply voltage. })
\end{aligned}
$$

Dimensions <ln Case of With Brake, Cable direction to output shaft.>
Mass: 1.6 kg

$\left[\begin{array}{c}1 \\ 1 \\ \text { Use hexagon socket head } \\ \text { screw tor instalalation. }\end{array}\right]$

<Key way, center tap shaft>

For the dimensions without brake, refer to the left page

[Unit: mm]
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications

- Brake specifications (For details, refer to P. 183 $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 2.45 or more |

Engaging time (ms)	70 or less
Releasing time (ms) Noete4	20 or less
Exciting current (DC) (A)	0.42
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	686
	Thrust load A-direction (N)	294
	Thrust load B-direction (N)	392
During operation	Radial load P-direction (N)	392
	Thrust load A, B-direction (N)	147

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43.

* 1 Motor specifications: \square

2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.16
$3 \diamond$ in number of applicable driver represents the
serin number of morere inficormation about the part number,
please refer to P.16.
Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions <ln Case of With Brake, Cable direction to output shaft.>

<IP67>
a) Encoder connector (c) Motor connector
$\left[\begin{array}{c}1 \text { Use hexagon socket head } \\ \text { screw for instalalation. }\end{array}\right]$

* Figures in [] represent the dimensions without brake

[Unit: mm]

Cautions>

 Reduce the moment of inertia ratio if high speed response operation is required.Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P. 183
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
" 2 The product that the end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.137.)

(a) Encoder connector
(b) Motor/Brake connector

Dimensions are subject to change without notice Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications			
		AC200 V	
Motor model	IP65	MSME152GC \square	MSME152SC \square
	IP67	MSME152G1 \square	MSME152S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{l\|l\|} \hline \begin{array}{l} \text { Model } \end{array} & \text { A5II, A5 series } \\ \hline \text { No. } & \text { A5IIE, A5E series } \\ \hline \end{array}$	MDD ¢ 5540	
		MDD \triangle T5540E	-
	Frame symbol	D-frame	
Power supply capacity (kVA)		2.3	
Rated output (W)		1500	
Rated torque (N.m)		4.77	
Momentary Max. peak torque (N.m)		14.3	
Rated current (A(rms))		8.2	
Max. current (A(o-p))		35	
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2	
	(min) Note) 1 DVOP4284	No limit Note)2	
Rated rotational speed $(\mathrm{r} / \mathrm{min})$ Max. rotational speed $(\mathrm{r} / \mathrm{min})$		3000	
		5000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	2.84	
	kg.m²) With brake	3.17	
Recommended moment of inertia ratio of the load and the rotor Note) 3		15 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
	Resolution per single turn	1048576	131072

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |

Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	$0.81 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

For details of Note 1 to Note 5, refer to P.182, P. 183 Dimensions of Driver, refer to P.43.
1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
3 in number of applicable driver represents the series. For more information about the part number,
please refer to P.16.

(For IP67 motor, refer to P.137.)

(a) Encoder connector
(b) Motor/Brake connector

Specifications

- Brake specifications (For details, refer to P. 183)
This brake will be released when it is energized. Do not use this for braking the motor in motion.
Static friction torque (N-m) 7.8 or more Engaging time (ms) 50 or less Releasing time (ms) Note)4 15 or less Exciting current (DC) (A) $0.81 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
*2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part numbe
please refer to P. 16 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

(For IP67 motor, refer to P.137.) Mass: Without brake $/ 5.3 \mathrm{~kg}$
With brake $/ 6.3 \mathrm{~kg}$

Key way dimensions
(
(a) Encoder corrector

Cautions> Reduce he momentor inetia
Dimensions in thertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
		AC200 V			
Motor model	IP65	MSME302GC \square	MSME302SC \square		
	IP67	MSME302G1 \square	MSME302S1 \square		
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	{MFD $\$ TA390} \hline & No. A5IE, A5E series & MFD \triangle TA390E		-	
	Frame symbol	F-frame			
	Power supply capacity (kVA)		4.5		
Rated output (W)		3000			
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		9.55			
Momentary Max. peak torque (N.m)		28.6			
Rated current (A(rms))		18.1			
Max. current (A) $(0-\mathrm{p})$)		77			
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2			
	Emin) Note)11 DVOP4285×2	No limit Note)2			
Rated rotational speed $(\mathrm{r} / \mathrm{min})$ Max. rotational speed $(\mathrm{r} / \mathrm{min})$		3000			
		5000			
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	6.50			
	kg.m²) With brake	6.85			
Recommended moment of inertia ratio of the load and the rotor Note)3		15 times or less			
Rotary encoder speciications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \end{gathered}$ Absolute		
	Resolution per single turn	1048576	131072		

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

(For IP67 motor, refer to P.137.) Mass: Without brake/ 8.3 kg
With brake $/ 9.4 \mathrm{~kg}$ Key way dimensions
(
(b) Motor/Brake connector
*Figures in [] represent the dimensions with brake.
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subiect to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all usecautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized. Do not use this for braking the motor in motion.
Static friction torque (N.m) 16.2 or more Engaging time (ms) 110 or less Releasing time (ms) Note)4 50 or less Exciting current (DC) (A) $0.90 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

*1 Motor specifications:
" 2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.137.) Mass: Without brake/ 11.0 kg
With brake/ 12.6 kg

Key way dimensions

M3 through
$\overbrace{}^{8-89}$
[Unit: mm
(b) Motor/Brake connecto

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications			
		AC200 V	
Motor model	IP65	MSME502GC \square	MSME502SC \square
	IP67	MSME502G1 \square	MSME502S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	MFD TB3 $^{\text {a }}$	
	No. A5IE, A5E series	MFD $>$ TB3A2E	-
	Frame symbol	F-frame	
Power supply capacity (kVA)		7.5	
Rated output (W)		5000	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		15.9	
Momentary Max. peak torque (N.m)		47.7	
Rated current (A(rms))		24.0	
Max. current (A) $(0-\mathrm{p})$)		102	
Regenerative brake frequency (times/min) Note),	brake Without option	357	
	Emin) Note)11 DVOP4285×2	No limit Note)2	
Rated rotational speed \quad (r/min)		3000	
		4500	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Pria Without brake	17.4	
	kg.m²) With brake		. 6
Recommended moment of inertia ratio of the load and the rotor Note)3		15 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \end{gathered}$ Absolute
Resolution per single turn		1048576	131072

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply volage.)

- Brake specifications (For details, refer to P. 183 $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	16.2 or more
Engaging time (ms)	110 or less
Releasing time (ms) Notes 4	50 or less
Exciting current (DC) (A)	$0.90 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During	Radial load P-direction (N)	784
operation	Thrust load A, B-direction (N)	343
- For		

1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type"
Detail of model designation, refer to 16 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number please refer to P.16.

Dimensions
(For IP67 motor, refer to P.138.) Mass: Without brake/ 14.0 kg
With brake/ 16.0 kg Key way dimensions

(b) Motor/Brake connector

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all usecautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P. ${ }^{\text {183) }}$	
(This brake will be released when it is energized.) Do not use this for braking the motor in motion.	
Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	4.9 or more
Engaging time (ms)	80 or les
Releasing time (ms) Note)4	70 or less
Exciting current (DC) (A)	0.59 ± 10 \%
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that the end of driver model
designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
\diamond in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.138.) Mass: Without brake $/ 5.2 \mathrm{~kg}$
With brake/ 6.7 kg Key way dimensions

(b) Motor/Brake connector
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family

Specifications			
		AC200 V	
Motor model	IP65	MDME152GC \square	MDME152SC \square
	IP67	MDME152G1 \square	MDME152S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	MDD ¢ 5540	
	No. A5IE, A5E series	MDD \triangle T5540E	-
	Frame symbol	D-frame	
Power supply capacity (kVA)		2.3	
Rated output (W)		1500	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		7.16	
Momentary Max. peak torque (N.m)		21.5	
Rated current (A(rms))		9.4	
Max. current (A) $(0-\mathrm{p})$)		40	
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2	
	(min) Note) 1 DVOP4284	No limit Note)2	
Rated rotational speed (r/min)		2000	
Max. rotational speed (r/min)		3000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	6.70	
	kg.m²) With brake	7.99	
Recommended moment of inertia ratio of the load and the rotor Note) 3		10 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
Resolution per single turn		1048576	131072

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage. $>$)

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | Static friction torque (N.m) | 13.7 or more |
| :--- | :--- | Engaging time (ms)

\square 100 or less Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)
(V) 50 or less Exciting voltage (DC) (V) \qquad 2 or more

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

*1 Motor specifications: \square
2 The product that the end of driver model designation has " E " i " "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number
please refer to P.16. please refer to P. 16 .
(For IP67 motor, refer to P. 138.)

<|P65>
 Mass: Without brake/ 6.7 kg
With brake/ 8.2 kg Key way dimensions

(b) Motor/Brake connect
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

,1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.138.) Mass: Without brake/ 8.0 kg
With brake $/ 9.5 \mathrm{~kg}$ Key way dimensions
(b) Motor/Brake conne

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family

Specifications					
		AC200 V			
Motor model	IP65	MDME302GC \square	MDME302SC \square		
	IP67	MDME302G1 \square	MDME302S1 \square		
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	{MFD $\$ TA390} \hline & No. A5IE, A5E series & MFD \triangle TA390E		-	
	Frame symbol	F-frame			
	Power supply capacity (kVA)		4.5		
Rated output (W)		3000			
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		14.3			
Momentary Max. peak torque (N.m)		43.0			
Rated current (A(rms))		17.4			
Max. current (A) $(0-\mathrm{p})$)		74			
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2			
	Emin) Note)11 DVOP4285×2	No limit Note)2			
Rated rotational speed $(\mathrm{r} / \mathrm{min})$ Max. rotational speed $(\mathrm{r} / \mathrm{min})$		2000			
		3000			
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	12.9			
	kg.m²) With brake	14.2			
Recommended moment of inertia ratio of the load and the rotor Note)3		10 times or less			
Rotary encoder speciications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \end{gathered}$ Absolute		
	Resolution per single turn	1048576	131072		

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } tor in motion.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	16.2 or more
Engaging time (ms)	110 or less
Releasing time (ms) Notes 4	50 or less
Exciting current (DC) (A)	$0.90 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direc	58
	Thrus	
During operation	Radial load P-direction (N	
	Thrust load A, B-direction (N)	34
- For details of Note 1 to Note 5, refer to P.182, P. 183. - Dimensions of Driver, refer to P. 45. *1 Motor specifications:		
*2 The product that the end of driver model designation has " E " is "Position control type". Detail of model designation, refer to P.16.		
*3 \diamond in number of applicable driver represents the series. For more information about the part number, please refer to P.16.		

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)

(b) Motor/Brake connector

Mass: Without brake/ 11.0 kg
With brake/ 12.6 kg

Key way dimensions

<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

			AC200 V	
Motor model		IP65	MDME402GC \square	MDME402SC \square
		IP67	MDME402G1 \square	MDME402S1 \square
Applicable ${ }_{* 2}$	Model No.	A5II, A5 series	MFD \triangle TB3A2	
		A5IE, A5E series	MFD \triangle TB3A2E	-
	Frame symbol		F-frame	
Power supply capacity (kVA)			6.0	
Rated output (W)			4000	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)			19.1	
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)			57.3	
Rated current		($\mathrm{A}(\mathrm{rms})$)	21.0	
Max. current (A(o-p))			89	
Regenerative brake frequency (times/min) Note)		Without option	No limit Note)2	
		DVOP4285×2	No lim	Notel)2
Rated rotational speed		(r/min)	2000	
Max. rotational speed		(r/min)	3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	37.6	
		With brake		. 9
Recommended moment of inertia ratio of the load and the rotor Note)3			10 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

- Brake specifications (For details, refer to P.183
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

Permissible load (For details, refer to P. 183)

During assembly	Radia load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

*1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage. $>$)

Dimensions
(For IP67 motor, refer to P.139.)

[Unit: mm]
(a) Encoder connector
(b) Motor
Brake connect

* Figures in [] represent the dimensions with brake Mass: Without brake/ 15.5 kg
With brake/ 18.7 kg

Key way dimensions

<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family

A5 Family
Motor Specifications

Specifications				
			AC200 V	
Motor model		IP65	MDME502GC \square	MDME502SC \square
	IP67		MDME502G1 \square	MDME502S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model No.	A5II, A5 seres	MFD \triangle TB3A2	
		A5IE, A5E series	MFD \triangle TB3A2E	-
	Frame symbol		F-frame	
Power supply capacity (kVA)			7.5	
Rated output (W)			5000	
Rated torque (N.m)			23.9	
Momentary Max. peak torque (N.m)			71.6	
Rated current		(A(rms))	25.9	
Max. current		(A(0-p))	110	
Regenerative brake frequency (imes/min) Note)!		Without option	120	
		DVOP4285×2	No limit Note)2	
Rated rotational speed		d (r/min)	2000	
Max. rotational speed		(r/min)	3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	48.0	
		With brake		. 3
Recommended moment of inertia ratio of the load and the rotor Note)3			10 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.>)

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Notel) Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less
(v) . 3 ± 10 \% 24 2.4

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343
- For		

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
3 in number of applicable driver represents the series. For more information about the part number please refer to P.16.

Dimensions
(For IP67 motor, refer to P.139.)

(a) Encoder connector

Cautions> Reduce the moment of inertia ratio if high speed rent the dimensions with brake.
Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Dimensions are subject to change without notice. Contact us or a dealer tor the latest information.

200 V MDME 7.5 kW [Middle inertia, Middle capacity]

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

*1 Motor specifications: \square
2 The product that "he end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents th \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<Cautions> Reduce the moment of inertia ratio whigh speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
Motor model				AC200 V	
		IP65		-	-
	IP67			MDMEC12G1 \square	MDMEC12S1 \square
Applicable driver *2	$\begin{array}{l\|l} \text { Model } & \text { A5II, A5 series } \\ \text { No. } & \text { A5IE, A5E series } \\ \hline \text { Frame symbol } \end{array}$			MHD $>$ TC3B4	
				-	-
				H-frame	
Power supply capacity			(kVA)		7
Rated output			(W)		000
Rated torque			($\mathrm{N} \cdot \mathrm{m}$)		. 0
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)		75
Rated current			(A(rms))		. 2
Max. current			(A(0-p))		, 3
Regenerative brake frequency (times/min) Note)		Without	toption	No limit Note)2	
		DVOPN	M20058	No limit Note)2	
Rated rotational speed		d	(r/min)		00
Max. rotational speed			(r/min)	2000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Withou	t brake	212	
		With	brake		20
Recommended moment of inertia ratio of the load and the rotor Note)3				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
	Resolution per single turn			1048576	131072

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

Dimensions

(c) Erake conector (b) Motor/ connector
(c) Brake connector (only with brake)

* Figures in [] represent the dimensions with brake.
<Cautions> Reduce the moment of ineritia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the la
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

200 V MDME 15.0 kW [Middle inertia, Middle capacity]

- Brake specifications (For details, refer to P. 183)

(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

Static friction torque (N.m)	100 or more
Engaging time (ms)	300 or less
Releasing time (ms) Note)	140 or less
Exciting current (DC) (A)	$1.08 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	4508
	Thrust load A-direction (N)	1470
	Thrust load B-direction (N)	1764
During operation	Radial load P-direction (N)	2254
	Thrust load A, B-direction (N)	686

*1 Motor specifications: \square

* 2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part numbe
please refer to P.16.

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage. $>$)

Dimensions

(a) Encoder connector (b) Motor/ connector
(c) Brake connector (only with brake)
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications							
Motor model				AC200 V			
		IP65		-	-		
	IP67			MFME152G1 \square	MFME152S1 \square		
Applicable driver *2	ModelNo.	A5II, A5	series	{MDD $\$ T5540} \hline & & A5IE, A5 & 5E series & MDD \triangle T5540E		-	
		Frame symbol			D-frame		
	Power supply capacity			(kVA)	2.3		
Rated output			(W)	1500			
Rated torque			($\mathrm{N} \cdot \mathrm{m}$)	7.16			
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)	21.5			
Rated current			(A(rms))	7.5			
Max. current			(A(o-p))	32			
Regenerative brake frequency (times/min) Note) 1		Without	option	100			
		DVOP4	4284	No limit Note)2			
Rated rotational speed			(r/min)	2000			
Max. rotational speed			(r/min)	3000			
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without	t brake	18.2			
		With b	brake		3.5		
Recommended moment of inertia ratio of the load and the rotor Note)3				10 times or less			
Rotary encoder specifications			Note) 5	$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute		
Resolution per single turn				1048576	131072		

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	7.8 or more
Engaging time (ms)	80 or less
Releasing time (ms) Notes 4	35 or less
Exciting current (DC) (A)	$0.83 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radia load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .
Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage. $>$)

Dimensions
Mass: Without brake/ 9.5 kg
With brake/ 12.5 kg

Key way dimensions

(b) Motor/Brake connector

A5 Family
Motor Specifications

Specifications			
Motor model		AC200 V	
	IP65	-	-
	IP67	MFME452G1 \square	MFME452S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	MFD TB3 $^{\text {a }}$	
	No. A5IE, A5E series	MFD $>$ TB3A2E	-
	Frame symbol	F-frame	
Power supply capacity (kVA)		6.8	
Rated output (W)		4500	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		21.5	
Momentary Max. peak torque (N.m)		54.9	
Rated current (A(rms))		24.7	
Max. current (A) $(0-\mathrm{p})$)		105	
Regenerative brake frequency (times/min) Note),	brake Without option	67	
	Emin) Note)11 DVOP4285×2		
	nal speed (r/min)	2000	
Max. rotational speed (r/min)		3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)	ertia Without brake	63.1	
	kg.m²) With brake		
Recommended moment of inertia ratio of the load and the rotor Note)3		10 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
Resolution per single turn		1048576	131072

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	31.4 or more
Engaging time (ms)	150 or less
Releasing time (ms) Notes 4	100 or less
Exciting current (DC) (A)	$0.75 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1862
	Thrust load A-direction (N)	686
	Thrust load B-direction (N)	686
During	Radial load P-direction (N)	784
operation	Thrust load A, B-direction (N)	294
- For		

${ }^{*} 1$ Motor specifications: \square
2 The product that the end of driver model designation has " E " i " "Position control type"
Detail of model designation, refer to P . 6 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

Dimensions
Mass: Without brake/ 18.2 kg
With brake $/ 23.1 \mathrm{~kg}$

Key way dimensions
(20)
(b) Motor/Brake connecto
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P. 183

This brake will be released when it is energized.)
To not use this for braking the motor in motion.

Static friction torque (N.m)	13.7 or more
Engaging time (ms)	100 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$0.79 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	686
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square

* 2 The product that the end of driver model
designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.) Mass: Without brake $/ 6.7 \mathrm{~kg}$
With brake/ 8.2 kg

Key way dimensions

(b) Motor/Brake connector

Reduce the moment of ineritia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications

Specifications					
		AC200 V			
Motor model	IP65	MGME202GC \square	MGME202SC \square		
	IP67	MGME202G1 \square	MGME202S1 \square		
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	{MFD $\$ TA390} \hline & No. A5IE, A5E series & MFD \triangle TA390E		-	
	Frame symbol	F-frame			
	Power supply capacity (kVA)		3.8		
Rated output (W)		2000			
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		19.1			
Momentary Max. peak torque (N.m)		47.7			
Rated current (A(rms))		17.0			
Max. current (A) $(0-\mathrm{p})$)		60			
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2			
	Emin) Note)11 DVOP4285×2	No limit Note)2			
Rated rotational speed $(\mathrm{r} / \mathrm{min})$ Max. rotational speed $(\mathrm{r} / \mathrm{min})$		1000			
		2000			
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	30.3			
	kg.m²) With brake	35.6			
Recommended moment of inertia ratio of the load and the rotor Note)3		10 times or less			
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$		
Resolution per single turn		1048576	131072		

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Notel4 Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less | Releasing voltage (DC) (V) | $1.3 \pm 10 \%$ |
| :--- | :--- |
| Ex | 20% | | Exciting voltage (DC) (V) | 24 ± 2.4 |
| :--- | :--- | :--- |

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
3 in number of applicable driver represents the series. .or more information about the part number
please refer to P.16. please refer to P. 16

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

(For IP67 motor, refer to P.139.) Mass: Without brake/ 14.0 kg
With brake/ 17.5 kg

Key way dimensions

[Unit: mm
(a) Encoder connector

Cautions> Reduce the moment of ${ }^{*}$ Figures in [] represent the dimensions with brake.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
				AC200 V	
Motor model		IP65		MGME302GC \square	MGME302SC \square
	IP67			MGME302G1 \square	MGME302S1 \square
Applicable driver *2	Model No.	A5II, A5	5 series	MFD \triangle TB3A2	
		A5IE, A	A5E series	MFD \triangle TB3A2E	-
	Frame symbol			F-frame	
Power supply capacity (kVA)				4.5	
Rated output (W)				3000	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)				28.7	
Momentary Max. peak torque (N.m)				71.7	
Rated current (A(rms))				22.6	
Max. current (A(o-p))				80	
Regenerative brake frequency (times/min) Note)		Withou	t option	No limit Note)2	
		DVOP4	4285x2	No limi	it Note) ${ }^{2}$
Rated rotational speed		d	(r/min)	1000	
Max. rotational speed			(r/min)	2000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Withou	t brake	48.4	
		With	brake		3.7
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.

(Do not use this for braking the motor in motion. $|$| Static friction torque (N.m) | 58.8 or more |
| :--- | :---: |
| Engaging time (ms) | 150 or less |
| Releasing time (ms) Note)4 | 50 or less |
| Exciting current (DC) (A) | $1.4 \pm 10 \%$ |
| Releasing voltage (DC) (V) | 2 or more |
| Exciting voltage (DC) (V) | 24 ± 2.4 |

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During	Radial load P-direction (N)	1470
operation	Thrust load A, B-direction (N)	490

*1 Motor specifications: \square
2 The product that the end of driver model
designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)

(a) Encoder connector
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
200 V MGME 4.5 kW [Middle inertia, Middle capacity]

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } Do not use this for braking the motor in motion.

Static friction torque (N-m)	58.8 or more
Engaging time (ms)	150 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$1.4 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1470
	Thrust load A, B-direction (N)	490

For details of Note 1 to Note 5 , refer to P.182, P. 183 Dimensions of Driver, refer to P. 45 .
1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC200 V of power voltage $<$ Doted line represents the torque at 10% less supply voltage.)

Dimensions

(a) Encoder connector

Cautions> Figures in [] represent the dimensions with brake
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

200 V MGME 6.0 kW [Middle inertia, Middle capacity]
A5 Family
Motor Specifications

Specifications					
Motor model				AC200 V	
		IP65		-	-
	IP67			MGME602G1 \square	MGME602S1 \square
Applicable ${ }_{* 2}$	$\begin{aligned} & \begin{array}{l} \text { Model } \\ \text { No. } \end{array} \\ & \hline \mathrm{Fr} \end{aligned}$	A5II, A5	5 series	MGD $>$ TC3B4	
		A5IE, A	A5E series	-	-
		Frame symbol		G-frame	
Power supply capacity (kVA)				9.0	
Rated output (W)				6000	
Rated torque (N.m)				57.3	
Momentary Max. peak torque (N.m)				143	
Rated current		((A(rms))	38.8	
Max. current			(A(op))	149	
Regenerative brake frequency (times/min) Note) 1		Without	t option	No limit Note)2	
		DVOP4	4285x4	No lim	Note)2
Rated rotational speed		d	(r/min)	1000	
Max. rotational speed			(r/min)	2000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without	ut brake	101	
		With	brake	10	
Recommended moment of inertia ratio of the load and the rotor Note)3				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

\section*{- Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.
 | Static friction torque (N.m) | 58.8 or more |
| :--- | :---: |
| Engaging time (ms) | 150 or less |
| Releasing time (ms) Note) | 50 or less |
| Exciting current (DC) (A) | $1.4 \pm 10 \%$ |
| Releasing voltage (DC) (V) | 2 or more |
| Exciting voltage (DC) (V) | 24 ± 2.4 |}

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1764
	Thrust load A, B-direction (N)	588

*1 Motor specifications: \square

* 2 The product that the end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.16.
$3 \diamond$ in number of applicable driver represents the \diamond in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications			
		AC200 V	
Motor model	IP65	MHME102GC \square	MHME102SC \square
	IP67	MHME102G1 \square	MHME102S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	MDD ¢ 3530	
	No. A5IE, A5E series	MDD \triangle T3530E	-
	Frame symbol	D-frame	
Power supply capacity (kVA)		1.8	
Rated output (W)		1000	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		4.77	
Momentary Max. peak torque (N.m)		14.3	
Rated current (A(rms))		5.7	
Max. current (A) $(0-\mathrm{p})$)		24	
Regenerative brake frequency (times/min) Note),	brake Without option	83	
	(min) Note) 1 DVOP4284	No limit Note)2	
Rated rotational speed (r/min)		2000	
		3000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Pria Without brake	24.7	
	kg.m²) With brake		. 0
Recommended moment of inertia ratio of the load and the rotor Note)3		5 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
	Resolution per single turn	1048576	131072

- Brake specifications (For details, refer to P. 183) $\left(\begin{array}{l}\text { This brake will be released when it is energized } \\ \text { Do } \\ \text { not use this for braking the motor in }\end{array}\right.$ tor in motion. | Static friction torque $(\mathrm{N} \cdot \mathrm{m})$ | 4.9 or more |
| :--- | :--- | Engaging time (ms)

	80
Notele 4	70
(A)	0.5

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(For IP67 motor, refer to P.140.)
 Mass: Without brake/ 6.7 kg
With brake/ 8.1 kg Key way dimensions

(b) Motor/Brake connector

Specifications

- Brake specifications (For details, refer to P.183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.140.)
 Mass: Without brake $/ 8.6 \mathrm{~kg}$
With brake/ 10.1 kg

Key way dimensions

(b) Motor/Brake connecio

* Figures in [] represent the dimensions with brake

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications						
			AC200 V			
Motor model		IP65	MHME202GC \square	MHME202SC \square		
	IP67		MHME202G1 \square	MHME202S1 \square		
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model No.	A5II, A5 seres	{MED $\$ T7364} \hline & & A5IE, A5E series & MED \triangle T7364E		-	
		Frame symbol		E-frame		
	Power supply capacity (kVA)			3.3		
Rated output (W)			2000			
Rated torque (N.m)			9.55			
Momentary Max. peak torque (N.m)			28.6			
Rated current		(A(rms))	11.1			
Max. current		(A(o-p))	47			
Regenerative brake frequency (imes/min) Note)!		Without option	45			
		DVOP4285		12		
Rated rotational speed		d (r/min)	2000			
Max. rotational speed		(r/min)	3000			
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	57.8			
		With brake		. 6		
Recommended moment of inertia ratio of the load and the rotor Note)3			5 times or less			
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$		
Resolution per single turn			1048576	131072		

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Notes Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less Exciting voltage (DC) (V)
\square .3 $\mathbf{1 0}$ \% 24 ± 2.4

Permissible load (For details, refer to P. 183

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343
- For		

* 1 Motor specifications: \square

2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
$3 \diamond$ in number of applicable driver represents the series. .or more information about the part number,
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

ambient temperature ${ }^{\circ} \mathrm{C}$
(For IP67 motor, refer to P.140.) Mass: Without brake/ 12.2 kg
With brake/ 15.5 kg Key way dimensions

[Unit: mm
(a) Encoder connector

Cautions> * Figures in [] represent the dimensions with brake.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P. 183)
This brake will be released when it is energized. Do not use this for braking the motor in motion.
Static friction torque (N-m) 24.5 or more Engaging time (ms) 80 or less Releasing time (ms) Note) 4 25 or less Exciting current (DC) (A) $1.3 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
Luring operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

,1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents th
\diamond in number of applicable driver represents the
series. For more information about the part number
please refer to P. 16 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.140.)

(a) Encoder connector
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications				
			AC200 V	
Motor model		IP65	MHME402GC \square	MHME402SC \square
	IP67		MHME402G1 \square	MHME402S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	ModelNo.	A5II, A5 seres	MFD \triangle TB3A2	
		A5IE, A5E series	MFD \triangle TB3A2E	-
	Frame symbol		F-frame	
Power supply capacity (kVA)			6.0	
Rated output (W)			4000	
Rated torque (N.m)			19.1	
Momentary Max. peak torque (N.m)			57.3	
Rated current		(A(rms))	21.0	
Max. current		(A(o-p))	89	
Regenerative brake frequency (imes/min) Note)!		Without option	17	
		DVOP4285×2	125	
Rated rotational speed		d (r/min)	2000	
Max. rotational speed		(r/min)	3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	112	
		With brake		14
Recommended moment of inertia ratio of the load and the rotor Note)3			5 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | So not use this for braking the motor in motion. | |
| :--- | :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 24.5 or more | Engaging time (ms) Releasing time (ms) Notel4 Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less Exciting voltage (DC) (V)
(v) . 3 ± 10 \% 24 ± 2.4

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During	Radial load P-direction (N)	784
operation	Thrust load A, B-direction (N)	343
- For		

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number please refer to P. 16 .

Dimensions
(For IP67 motor, refer to P.140.)

(a) Encoder connector

Reduce the moment of ineria ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P.183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

,1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.16
$3 \diamond$ in number of applicable driver represents the
in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.140.)

(b) Motor/Brake connecto

* Figures in [] represent the dimensions with brake.

Dimensions are subject to change without notice Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications																																								
Motor model				AC200 V																																				
		IP65		-	-																																			
	IP67			MHME752G1 \square	MHME752S1 \square																																			
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{aligned} & \text { Model } \\ & \text { No. } \end{aligned}$	A5II, A5	5 series	MGD $\$ TC3B4} \hline & & A5IIE, A & A5E series & - & - \hline & \multicolumn{3}{\|r	}{Frame symbol} & \multicolumn{2}{	r	}{G-frame} \hline \multicolumn{4}{\|l	}{Power supply capacity (kVA)} & \multicolumn{2}{	r	}{11} \hline \multicolumn{4}{\|l	}{Rated output (W)} & \multicolumn{2}{	r	}{7500} \hline \multicolumn{4}{\|l	}{Rated torque (N.m)} & \multicolumn{2}{	r	}{47.8} \hline \multicolumn{4}{\|l	}{Momentary Max. peak torque (N.m)} & \multicolumn{2}{	r	}{119} \hline \multicolumn{2}{\|l	}{Rated current} & & (A(rms)) & \multicolumn{2}{	r	}{44.0} \hline \multicolumn{2}{\|l	}{Max. current} & & (A(0-p)) & \multicolumn{2}{	r	}{165} \hline \multicolumn{2}{\|l	}{\multirow[t]{2}{*}{Regenerative brake frequency (times/min) Note),}} & Without & ut option & \multicolumn{2}{	r	}{No limit Note)2} \hline & & DVOP4 & 4285x4 & No lim & Note)2 \hline \multicolumn{2}{\|l	}{Rated rotational speed} & d & (r/min) & \multicolumn{2}{	r	}{1500} \hline \multicolumn{2}{\|l	}{Max. rotational speed} & & (r/min) & \multicolumn{2}{	r	}{3000} \hline \multicolumn{2}{\|l	}{\multirow[t]{2}{*}{Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)}		Withou	ut brake	273	
		With	brake		79																																			
	Recommended moment of inertia ratio of the load and the rotor Note ${ }^{3}$				5 times or less																																			
Rotary encoder specifications			Note) 5	$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute																																			
				1048576	131072																																			

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

- Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.

Do not use this for braking the motor in motion. | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 58.8 or more | Engaging time (ms) \qquad 50 or less Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)

(V) 50 or les Exciting voltage (DC) (V) $1.41 \pm 10 \%$
2 or more

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Specifications

			AC400 V	
Motor model		IP65	MSME084GC \square	MSME084SC \square
		IP67	MSME084G1 \square	MSME084S1 \square
Applicable driver *2	Model No.	A5II, A5 seres	MDD \diamond T2412	
		A5IE, A5E series	MDD \triangle T2412E	-
		Frame symbol	D-frame	
Power supply capacity (kVA)			1.6	
Rated output (W)			750	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)			2.39	
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)			7.16	
Rated current (A(rms))			2.4	
Max. current (A(o-p))			10	
Regenerative brake frequency (times/min) Note)t		Without option	No limit Note)2	
		DVOPM20048	No limit Note)2	
Rated rotational speed (r/min)			3000	
Max. rotational speed (r/min)			5000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	1.61	
		With brake		
Recommended moment of inertia ratio of the load and the rotor Note)3			15 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \end{gathered}$ Absolute
Resolution per single turn			1048576	131072

- Brake specifications (For details, refer to P. 183)

(This brake will be released when it is energized.
Do not use this for braking the motor in motion.

Static friction torque (N.m)	2.5 or more
Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	$0.70 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

${ }^{*} 1$ Motor specifications: \square
*2 The product that the end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.137.)
 Mass: Without brake/ 3.1 kg
With brake/ 4.1 kg

Key way dimensions
Cise
(a) Encoder connector
<Cautions> Reduce the moment of inertia ratio if high speed response eration is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications

Specifications												
		AC400 V										
Motor model	IP65	MSME104GC \square	MSME104SC \square									
	IP67	MSME104G1 \square	MSME104S1 \square									
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	MDD ¢ 3420										
	No. A5IE, A5E series	MDD $\$ T3420E & - \hline & Frame symbol & \multicolumn{2}{\|r	}{D-frame} \hline \multicolumn{2}{\|l	}{Power supply capacity (kVA)} & \multicolumn{2}{	r	}{1.8} \hline \multicolumn{2}{\|l	}{Rated output (W)} & \multicolumn{2}{	r	}{1000} \hline \multicolumn{2}{\|l	}{Rated torque ($\mathrm{N} \cdot \mathrm{m}$)}	3.18	
	Momentary Max. peak torque (N.m)		9.55									
Rated current (A(rms))		3.3										
Max. current (A) $(0-\mathrm{p})$)		14										
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2										
	Emin) Note)11 DVOPM20048	No limit Note)2										
Rated rotational speed $(\mathrm{r} / \mathrm{min})$ Max. rotational speed $(\mathrm{r} / \mathrm{min})$		3000										
		5000										
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	2.03										
	kg.m²) With brake	2.35										
Recommended moment of inertia ratio of the load and the rotor Note)3		15 times or less										
Rotary encoder speciications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \end{gathered}$ Absolute									
	Resolution per single turn	1048576	131072									

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |

Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	$0.81 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
3 in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC400 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.137.)

(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake
[Unit: mm]

400 V MSME 1.5 kW [Low inertia, Middle capacity]

Specifications

- Brake specifications (For details, refer to P. 183)
This brake will be released when it is energized. Do not use this for braking the motor in motion.
Static friction torque (N.m) 7.8 or more Engaging time (ms) 50 or less Releasing time (ms) Note)4 15 or less Exciting current (DC) (A) $0.81 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
*2 The product that the end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the
\diamond in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

(For IP67 motor, refer to P.137.) Mass: Without brake $/ 4.4 \mathrm{~kg}$
With brake $/ 5.4 \mathrm{~kg}$

Key way dimensions
(
(a) Encoder connector
th brak
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subect to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications

Specifications					
		AC400 V			
Motor model	IP65	MSME204GC \square	MSME204SC \square		
	IP67	MSME204G1 \square	MSME204S1 \square		
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	{MED $\$ T4430} \hline & No. A5IE, A5E series & MED \triangle T4430E		-	
	Frame symbol	E-frame			
	Power supply capacity (kVA)		3.3		
Rated output (W)		2000			
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		6.37			
Momentary Max. peak torque (N.m)		19.1			
Rated current (A(rms))		5.7			
Max. current (A) $(0-\mathrm{p})$)		24			
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2			
	Emin) Note)11 DVOPM20049	No limit Note)2			
Rated rotational speed $(\mathrm{r} / \mathrm{min})$ Max. rotational speed $(\mathrm{r} / \mathrm{min})$		3000			
		5000			
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	3.68			
	kg.m²) With brake	4.01			
Recommended moment of inertia ratio of the load and the rotor Note)3		15 times or less			
Rotary encoder speciications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \end{gathered}$ Absolute		
	Resolution per single turn	1048576	131072		

- Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.

Do not use this for braking the motor in motion. | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |

Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	$0.81 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P. 45 .
1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC400 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.137.)

Mass: Without brake/ 5.3 kg
With brake 6.3 kg

Key way dimensions
Clll
(a) Encoder Connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake
[Unit: mm

Dimence the moment of inertia ratio if high speed response operation is required. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.137.) Mass: Without brake/ 8.3 k
With brake $/ 9.4 \mathrm{~kg}$

Key way dimensions

Encoder connector
with brake
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications

Specifications					
				AC400 V	
Motor model		IP65		MSME404GC \square	MSME404SC \square
	IP67			MSME404G1 \square	MSME404S1 \square
Applicable driver *2	ModelNo.	A5II, A5	5 series	MFD ¢ TA464	
		A5IE, A	A5E series	MFD $>$ TA464E	-
	Frame symbol			F-frame	
Power supply capacity			(kVA)	6.8	
Rated output			(W)	4000	
Rated torque		倍	($\mathrm{N} \cdot \mathrm{m}$)	12.7	
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)	38.2	
Rated current			(A(rms))	9.9	
Max. current			(A(0-p))	42	
Regenerative brake frequency (times/min) Note)		Withou	toption	No limit Note)2	
		DVOPM20049×2		No limit Note)2	
Rated rotational speed		d	(r/min)	3000	
Max. rotational speed			(r/min)	4500	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without brake		12.9	
		With	brake	14.2	
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$				15 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	${ }^{17 \text {-bit }}$ Absolute
Resolution per single turn				1048576	131072

- Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.

Do not use this for braking the motor in motion. | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 16.2 or more |
| :--- | :--- | Engaging time (ms)

\square 110 or less Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)
(V) 50 or les Exciting voltage (DC) (V) \qquad 2 or more

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During	Radial load P-direction (N)	784
operation	Thrust load A, B-direction (N)	343
- For		

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.16.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC400 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.137.)

Mass: Without brake/ 11.0 kg
With brake/ 12.6 kg

Key way dimensions

(b) Motor/Brake connector

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P. 183)
This brake will be released when it is energized. (Do not use this for braking the motor in motion.
Static friction torque (N.m) 16.2 or more Engaging time (ms) 110 or less Releasing time (ms) Note) 4 50 or less Exciting current (DC) (A) $0.90 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

,1 Motor specifications: \square
2 The product that "he end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.138.) Mass: Without brake/ 14.0 kg
With brake/ 16.0 kg

Key way dimensions

$$
\stackrel{55}{51}
$$ $\xrightarrow{-a}$

M3 through

a
[Unit: mm
(b) Motor/Brake connecto

A5 Family

Specifications

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 2.5 or more | Engaging time (ms) Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)

(V) V$)$ 50 or less Exciting voltage (DC) (V)

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
3 in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC400 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions For IP67 motor, refer to P.138.)

<IP65>

(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake
[Unit: mm
$\begin{array}{ll}\text { <Cautions> } & \begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the latest information. }\end{array}\end{array}$ Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

400 V MDME 600 W [Middle inertia, Middle capacity]
A5 Family
Motor Specifications

Specifications

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

,1 Motor specifications: \square

* 2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents th \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

(For IP67 motor, refer to P.138.) Mass: Without brake $/ 3.5 \mathrm{~kg}$
With brake $/ 4.5 \mathrm{~kg}$

Key way dimensions
Cise
(a) Encoder connector
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
400 V MDME 1.0 kW [Middle inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | Static friction torque $(\mathrm{N} \cdot \mathrm{m})$ | 4.9 or more |
| :--- | :--- | Engaging time (ms)

	80
Notele 4	70
	0

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that the end of driver model designation has " E " i " "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the serin number of applicable more infiver represents the
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(For IP67 motor, refer to P.138.)

<IP65>
 Mass: Without brake/ 5.2 kg
With brake/ 6.7 kg Key way dimensions
\qquad
(b) Motor/Brake connector

Cautions> Reduce the moment of inertia ratio if high speresent the dimensions with brake.
[Unit: mm]

<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.

Dimensions aribect to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

400 V MDME 1.5 kW [Middle inertia, Middle capacity]
A5 Family
Motor Specifications

Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

*1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \diamond in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.138.) Mass: Without brake/6.7 kg
With brake/ 8.2 kg Key way dimensions

(b) Motor/Brake connector
*Figures in [] represent the dimensions with brake.

Reduce the moment of ineritia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
400 V MDME 2.0 kW [Middle inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P. 183) This brake wifl be released when it is energized.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	13.7 or more
Engaging time (ms)	100 or less
Releasing time (ms) Notes 4	50 or less
Exciting current (DC) (A)	$0.79 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direc	58
	Thrus	
During operation	Radial load P-direction (N	
	Thrust load A, B-direction (N)	196
- For details of Note 1 to Note 5, refer to P.182, P. 183. - Dimensions of Driver, refer to P. 45. *1 Motor specifications:		
*2 The product that the end of driver model designation has " E " is "Position control type". Detail of model designation, refer to P.16.		
*3 \diamond in number of applicable driver represents the series. For more information about the part number, please refer to P.16.		

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P. 138.)

<IP65> Mass: Without brake/ 8.0 kg
With brake 9.5 kg Key way dimensions

(b) Motor/Brake connector

400 V MDME 3.0 kW [Middle inertia, Middle capacity]
A5 Family
Motor Specifications

Specifications

- Brake specifications (For details, refer to P.183
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

Permissible load (For details, refer to P. 183)

During assembly	Radia load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

1 Motor specifications:
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage. $>$)

Dimensions
(For IP67 motor, refer to P.139.)
 With brake/ 12.6 kg

Key way dimensions

(a) Encoder connector
<Cautions> Reduce the moment of inertia ratio if high speed sponse operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
400 V MDME 4.0 kW [Middle inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less | Releasing volage (DC) (V) | $1.3 \pm 10 \%$ |
| :--- | :--- |
| R | $20 \% 24$ | | Exciting voltage (DC) (V) | 24 ± 2.4 |
| :--- | :--- | :--- |

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
\diamond in number of applicable driver represents the series. For more information about the part number,
please refer to P.16. please refer to P. 16 .

Torque characteristics (at AC400 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)

(a) Encoder connector
(b) Motor/Brake connector
$\begin{array}{ll}\text { <Cautions> } & \begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the latest information. }\end{array}\end{array}$ Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

400 V MDME 5.0 kW [Middle inertia, Middle capacity]
A5 Family
Motor Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

Permissible load (For details, refer to P. 183)

During assembly	Radia load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

*1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)

(a) Encoder connector

* Figures in [] represent the dimensions with brake.
$\begin{array}{ll}\text { <Cautions> } & \begin{array}{l}\text { Reduce the moment of inertia ratio if figh speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the latest information. }\end{array}\end{array}$ Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
400 V MDME 7.5 kW [Middle inertia, Middle capacity]

A5 Family
Motor Specifications

Specifications					
Motor model				AC400 V	
		IP65		-	-
	IP67			MDME754G1 \square	MDME754S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Model } \end{array} & \text { A5II, A5 series } \\ & \text { No. } \end{array}$			MGD $>$ TB4A2	
				-	-
				G-frame	
Power supply capacity			(kVA)		1
Rated output			(W)		00
Rated torque			($\mathrm{N} \cdot \mathrm{m}$)		. 8
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)		9
Rated current			A(rms))		2
Max. current			(A(o-p))		3
Regenerative brake frequency (times/min) Note)		Without	option	No limit Note)2	
		DVOPM2	20049×	No limit Note)2	
Rated rotational speed		d	(r/min)	1500	
Max. rotational speed			(r/min)	3000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Withou	brake	101	
		With	brake		07
Recommended moment of inertia ratio of the load and the rotor Note)3				10 times or less	
Rotary encoder specifications				$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector (b) Motor/ connector ${ }^{*}$ Figures in [] represent the dimensions with brake.
(c) Brake connector (only with brake) $\begin{array}{ll}\text { <Cautions> } & \begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the latest information. }\end{array} \text {. }\end{array}$ Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

400 V MDME 11.0 kW [Middle inertia, Middle capacity]

- Brake specifications (For details, refer to P. 183)

(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

Static friction torque (N.m)	100 or more
Engaging time (ms)	300 or less
Releasing time (ms) Note)	140 or less
Exciting current (DC) (A)	$1.08 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	4508
	Thrust load A-direction (N)	1470
	Thrust load B-direction (N)	1764
During operation	Radial load P-direction (N)	2254
	Thrust load A, B-direction (N)	686

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(c) Brake connector (bly Motor/ connector
(c) Brake connector (only with brake)

* Figures in [] represent the dimensions with brake
[Unit: mm] <Cautions> Reduce the moment of inertia ratio if high speed response operation is required.

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

- Brake specifications (For details, refer to P. 183) This brake wit be released when it is energized Do not use this for braking wor in motion.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	100 or more
Engaging time (ms)	300 or less
Releasing time (ms) Notes 4	140 or less
Exciting current (DC) (A)	$1.08 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	4508
	Thrust load A-direction (N)	1470
	Thrust load B-direction (N)	1764
During operation	Radial load P-direction (N)	2254
	Thrust load A, B-direction (N)	686

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P. 47.
*1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number please refer to P. 16 .

(c) Brake cor connector (b) Motor/ connector
(c) Brake connector (only with brake)

* Figures in [] represent the dimensions with brake Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

400 V MFME 1.5 kW $\begin{aligned} & \text { Middle inertia, Middle capacity } \\ & \text { Flat type }\end{aligned}$
A5 Family
Motor Specifications

- Brake specifications (For details, refer to P. 183)

(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

Static friction torque (N.m)	7.8 or more
Engaging time (ms)	80 or less
Releasing time (ms) Note)	35 or less
Exciting current (DC) (A)	$0.83 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector
(b) Motor/Brake connector

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subiect to change without notice. Contact us or a dealer for the latest information. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	21.6 or more
Engaging time (ms)	150 or less
Releasing time (ms) Notes 4	100 or less
Exciting current (DC) (A)	$0.75 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1862
	Thrust load A-direction (N)	686
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	294

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
Mass: Without brake/ 13.1 kg

Mass: Without brake/ 13.1 kg
With brake/ 17.2 kg

Key way dimensions
(20)
(a) Encoder connector
(b) Motor/Brake connector

400 V MFME $4.5 \mathrm{~kW}{\underset{\mid c}{\text { Middle inertia, Middle capacity }} \text { Flat type }}_{\substack{\text { Min }}}$
A5 Family
Motor Specifications

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
<IP67>
(a) Encoder connector
<Cautions> Reduce the moment of inertia ratio if high sp
Dimensions are subiect to change without spetice Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.
Static friction torque (N.m)
Engaging time (ms)
Releasing time (ms) (Notele

During assembly	Radial load P-direction (N)	1862
	Thrust load A-direction (N)	686
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	294

${ }^{*} 1$ Motor specifications: \square
designoduct that the end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.16
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

\section*{Permissible load (For details, refer to P.183)

\section*{Permissible load (For details, refer to P.183)
 Parmil} Thrustload A-direction (N) Thrust load B-direction (N) During Radial load P-direction (N) | operation Thrust load A, B-direction (N) 294 |
| :--- | :--- | P. 183. er,

A5 Family
Motor Specifications
400 V MGE 0.9 kW [Middle inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	13.7 or more
Engaging time (ms)	100 or less
Releasing time (ms) Notes 4	50 or less
Exciting current (DC) (A)	$0.79 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	
	Thrust load B-direction (N)	
During operation	Radial load P-direction (N)	
	Thrust load A, B-direction (N)	196
- For details of Note 1 to Note 5, refer to P.182, P. 183. - Dimensions of Driver, refer to P. 44. *1 Motor specifications:		
*2 The product that the end of driver model designation has " E " is "Position control type". Detail of model designation, refer to P.16.		
*3 \diamond in number of applicable driver represents the series. For more information about the part number, please refer to P.16.		

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)
 Mass: Without brake/ 6.7 kg
With brake/ 8.2 kg Key way dimensions

(b) Motor/Brake connector
<Cautions> Reduce the moment of inertia ratio if high speed rent the dimensions with brake.
[Unit: mm]
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer tor the latest information.

400 V MGME 2.0 kW [Middle inertia, Middle capacity]
A5 Family
Motor Specifications

Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
Luring operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

1 Motor specifications: \square
2 The product that "he end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P.16.
$3 \diamond$ in number of applicable driver represents the
in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)

<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
400 V MGME 3.0 kW [Middle inertia, Middle capacity]

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 58.8 or more | Engaging time (ms)

\square 150 or less Releasing time (ms) Notel4 Exciting current (DC) (A) Releasing voltage (DC) (V)
(V) 50 or les Exciting voltage (DC) (V) \qquad 24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1470
	Thrust load A, B-direction (N)	490

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 6 .
\checkmark in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC400 V of power voltage $<$ Doted line represents the torque at 10% less supply voltage.)

Dimensions
(For IP67 motor, refer to P.139.)

(b) Motor/Brake connector

400 V MGME 4.5 kW [Middle inertia, Middle capacity]
A5 Family
Motor Specifications

\section*{- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.
 | Static friction torque (N-m) | 58.8 or more |
| :--- | :---: |
| Engaging time (ms) | 150 or less |
| Releasing time (ms) Note) | 50 or less |
| Exciting current (DC) (A) | $1.4 \pm 10 \%$ |
| Releasing voltage (DC) (V) | 2 or more |
| Exciting voltage (DC) (V) | 24 ± 2.4 |}

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1470
	Thrust load A, B-direction (N)	490

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
$3 \diamond$ in number of applicable driver represents the in number of applicable driver represents the
series. For more information about the part number
please refer to P. 16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector

* Figures in [] represent the dimensions with brake.

Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications			
		AC4	00 V
Motor model	IP65	-	-
	IP67	MGME604G1 \square	MGME604S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{l\|l} \hline \text { Model } & \text { A5II, A5 series } \\ \text { No. } & \text { A5IE, A5E series } \end{array}$	MGD TB4A2 $^{\text {a }}$	
		-	-
	Frame symbol	G-frame	
Power supply capacity (kVA)		9.0	
Rated output (W)		6000	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		57.3	
Momentary Max. peak torque (N.m)		143	
Rated current (A)(ms))		19.4	
Max. current (A(o-p))		74	
Regenerative brake frequency (times/min) Note)	Without option	No limit Note)2	
	smin) Notel 1 DVOPM 20049×3	No limit Note)2	
	nal speed (r/min)	1000	
Max. rotational speed (r/min)		2000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)	Without brake	101	
	kg.m²) With brake	107	
Recommended moment of inertia ratio of the load and the rotor Note) 3		10 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
Resolution per single turn		1048576	131072

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 58.8 or more |
| :--- | :--- |

Engaging time (ms)	150 or less
Releasing time (ms) Notel 4	50 or less
Exciting current (DC) (A)	$1.4 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1764
	Thrust load A, B-direction (N)	588

For details of Note 1 to Note 5 , refer to P.182, P. 183 Dimensions of Driver, refer to P.46.
1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Specifications

- Brake specifications (For details, refer to P. 183)
This brake will be released when it is energized. (Do not use this for braking the motor in motion.
Static friction torque (N.m) 4.9 or more Engaging time (ms) 80 or less Releasing time (ms) Note)4 70 or less Exciting current (DC) (A) $0.59 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

,1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.16
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.140.) Mass: Without brake/6.7 kg
With brake/ 8.1 kg Key way dimensions

(b) Modr/Brak conn
<Cautions> Reduce the moment of inertia ratio if high speed
Dimensions are subject to change without notice Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications												
		AC400 V										
Motor model	IP65	MHME154GC \square	MHME154SC \square									
	IP67	MHME154G1 \square	MHME154S1 \square									
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	MDD ¢ 3420										
	No. A5IE, A5E series	MDD $\$ T3420E & - \hline & Frame symbol & \multicolumn{2}{\|r	}{D-frame} \hline \multicolumn{2}{\|l	}{Power supply capacity (kVA)} & \multicolumn{2}{	r	}{2.3} \hline \multicolumn{2}{\|l	}{Rated output (W)} & \multicolumn{2}{	r	}{1500} \hline \multicolumn{2}{\|l	}{Rated torque ($\mathrm{N} \cdot \mathrm{m}$)}	7.16	
	Momentary Max. peak torque (N.m)		21.5									
Rated current (A(rms))		4.7										
Max. current (A(o-p))		20										
Regenerative brake frequency (times/min) Note),	brake Without option	22										
	Smin) Note) 1 DVOPM20048		30									
	nal speed (r/min)	2000										
Max. rotational speed (r/min)		3000										
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)	ertia Without brake	37.1										
	kg.m²) With brake		. 4									
Recommended moment of inertia ratio of the load and the rotor Note)3		5 times or less										
Rotary encoder specifications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \end{gathered}$ Absolute									
Resolution per single turn		1048576	131072									

Torque characteristics (at AC400 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

- Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.

Do not use this for braking the motor in motion. | Static friction torque (N.m) | 13.7 or more |
| :--- | :--- | Engaging time (ms)

\square 00 or less Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)
(V) 50 or les Exciting voltage (DC) (V)

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196
- For details of Note 1 to Note 5, refer to P.182, P.183.		

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
\diamond in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

,1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.
This brake will be released when it is energized.

Torque characteristics (at AC400 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.140.)

(a) Encoder connector

Cautio * Figures in [] represent the dimensions with brake
Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subiect to change without notice. Contact us or a dealer for the latest information. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications				
			AC400 V	
Motor model		IP65	MHME304GC \square	MHME304SC \square
	IP67		MHME304G1 \square	MHME304S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Model } \\ \text { No. } \\ \hline \end{array}$	A5II, A5 seres	MFD \triangle T 5440	
		A5IE, A5E series	MFD ¢T5440E	-
	Frame symbol		F-frame	
Power supply capacity (kVA)			4.5	
Rated output (W)			3000	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)			14.3	
Momentary Max. peak torque (N.m)			43.0	
Rated current		(A(rms))	8.0	
Max. current		(A(0-p))	34	
Regenerative brake frequency (times/min) Note)!		Without option	19	
		DVOPM20049×2	142	
Rated rotational speed		d (r/min)		00
Max. rotational speed		(r/min)	3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	90.5	
		With brake		. 1
Recommended moment of inertia ratio of the load and the rotor Note)3			5 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

Torque characteristics (at AC400 V of power voltage $<$ Doted line represents the torque at 10% less supply voltage.)

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Notet Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less Exciting voltage (DC) (V)
(v) . 3 ± 10 \% 24さ2.4

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Specifications

- Brake specifications (For details, refer to P.183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
Luring operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

,1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.16
$3 \diamond$ in number of applicable driver represents the
\diamond in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.140.)

(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications																
Motor model			AC400 V													
		IP65	MHME504GC \square	MHME504SC \square												
	IP67		MHME504G1 \square	MHME504S1 \square												
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Model } \\ \text { No. } \\ \hline \end{array}$	A5II, A5 seres	MFD $\$ TA464} \hline & & A5IE, A5E series & MFD \TA464E & - \hline & \multicolumn{2}{\|r	}{Frame symbol} & \multicolumn{2}{	r	}{F-frame} \hline \multicolumn{3}{\|l	}{Power supply capacity (kVA)} & \multicolumn{2}{	r	}{7.5} \hline \multicolumn{3}{\|l	}{Rated output (W)} & \multicolumn{2}{	r	}{5000} \hline \multicolumn{3}{\|l	}{Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		23.9	
		Momentary Max. peak torque (N.m)			71.6											
	Rated current		(A(rms))	13.0												
Max. current		(A(0-p))	55													
Regenerative brake frequency (times/min) Note)!		Without option	10													
		DVOPM20049×2		6												
Rated rotational speed		d (r/min)	2000													
Max. rotational speed		(r/min)	3000													
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	162													
		With brake		64												
Recommended moment of inertia ratio of the load and the rotor Note)3			5 times or less													
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute												
Resolution per single turn			1048576	131072												

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Notel) Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 80 or less | Releasing volage (DC) (V) | $1.3 \pm 10 \%$ |
| :--- | :--- | | Exciting voitage (DC) (V) | 24 ± 2.4 |
| :--- | :--- |

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343
- For		

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

$\underline{3}$	

Dimensions
(For IP67 motor, refer to P.140.)

(a) Encoder connector
(b) Motor/Brake connector

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

400 V MHME 7.5 kW [High inertia, Middle capacity]

\section*{- Brake specifications (For details, refer to P. 183) $\left(\begin{array}{l}\text { This brake will be released when it is energized. } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right.$ Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) motor in motion. Engaging time (ms) 58.8 or more Releasing time (ms) No 150 or less Exciting current (DC) (A) Releasing voltage (DC) (V)
 \qquad $1.4 \pm 10 \%$ | Exciting voltage (DC) (V) | 24 ± 2.4 |
| :--- | :--- |}

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

*1 Motor specifications: \square
2 The product that "he end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
 <Cautions> Reduce the moment of inertia ratio if high speed response operation is required.

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- MSME084 $\square 1$ *

MSME10 $\square \square 1$ *

(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake.
MSME15 $\square \square 1 *$ [Unit: mm]

(a) Encoder connector (b) Motor/Brake connector Figures in [] represent the dimensions with brake If you find two figures in [] , left figure is for 200 V and right figure is for 400 V .

MSME30 $\square \square 1 * \quad$ [Unit: mm]

[^2]* Figures in [] represent the dimensions with brake

(a) Encoder connector (b) Motor/Brake connector * Figures in [] represent the dimensions with brake. If you find two figures in [] , left figure is for 200 V and
right figure is for 400 V . right figure is for 400 V .
- MSME20 $\square \square 1$ *
[Unit: mm]

(a) Encoder connector (b) Motor/Brake connector

Figures in [] represent the Mimensions with brak Figures in [] represent the dimensions with brake.
If you find two figures in [], left figure is for 200 V and right figure is for 400 V .

- MSME40 $\square \square 1 *$ [Unit: mm]

(a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.

(a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.
- MDME064 $\square 1$ *
[Unit: mm]

(a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.

MDME15 $\square \square 1$ *

(a) Encoder connector (b) Motor/Brake connector Figures in [] represent the dimensions with brake. If you find two figures in [], left figure is for 200 V and right figure is for 400 V .

- MDME044 $\square 1$ *
(a) Encoder connector
(b) Motor/Brake connector

Figures in [] represent the dimensions with brake

- MDME10 $\square \square$ * * Unit mm

(a) Encoder connector (b) Motor/Brake connector Figures in [] represent the dimensions with brake. Figures in [] represent the dimensions with brake.
If you find two figures in [] ,left tigure is for 200 V and right figure is for 400 V .

MDME20 $\square \square 1$ *
[Unit: mm]

(a) Encoder connector (b) Motor/Brake connector

Figures in [] represent the dimensions with brake. If you find two figures in [], left figure is for 200 V and right figure is for 400 V .

(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake.
- MDME50 $\square \square 1$ *
[Unit: mm]

(a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.
- MGME20 $\square \square 1$ *
[Unit: mm]

(a) Encoder connector
(b) Motor/Brake connector

Figures in [] represent the dimensions with brake

- MDME40 $\square \square 1 *$

(a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.
- MGME09 $\square \square 1 *$ [Unit: mm]

(a) Encoder connector (b) Motor/Brake connector Figures in [] represent the dimensions with brake. If you find two figures in [] , left tigure is for 200 V and right figure is for 400 V .
- MGME30 $\square \square 1$ *
[Unit: mm]

* For motor specifications, refer to IP65 motor page.

(a) Encoder connector (b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.
If you find two figures in [], left figure is for 200 V and If you find two figures in [], left figure is for 200 V and right figure is for 400 V .
- MHME20 $\square \square 1$ *

(a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.

MHME40 $\square \square 1$ *
[Unit: mm]

(a) Encoder connector

(b) Motor/Brake connector

Figures in [] represent the dimensions with brake
(a) Encoder connector (b) Motor/Brake connector * Figures in [] represent the dimensions with brake. If you find two figures in [], left figure is for 200 V and right figure is for 400 V

- MHME30 $\square \square 1$ * [Unit: mm]

a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.

MHME50 $\square 1$ *
[Unit: mm]

(a) Encoder connector
(b) Motor/Brake connector

Figures in [] represent the dimensions with brake

Motors with Gear Reducer Type and Specifications

Motor Types with Gear Reducer

Specifications of Motor with Gear Reducer

Items		Specifications
Gear reducer	Backlash	3 minutes or smaller (initial value) at output shaft of the reducer
	Composition of gear	Planetary gear
	Gear efficiency	65 \% to 85%
	Lubrication	Grease lubrication
	Rotational direction at output shaft	Same direction as the motor output shaft
	Mounting method	Flange mounting
	Permissible moment of inertia of the load (conversion to the motor shaft)	10 times or smaller than rotor moment of inertia of the motor
	Protective structure	IP44 (at gear reducer)
Environment	Ambient temperature	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (free from condensation)
	Ambient humidity	85% RH (free from condensation) or less
	Vibration resistance	$49 \mathrm{~m} / \mathrm{s}^{2}$ or less (at motor frame)
	Impact resistance	$98 \mathrm{~m} / \mathrm{s}^{2}$ or less

Model Designation/
The Combination of the Driver and the Motor Motors with Gear Reducer
*For combination of e ements of model number, refer to index

The Combination of the Driver and the Motor with gear reducer

Motor output	100 V		200 V	
	Part No. of motor with gear reducer	Single phase, 100 V	Part No. of motor with gear reducer	Single/3-phase, 200 V
		Part No. of driver		Part No. of driver
100 W	MSME011 \qquad MSMD011 \square N	MADHT1107 MADKT1107	MSME012 \qquad MSMD012 \square N	MADHT1505 MADKT1505
		MADHT1107E MADKT1107E		MADHT1505E MADKT1505E
200 W	$\begin{aligned} & \text { MSME021 } \square \square \square \mathbf{N} \\ & \text { MSMD021 } \square \square \square \mathbf{N} \\ & \text { MHMD021 } \square \square \square \mathbf{N} \end{aligned}$	MBDHT2110 MBDKT2110	$\begin{aligned} & \text { MSME022 } \square \square \square \mathbf{N} \\ & \text { MSMD022 } \square \square \square \mathbf{N} \\ & \text { MHMDO22 } \square \square \square \mathbf{N} \end{aligned}$	MADHT1507 MADKT1507
		MBDHT2110E MBDKT2110E		MADHT1507E MADKT1507E
400 W	$\begin{aligned} & \text { MSME041 } \square \square \square \mathbf{N} \\ & \text { MSMD041 } \square \square \square \mathbf{N} \\ & \text { MHMD041 } \square \square \square \mathbf{N} \end{aligned}$	MCDHT3120 MCDKT3120	$\begin{aligned} & \text { MSME042 } \square \square \square \mathbf{N} \\ & \text { MSMD042 } \square \square \square \mathbf{N} \\ & \text { MHMD042 } \square \square \square \mathbf{N} \end{aligned}$	MBDHT2510 MBDKT2510
		MCDHT3120E MCDKT3120E		MBDHT2510E MBDKT2510E
750 W	-	-	$\begin{aligned} & \text { MSME082 } \square \square \square \mathrm{N} \\ & \text { MSMD082 } \square \square \square \mathrm{N} \\ & \text { MHMD082 } \square \square \square \mathrm{N} \end{aligned}$	MCDHT3520 MCDKT3520
				MCDHT3520E MCDKT3520E

* Motor specifications enter to $\square \square \square$ of the motor model number. Refer to "Model designation".

Table of Motor Specifications

	Model	Motor	$\begin{aligned} & \text { Reduction } \\ & \text { ratio } \end{aligned}$	Output	$\begin{aligned} & \text { Rated } \\ & \text { speed } \end{aligned}$	Max. speed	Rated torque	$\begin{aligned} & \text { Peak } \\ & \text { max } \\ & \text { torque } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Moment of inertia } \\ \text { (motor + reducert } \\ \text { converte } \\ \text { to moter shaft) } \end{array}$		s		Permissible radial load	$\begin{aligned} & \text { Permisible } \\ & \text { thrust load } \end{aligned}$
									w/o brake	w/ brake	w/o brake	w/ brake		
		(w)		(w)	(r/min)	(r/min)	($\mathrm{N} \cdot \mathrm{m}$)	($\mathrm{N} \cdot \mathrm{m}$)	$J\left(\times 10^{-4}\right.$	$\left.{ }^{4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$			(N)	(N)
	MSME01 $\square \square \square 1 \mathrm{~N}$	100	1/5	75	600	1200	1.18	3.72	0.091	0.094	1.0	1.2	490	245
	MSME01 $\square \square \square \mathbf{~ 2 N ~}$		1/9	80	333	666	2.25	6.86	0.0853	0.0883	1.0	1.2	588	294
	MSME01 $\square \square \square 3 \mathrm{~N}$		1/15	80	200	400	3.72	11.4	0.086	0.089	1.15	1.35	784	92
	MSME01 $\square \square \square$ 4N		$1 / 25$	80	120	240	6.27	19.0	0.0885	0.0915	2.15	2.35	1670	833
	MSME02 $\square \square \square 1 \mathrm{~N}$	200	1/5	170	600	1200	2.65	8.04	0.258	0.278	1.5	1.92	490	245
	MSME02 $\square \square \square 2 \mathrm{~N}$		1/9	132	333	666	3.72	11.3	0.408	0.428	2.48	2.9	1180	588
	MSME02 $\square \square \square 3 \mathrm{~N}$		1/15	132	200	400	6.27	18.8	0.44	0.46	2.88	3.3	1470	735
	MSME02 $\square \square \square 4 \mathrm{~N}$		1/25	140	120	240	11.1	33.3	0.428	0.448	2.88	3.3	1670	833
	MSME04 $\square \square 1 \mathrm{C}$	400	1/5	340	600	1200	5.39	16.2	0.623	0.643	2.9	3.3	980	490
	MSME04 $\square \square \square 2 \mathrm{~N}$		1/9	332	333	666	9.51	28.5	0.528	0.548	2.9	3.3	1180	88
	MSME04 $\square \square \square$ 3N		1/15	332	200	400	15.8	47.5	0.56	0.58	3.3	3.7	1470	735
	MSME04 $\square \square \square$ 4N		$1 / 25$	332	120	240	26.4	79.2	0.56	0.58	4.4	4.8	2060	1030
	MSME082 $\square \square$ 1N	750	1/5	672	600	1200	10.7	32.1	1.583	1.683	4.4	5.2	980	490
	MSME082 $\square \square \mathbf{2 N}$		1/9	635	333	666	18.2	54.7	1.52	1.62	5.7	6.5	1470	735
	MSME082 $\square \square$ 3N		1/15	635	200	400	30.4	91.2	1.57	1.67	6.1	6.9	1760	882
	MSME082 $\square \square$ 4N		1/25	635	120	240	50.7	152	1.52	1.62	6.1	6.9	2650	1320
	MSMD01 $\square \square \square 1 \mathrm{C}$	100	1/5	75	600	1000	1.18	3.72	0.091	0.094	1.02	1.23	490	245
	MSMD01 $\square \square \square 2 \mathrm{~N}$		1/9	80	333	555	2.25	6.86	0.0853	0.0883	1.02	1.23	588	294
	MSMD01 $\square \square \square 3 \mathrm{~N}$		1/15	80	200	333	3.72	11.4	0.086	0.089	1.17	1.38	784	392
	MSMD01 $\square \square \square$ 4N		1/25	80	120	200	6.27	19.0	0.0885	0.0915	2.17	2.38	1670	833
	MSMD02 $\square \square \square 1 \mathrm{~N}$	200	1/5	170	600	1000	2.65	8.04	0.258	0.278	1.54	2.02	490	245
	MSMD02 $\square \square \square 2 N$		1/9	132	333	555	3.72	11.3	0.408	0.428	2.52	3	1180	588
	MSMDO2 $\square \square \square 3 \mathrm{~N}$		1/15	132	200	333	6.27	18.8	0.44	0.46	2.92	3.4	1470	735
	MSMD02 $\square \square \square$ 4N		1/25	140	120	200	11.1	33.3	0.428	0.448	2.92	3.4	1670	833
	MSMD04 $\square \square \square 1 \mathrm{C}$	400	1/5	340	600	1000	5.39	16.2	0.623	0.643	2.9	3.4	980	490
	MSMD04 $\square \square \square 2 \mathrm{~N}$		1/9	332	333	555	9.51	28.5	0.528	0.548	2.9	3.4	1180	588
	MSMD04 $\square \square \square 3 \mathrm{~N}$		1/15	332	200	333	15.8	47.5	0.56	0.58	3.3	3.8	1470	735
	MSMD04 $\square \square \square$ 4N		1/25	332	120	200	26.4	79.2	0.56	0.58	4.4	4.9	2060	1030
	MSMD082 $\square \square$ 1N	750	1/5	672	600	900	10.7	32.1	1.583	1.683	4.4	5.2	980	490
	MSMD082 $\square \square$ 2N		$1 / 9$	635	333	500	18.2	54.7	1.52	1.62	5.7	6.5	1470	735
	MSMD082 $\square \square$ 3N		1/15	635	200	300	30.4	91.2	1.57	1.67	6.1	6.9	1760	882
	MSMD082 $\square \square$ 4N		1/25	635	120	180	50.7	152	1.52	1.62	6.1	6.9	2650	1320
	MHMD02 $\square \square \square 1 \mathrm{C}$	200	1/5	170	600	1000	2.65	8.04	0.538	0.568	1.68	2.12	490	245
	MHMD02 $\square \square \square \mathbf{~ 2 N ~}$		1/9	132	333	555	3.72	11.3	0.688	0.718	2.66	3.1	1180	588
	MHMD02 $\square \square \square 3 \mathrm{~N}$		1/15	132	200	333	6.27	18.8	0.72	0.75	3.06	3.5	1470	735
	MHMD02 $\square \square \square 4 \mathrm{~N}$		$1 / 25$	140	120	200	11.1	33.3	0.708	0.738	3.06	3.5	1670	833
	MHMD04 $\square \square \square 1 \mathrm{C}$	400	$1 / 5$	340	600	1000	5.39	16.2	1.033	1.063	3.1	3.5	980	490
	MHMD04 $\square \square \square 2 \mathrm{~N}$		$1 / 9$	332	333	555	9.51	28.5	0.938	0.968	3.1	3.5	1180	588
	MHMD04 $\square \square \square 3 \mathrm{~N}$		1/15	332	200	333	15.8	47.5	0.97	1.0	3.5	3.9	1470	735
	MHMD04 $\square \square \square 4 \mathrm{~N}$		1/25	332	120	200	26.4	79.2	0.97	1.0	4.6	5.0	2060	1030
	MHMD082 $\square \square 1 \mathrm{~N}$	750	1/5	672	600	900	10.7	32.1	2.223	2.323	4.6	5.4	980	490
	MHMD082 $\square \square$ 2N		1/9	635	333	500	18.2	54.7	2.16	2.26	5.9	6.7	1470	735
	MHMD082 $\square \square$ 3N		1/15	635	200	300	30.4	91.2	2.21	2.31	6.3	7.1	1760	882
	MHMD082 $\square \square$ 4N		1/25	635	120	180	50.7	152	2.16	2.26	6.3	7.1	2650	1320

*Motor specifications enter to $\square \square \square$ of the motor model number. Refer to "Model designation".

Torque Characteristics of Motor

MSME series (100 W to 750 W)

Supply voltage to driver	$\begin{array}{\|l\|} \hline \text { Reduction } \\ \hline \text { Motor ratio } \\ \text { output } \\ \hline \end{array}$	1/5	1/9	1/15	1/25
100 V	100 W				
	200 W				
	400 W	\qquad			
200 V	100 W				
	200 W				
	400 W				
	750 W				

Dotted line represents the torque at 10% less supply voltage.

Dotted line represents the torque at 10% less supply voltage.

MHMD series (200 W to 750 W)					
$\begin{array}{\|l} \hline \begin{array}{l} \text { Supply } \\ \text { voltage } \\ \text { to driver } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Reduction } \\ \hline \text { Motor ratio } \\ \hline \end{array}$ $\begin{aligned} & \text { Motor } \\ & \text { output } \end{aligned}$	1/5	1/9	1/15	1/25
100 V	200 W				
	400 W				
200 V	200 W				
	400 W				
	750 W				

[^3]
A5 Family

Motors with Gear Reducer Dimensions of Motor

MSME series
MSMD series

The figure represents the dimensions without brak

A5 Family
Motors with Gear Reducer Dimensions of Motor

MHMD series

*The figure represents the dimensions without brake

Features

- Line-up IP65 motor: 200 W to 5.0 kW
- Max speed: 5000 r/min (MSMJ, MHMJ)
- Low inertia (MSME) to High inertia (MHME)
- 20-bit incremental encoder (1048576 pulse)
- 17-bit absolute encoder (131072 pulse).

[Please note]

Motors displayed at P. 151 to P. 181 are Special Order Product. Please contact us for more information.

$$
\begin{aligned}
&: 4500 \mathrm{r} / \mathrm{min}(75 \\
& \text { Rated speed }: 3000 \mathrm{r} / \mathrm{min}
\end{aligned}
$$

$$
\text { Rated output: } 200 \mathrm{~W} \text { to } 750 \mathrm{~W}
$$ Enclosure : IP65

Special Order Product Motor Contents
MSMJ (200 V)
200 W to $750 \mathrm{~W} P . ~$

inertia
Max. speed: $3000 \mathrm{r} / \mathrm{min}$ Aed speed: $2000 \mathrm{r} / \mathrm{min}$ Rated output: IP65 1.0 kW to 5.0 kW (from 4.0 kW) Rated output: 100 kW to 50 kW Enclosure : IP65

mgme
Low speed/ High torque type) High inertia Max. speed : $2000 \mathrm{r} / \mathrm{min}$ Rated speed: $1000 \mathrm{r} / \mathrm{min}$ Rated output: IP65 0.9 kW to 3.0 kW
Enclosure Enclosure : IP65

High inertia

Max. speed : $3000 \mathrm{r} / \mathrm{min}$ Rated output: IP65 1.0 kW to 5.0 kW Enclosure : IP65

<Cautions> Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Servo Motor

MSME, MDME, MGME, MHME

Design order

Symbol	Specifications
C	

C \quad IP65 motor (MSME, MDME, MGME, MHME)

1	IP65 motor (MSMJ, MHMJ)

Servo Driver

Speed, Position, Torque, Full-closed type		Torque, M A	D K T	50	$5 * * *$	- Special specifications	
Position control type		type ${ }^{\text {a }}$	D K T	5	$5 \mathrm{E} * *$	Special specifications	
Frame symbol *				Only position control			
Symbol	Frame	me		Supply voltage specifications		Current detector current rating	
MAD	Frame A					Symbol	Specifications
MBD	Frame B			Symbo	Specifications	07	7.5 A
MCD	Frame C			5	3 -phase, 200 V	10	10 A
MDD	Frame D				Single/3-phase, 200 V	20	20 A
MED				Power device Max. current rating		30	30 A
MFD						40	40 A
Series				Symbol	Current rating	64	64 A
				T1	10 A	90	90 A
	Symbol	Velocity, Position, Torque, Full-Closed typ	$\begin{gathered} \text { Position control } \\ \text { type } \end{gathered}$	T2	15 A	A2	120 A
				T3	30 A		
	K	A5 II series	A5 II E series	T5	50 A		
				T7	75 A		
				TA	100 A		
				тв	150 A		

A5 Family

Special Order Product 0.2 kW to 5.0 kW

<Cautions> Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.
<Cautions> Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications
Special Order Product
200 V MSMJ 200 W [Low inertia, Small capacity] -Please contact us to more intormation

Specifications

- Brake specifications (For details, refer to P. 183 This brake will be released when it is energized. | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 1.27 or more |
| :--- | :--- |

Engaging time (ms)	50 or less
Releasing time (ms) Noete4	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

2 The product that the end of driver model designation has " E " is "Position control type".
Detail of model designation, refer to P. 152 Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.>)

Special Order Product

200 V MSMJ 400 W [Low inertia, Small capacity]

A5 Family

Motor Specifications

Specifications

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Mass: Without brake/ 1.2 k
With brake 1.7 k

(a) Encoder connector (b) Brake connector (c) Motor connector
$\left[\begin{array}{c}\text { +1 Use hexagon socket head } \\ \text { screw for instalation. }\end{array}\right]$
<Key way, center tap shaft>

* Figures in [] represent the dimensions without brake.
$\begin{array}{lll}\text { <Cautions> } & \text { Reduce the moment of inertia ratio in figh speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the latest information. }\end{array}$ Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.
*igures in [] represent the dimensions without brake
[Unit: mm
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read tease insidrtuction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japa

A5 Family
Motor Specifications
Special Order Product
200 V MSMJ 750 W [Low inertia, Small capacity] -Please contact us to more intormation

Specifications

- Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion }

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	2.45 or more
Engaging time (ms)	70 or less
Releasing time (ms) Note) 4	20 or less
Exciting current (DC) (A)	0.42
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

- Permissible load (For details, refer to P. 183)

Luring assembly	Radial load P-direction (N)	686
	Thrust load A-direction (N)	294
	Thrust load B-direction (N)	392
During operation	Radial load P-direction (N)	392
	Thrust load A, B-direction (N)	147

2 The product that the end of driver model designation has " E " is "Position control type".
Detail of model designation, refer to $P 152$ Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
<1P65>
(a) Encoder connector
(b) Brake connector
$\left[\begin{array}{c}{\left[\begin{array}{c}\text { Use hexagon socket head } \\ \text { screw for instalalation. }\end{array}\right]}\end{array}\right.$

[Unit: mm]

Mass: Without brake/ 2.3 kg Without brakee 2.3 kg

* Figures in [] represent the dimensions without brake.
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MSME 1.0 kW [Low inertia, Middle capacity]

Specifications

			AC200 V	
Motor model	IP65		MSME102GC \square M	MSME102SC \square M
	IP67		-	-
Applicable driver *2	ModelNo.	A5II series	MDDKT5540	
		A5IE seris	MDDKT5540E	-
	Frame symbol		D-frame	
Power supply capacity			1.8	
Rated output			1000	
Rated torque			3.18	
Momentary Max. peak torque			9.55	
Rated current			6.6	
Max. current			28	
Regenerative brake frequency (times/min) Note) 1		Without	No limit Note)2	
		DVOP4284	No limit Note)2	
Rated rotational speed			3000	
Max. rotational speed			5000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without brake	2.03	
		With b	2.35	
Recommended moment of inertia ratio of the load and the rotor Note)3			15 times or less	
Rotary encoder specifications			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single			1048576	131072

A5 Family

Motor Specifications

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

Brake specifications (For details, refer to P. 183 $\left(\begin{array}{l}\text { This brake will be released when it is energized. } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right.$

| Static friction torque $(\mathrm{N} \cdot \mathrm{m})$ | 7.8 or more |
| :--- | :--- | Engaging time (ms)

C or more Releasing time (ms) No 50 riess Exciting current (DC) (A) Releasing voltage (DC) (V)
(v) $0.81 \pm 10 \%$ Exciting voltage (DC) (V)

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications:
2 The product that the end of driver model designation has " E " is "Position control type Detail of model designation, refer to P. 152.

Dimensions

(a) Encoder connector

Cautions> Reduce the moment
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MSME 1.5 kW [Low inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } \begin{tabular}{|l|l|}
\hline Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) \& 7.8 or more

\hline

\hline Engaging time (ms) \& 50 or less

\hline Releasing time (ms) Note) \& 15 or less

\hline Exciting current $(\mathrm{DC})(\mathrm{A})$ \& $0.81 \pm 10 \%$

\hline Releasing voltage $(\mathrm{DC})(\mathrm{V})$ \& 2 or more

\hline Exciting voltage $(\mathrm{DC})(\mathrm{V})$ \& 24 ± 2.4

\hline
\end{tabular}

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43.
1 Motor specifications:
2 The product that the end of driver model designation has " E " is "Position control type",
Detail of model designation, refer to $P 152$ Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage. $>$)

Dimensions
ClP65>
(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family

Motor Specifications

Specifications

				AC200 V	
Motor model		IP65		MSME202GC \square M	MSME202SC \square M
	IP67			-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	ModelNo.	A5II series		MEDKT7364	
		A5IE ser		MEDKT7364E	-
	Frame symbol			E-frame	
Power supply capacity			(kVA)	3.3	
Rated output			(W)	2000	
Rated torque			($\mathrm{N} \cdot \mathrm{m}$)	6.37	
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)	19.1	
Rated current			(A(rms))	11.3	
Max. current			(A(o-p))	48	
Regenerative brake frequency (times/min) Note)!		Without	toption	No limit Noete2	
		DVOP	4285	No limit Note)2	
Rated rotational speed		d	(r/min)	3000	
Max. rotational speed			(r/min)	5000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without	t brake	3.68	
		With b	brake		01
Recommended moment of inertia ratio of the load and the rotor Note) 3				15 times or less	
Rotary encoder specifications				$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.)

| Static friction torque $(\mathrm{N} \cdot \mathrm{m})$ | 7.8 or more |
| :--- | :--- | Engaging time (ms) Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V) Exiting voltage (DC) (V)

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector
brake
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions and iject to change without notice. Contact us or a dealer for the latestion Please avoid the Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Specifications

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage. $>$)

Dimensions

(b) Motor/Brake connector

Figures in [] represent the dimensions with brake
$\begin{array}{ll}\text { <Cautions> } & \text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the l }\end{array}$
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product
200 V MSME 3.0 kW [Low inertia, Middle capacity]

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | Static friction torque (N.m) | 11.8 or more |
| :--- | :--- |

Engaging time (ms)	80 or less
Releasing time (ms) Note)	15 or less
Exciting current $(\mathrm{DC})(\mathrm{A})$	$0.81 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type". Detail of model designation, refer to P. 152 .

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Static friction torque (N-m)	16.2 or more
Engaging time (ms)	110 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$0.90 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

For details of Note 1 to Note 5 , refer to P.182, P. 183 Dimensions of Driver, refer to P.45.
specifications. \square
. designation has " E " is "Position control type" Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connecto

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MSME 5.0 kW [Low inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) This brake wilt be released when it is energized. | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 16.2 or more |
| :--- | :--- | Engaging time (ms)

\square 10 or less Releasing time (ms) Note Exciting current (DC) (A) Releasing voltage (DC) (V)

(V) 50 or less | Releasing voltage (DC) (V) | 2 or more |
| :--- | :--- | - 24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector
(b) Motor/Brake connector

Figures in [] represent the dimensions with brake

<Cautions>	$\begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the }\end{array}$

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product
200 V MDME 1.0 kW [Middle inertia, Middle capacity]

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	4.9 or more

$$
\begin{aligned}
& \hline \text { Engaging time (ms) } \\
& \hline \text { Releasing time (ms) Not }
\end{aligned}
$$

ountess
ing time (ms) Nor
Exciting current (DC) (A)
Releasing voltage (DC) (V)
(V) or more

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connect

Figures in [] represent the dimensions with brake
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor , er curefully and undes tand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MDME 1.5 kW [Middle inertia, Middle capacity]

Specifications

		AC200 V	
Motor model	IP65	MDME152GC \square M	MDME152SC \square M
	IP67	-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II series	MDDKT5540	
	No. A5IIE series	MDDKT5540E	-
	Frame symbol	D-frame	
Power supply capacity (kVA)		2.3	
Rated output (W)		1500	
Rated torque (N.m)		7.16	
Momentary Max. peak torque (N.m)		21.5	
Rated current (A(rms))		9.4	
Max. current (A) $(0-\mathrm{p})$)		40	
Regenerative brake frequency (times/min) Note) 1	Without option	No limit Note)2	
	min) Note)1 DVOP4284	No limit Note)2	
Rated rotation	al speed (r/min)	2000	
Max. rotational speed (r/min)		3000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Pria Without brake	6.70	
	kg.m²) With brake		. 99
Recommended moment of inertia ratio of the load and the rotor Note)3		10 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn		1048576	131072

Brake specifications (For details, refer to P.183) This brake will be released when it is energized

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	13.7 or more
Engaging time (ms)	100 or less
Releasing time (ms) Notes)	50 or less
Exciting current (DC) (A)	$0.79 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43. *1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type". Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<|P65>

Mass: Without brake/ 6.7 kg Without brake/ 6.7 kg
With brake/ 8.2 kg Key way dimensions

(b) Motor/Brake connector

Cautions> Reduce the moment of *Figures in [] represent the dimensions with brake
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment contaiaing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MDME 2.0 kW [Middle inertia, Middle capacity]

Specifications

A5 Family

Motor Specifications

Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.

Static friction torque (N-m)	13.7 or more
Engaging time (ms)	100 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$0.79 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
 Mass: Without brake/ 8.0 k
With brake $/ 9.5 \mathrm{k}$ Key way dimensions

(b) Motor/Brake connecto
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Rease avoid the motor, or equipment containing the motor to be distributed to Japan ore using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MDME 3.0 kW [Middle inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	16.2 or more
Engaging time (ms)	110 or less
Releasing time (ms) Note) 4	50 or less
Exciting current (DC) (A)	$0.90 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P.183)
 For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.45. 1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connector

Mass: Without brake/ 11.0 kg With brake/ 12.6 kg Key way dimensions

<Cautions>

Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MDME 4.0 kW [Middle inertia, Middle capacity]

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.

| Static friction torque (N.m) | 24.5 or mor |
| :--- | :--- | Engaging time (ms)

- 80 or less Releasing time (ms) Nos) Exciting current (DC) (A) Releasing voltage (DC) (V)
(v) Exciting voltage (DC) (V)

Permissible load (Farn

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

2 The product that the end of driver model designation has " E " is "Position control type Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions Mass: Without brake/ 15.5 kg
With brake/ 18.7 k Key way dimensions

(b) Motor/Brake conne
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor or equipment containing the motor to be distributed to dapan ofe using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MDME 5.0 kW [Middle inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } \begin{tabular}{|l|l|}
\hline Static friction torque (N.m) \& 24.5 or more

\hline

\hline Engaging time (ms) \& 80 or less

\hline Releasing time (ms) Note) \& 25 or less

\hline Exciting current $(\mathrm{DC})(\mathrm{A})$ \& $1.3 \pm 10 \%$

\hline Releasing voltage $(\mathrm{DC})(\mathrm{V})$ \& 2 or more

\hline Exciting voltage $(\mathrm{DC})(\mathrm{V})$ \& 24 ± 2.4

\hline
\end{tabular}

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector

Cautions> Reduce the moment of inertia ratio if high represent the dimensions with brake.
Reduce the moment of inertia ratio inigh speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment contaiaing the motor to be distributed to Japan, or other regions through Japan.

A5 Family

Motor Specifications

Specifications

				AC200 V	
Motor model	IP65			MGME092GC \square M	MGME092SC \square M
	IP67			-	-
Applicable driver *2	$\begin{aligned} & \text { Model } \\ & \text { No. } \\ & \hline \text { Fra } \\ & \hline \end{aligned}$	A5II series		MDDKT5540	
		A5IE seris		MDDKT5540E	-
		Frame symbol		D-frame	
Power supply capacity (kVA)				1.8	
Rated output (W)				900	
Rated torque (N.m)				8.59	
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)				19.3	
Rated current (A(rms))				7.6	
Max. current (A(o-p))				24	
Regenerative brake frequency (times/(min) Note) 1		Without option		No limit Note)2	
		DVOP4	4284	No limit Note)2	
Rated rotational speed (r/min)		d	(r/min)	1000	
Max. rotational speed (r/min)				2000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without brake		6.70	
		With b	brake	7.99	
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

Brake specifications (For details, refer to P. 183) This brake will be released when it is energized. Engagin ($\mathrm{N} \cdot \mathrm{m}$) 13.7 or more Engaging time (ms)
m) 00 or les Releasing time (ms) Notele4 Exciting current (DC) (A) 50 or les Releasing voltage (DC) (V)
(V) $0.79 \pm 10 \%$ Exiting voltage (DC) (V)

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	686
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type"
Detail of model designation, Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connect

A5 Family
Motor Specifications
Special Order Product
200 V MGME 2.0 kW [Middle inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

Static friction torque (N-m)	24.5 or more
Engaging time (ms)	80 or less
Releasing time (ms) Notes 4	25 or less
Exciting current (DC) (A)	$1.3 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radia load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

* 1 Motor specifications: \square

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector

Cautions> * Figures in [] represent the dimensions with brake.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment contaiaing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MGME 3.0 kW [Middle inertia, Middle capacity]

A5 Family

Motor Specifications

Specifications

				AC200 V	
Motor model		IP65		MGME302GC \square M	MGME302SC \square M
		IP67		-	-
Applicable driver	$\begin{array}{\|l} \hline \begin{array}{l} \text { Model } \\ \text { No. } \end{array} \\ \hline F_{r} \end{array}$	A5II series		MFDKTB3A2	
		A5IE seris		MFDKTB3A2E	-
		Frame symbol		F-frame	
Power supply capacity			(kVA)		. 5
Rated output			(W)		000
Rated torque			(N.m)	28	8.7
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)		1.7
Rated current			(A(rms))	22	2.6
Max. current			(A(0-p))		30
Regenerative brake frequency (times/min) Note) 1		Without	toption	No limit Note)2	
		DVOP4	4285×2	No limit Note)2	
Rated rotational speed		d	(r/min)	10	00
Max. rotational speed		,	(r/min)	2000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without	t brake	48.4	
		With b	brake	49	9.2
Recommended moment of inertia ratio of the load and the rotor Note)3				10 times or less	
Rotary encoder specifications				$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Ahsolute } \end{gathered}$ Absolute
Resolution per single turn				1048576	131072

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

Static friction torque (N-m)	58.8 or more
Engaging time (ms)	150 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$1.4 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1470
	Thrust load A, B-direction (N)	490

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Mass: Without brake/ 20.0 k
With brake/ 23.5 k

Key way dimensions

(b) Motor/Brake connecto

* Figures in [] represent the dimensions with brake
$\begin{array}{ll}\text { <Cautions> } & \begin{array}{l}\text { Reduce the moment of inertia ratio if } \\ \text { Dimensions speed response operation is required. }\end{array} \\ & \text { simet to change without notice. Contact us or a dealer tor the }\end{array}$
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor, or equipment containing the motor to be distributed to rks before using the products.

A5 Family
Motor Specifications

Special Order Product
200 V MHMJ 200 W [High inertia, Small capacity]

Specifications

Brake specifications (For details, refer to P.183) $\left(\begin{array}{l}\text { This brake will be released when it is energized } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right.$

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	1.27 or more
Engaging time (ms)	50 or less
Releasing time (ms) Note) 4	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
 Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MHMJ 400 W [High inertia, Small capacity]

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.

Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	1.27 or more

Engaging time (ms)
\square 50 or less Reasing time (ms)
Note 4 15 or less Exciting current (DC) (A) 0.36 Releasing voltage (DC) (V)
(v) or more Exciting voliage (DC) (V)

Permis ible (for

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor or equipment containing the motor to be distributed to 放 before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MHMJ 750 W [High inertia, Small capacity]

Specifications

Motor model	IP65	AC200 V	
		MHMJ082G1 \square	MHMJ082S1 \square
	IP67	-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II series	MCDKT3520	
	No. A5IIE series	MCDKT3520E	-
	Frame symbol	C-frame	
Power supply capacity (kVA)		1.3	
Rated output (W)		750	
Rated torque (N.m)		2.4	
Momentary Max. peak torque (N.m)		7.1	
Rated current (A(rms))		4.0	
Max. current (A(o-p))		17.0	
Regenerative brake frequency (times/min) Note)	Without option	No limit Note)2	
	Smin) Note) ${ }^{\text {a }}$ DVOP4283	No limit Note)2	
Rated rotational speed (r/min)	al speed (r/min)	3000	
Max. rotational speed (r/min)		4500	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)	Without brake	1.51	
	kg.m²) With brake	1.61	
Recommended moment of inertia ratio of the load and the rotor Note)3		20 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn		1048576	131072

Brake specifications (For details, refer to P.183) $\left(\begin{array}{l}\text { This brake will be released when it is energized } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right.$

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	2.45 or more
Engaging time (ms)	70 or less
Releasing time (ms) Note) 4	20 or less
Exciting current (DC) (A)	0.42
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	686
	Thrust load A-direction (N)	294
	Thrust load B-direction (N)	392
During operation	Radial load P-direction (N)	392
	Thrust load A, B-direction (N)	147

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43. 1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<IP65>

(a) Encoder connector (b) Brake connector

 $\left[\begin{array}{c}\text { ri } \\ \text { Use hexagon socket head } \\ \text { screw for instalalation. }\end{array}\right]$
$80^{4-966^{-1}}$
<Key way, center tap shaft>

* Figures in [] represent the dimensions without brake. Without brakee 2.5 kg
With brake $/ 3.5 \mathrm{~kg}$

Mass: Without brake 25 k

Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MHME 1.0 kW [High inertia, Middle capacity]

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.

Static friction torque (N.m)	4.9 or more

Engaging time (ms)
4.9 or mor Engaging time (ms) Releasing time (ms) Notes)4 Exciting current (DC) (A) Releasing voltage (DC) (V) 70 Iess Exciting voltage (DC) (V)

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connecto
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor or equipment containing the motor to be distributed to rks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MHME 1.5 kW [High inertia, Middle capacity]

Specifications

		AC200 V	
Motor model	IP65	MHME152GC \square M	MHME152SC \square M
	IP67	-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II series	MDDKT5540	
	No. A5IIE series	MDDKT5540E	-
	Frame symbol	D-frame	
Power supply capacity (kVA)		2.3	
Rated output (W)		1500	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		7.16	
Momentary Max. peak torque (N-m)		21.5	
Rated current (A(rms))		9.4	
Max. current (A) $(0-\mathrm{p})$)		40	
Regenerative brake frequency (times/min) Note) 1	Without option	22	
	min) Note)1 DVOP4284	130	
Rated rotational speed (r/min)	al speed (r/min)	2000	
Max. rotational speed (r/min)		3000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	37.1	
	$\left.\mathrm{kg} \cdot \mathrm{m}^{2}\right)$ With brake	38.4	
Recommended moment of inertia ratio of the load and the rotor Note)3		5 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn		1048576	131072

Brake specifications (For details, refer to P.183) This brake will be released when it is energized | Static friction torque (N.m) | 13.7 or more |
| :--- | :--- | Engaging time (ms) Releasing time (ms) Notel4 Exciting current (DC) (A) Releasing voltage (DC) (V) Exciting voltage (DC) (V)

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43.

* 1 Motor specifications: \square
he product that the end of driver model designation has " E " is "Position control type",
Detail of model designation, refer to $P 152$ Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector
(b) Motor/Brake connector

Mass: Without brake/ 8.6 kg
With brake $/ 10.1 \mathrm{~kg}$ With brake/ 10.1 kg Key way dimensions

$\begin{array}{ll}\text { <Cautions> } & \begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice Contact us or a dealer for the }\end{array}\end{array}$
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MHME 2.0 kW [High inertia, Middle capacity]

A5 Family

Motor Specifications

Specifications

			AC200 V	
Motor model ${ }_{* 1}$	IP65		MHME202GC \square M	MHME202SC \square M
	IP67		-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model No.	A5II seris	MEDKT7364	
		A5IE seris	MEDKT7364E	-
	Frame symbol		E-frame	
Power supply capacity			3.3	
Rated output			2000	
Rated torque			9.55	
Momentary Max. peak torque			28.6	
Rated current			11.1	
Max. current			47	
Regenerative brake frequency (times/min) Note)!		Without	45	
		DVOP4285	142	
Rated rotational speed		-	2000	
Max. rotational speed			3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without	57.8	
		With b		9.6
Recommended moment of inertia			5 times or less	
Rotary encoder specifications			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute Absolute
	esolution	per sing	1048576	131072

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

| Static friction torque $(\mathrm{N} \cdot \mathrm{m})$ | 24.5 or more |
| :--- | :--- | Engaging time (ms)

- 80 or less Releasing time (ms) Noote4 Exciting current (DC) (A) Releasing voltage (DC) (V)
(v) 25 or less Exciting voltage (DC) (V)
- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
Luring operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

2 The product that the end of driver model designation has " E " is "Position control type Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connecto

* Figures in [] represent the dimensions with brake
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor Mal carefully and understand all precalions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MHE 3.0 kW [High inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } \begin{tabular}{|l|l|}
\hline Static friction torque (N.m) \& 24.5 or more

\hline

\hline Engaging time (ms) \& 80 or less

\hline Releasing time (ms) Note) \& 25 or less

\hline Exciting current $(\mathrm{DC})(\mathrm{A})$ \& $1.3 \pm 10 \%$

\hline Releasing voltage $(\mathrm{DC})(\mathrm{V})$ \& 2 or more

\hline Exciting voltage $(\mathrm{DC})(\mathrm{V})$ \& 24 ± 2.4

\hline
\end{tabular}

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector
(b) Motor/Brake connecto

Figures in [] represent the dimensions with brake
$\begin{array}{ll}\text { <Cautions> } & \text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice }\end{array}$
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MHME 4.0 kW [High inertia, Middle capacity]

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

| Static friction torque $(\mathrm{N} \cdot \mathrm{m})$ | 24.5 or more |
| :--- | :--- | Engaging time (ms)

- 80 or less Releasing time (ms) Note) Exciting current (DC) (A) Releasing voltage (DC) (V)
(v) 25 or less Exciting voltage (DC) (V)

Permissible load (For detais,

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

2 The product that the end of driver model designation has " E " is "Position control type Detail of model designation, refer to P.152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
Mass: Without brake/ 18.6 210.5[239.5] ${ }^{80}$ With brake/ 21.8 kg

<lP65>

Key way dimensions

(b) Motor/Brake connecto
rigures in [] represent the dimensions with brake.

* Figures in [] represent the dimensions with brake

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a deal Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MHME 5.0 kW [High inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P. 183) This brake wift be released when it is energized. (Do not use this for braking the motor in motion.) | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 24.5 or more |
| :--- | :--- | Engaging time (ms) Releasing time (ms) Notele Exciting current (DC) (A) Releasing voltage (DC) (V) Exiting voltage (DC) (V)

- Permissible load (For details, refer to P.183)

Luring assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

- For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.45. * 1 Motor specifications: \square

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector

Cautions> * Figures in [] represent the dimensions with brake
<Cautions>
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Environmental Conditions

| Item | Conditions |
| :--- | :---: | :---: |
| Ambient temperature ${ }^{* 1}$ | |

*1 Ambient temperature to be measured at 5 cm away from the motor.
*2 Permissible temperature for short duration such as transportation.
*3 These motors conform to the test conditions specified in EN standards (EN60529, EN60034-5). Do not use these motors in applica tion where water proof performance is required such as continuous wash-down operation.
Air condition is applied when the connector mounting screw are tightened to the recommended tightening torque.
Air containing water vapor will become saturated with water vapor as the temperature falls, causing dew

<Note>

Initial setup of rotational direction:
positive $=\mathrm{CCW}$ and negative $=\mathrm{CW}$.
Pay an extra attention
Positive direction
(CCW)
(CW)

Notes on [Motor specification] page

Note) 1. [At AC100 V of power voltage]
Regenerative brake frequency represents the frequency of the motor's stops from the rated speed with deceleration without load.

- If the load is connected, frequency will be defines as $1 /(m+1)$, where $m=l o a d$ moment of inertia rotor moment of inertia.
-When the motor speed exceeds the rated speed, regenerative brake frequency is in inverse proportion to the square of (running speed/rated speed).
Power supply voltage is AC 115 V (at 100 V of the main voltage).
If the supply voltage fluctuates, frequency is in inverse proportion to the square of (Running supply voltage/115) relative to the value in the table.
When regeneration occurs continuously such cases as running speed frequently changes or vertical feeding, consult us or a dealer.

[At AC200 V of power voltage]

Regenerative brake frequency represents the frequency of the motor's stops from the rated speed with deceleration without load

- If the load is connected, frequency will be defines as $1 /(m+1)$, where $m=l o a d$ moment of inertia rotor moment of inertia
When the motor speed exceeds the rated speed, regenerative brake frequency is in invers proportion to the square of (running speed/rated speed).
- Power supply voltage is AC230 V (at 200 V of the main voltage).

If the supply voltage fluctuates, frequency is in inverse proportion to the square of (Running supply voltage $/ 230$) relative to the value in the table.
When regeneration occurs continuously such cases as running speed frequently changes or vertical feeding, consult us or a dealer.

A5 Family

[At AC400 V of power voltage]

Regenerative brake frequency represents the frequency of the motor's stops from the rated speed with deceleration without load.

- If the load is connected, frequency will be defines as $1 /(m+1)$, where $m=l o a d$ moment of inertia rotor moment of inertia.
- When the motor speed exceeds the rated speed, regenerative brake frequency is in inverse proportion to the square of (running speed/rated speed).
- Power supply voltage is AC460 V (at 400 V of the main voltage).

If the supply voltage fluctuates, frequency is in inverse proportion to the square of (Running supply voltage/460) relative to the value in the table.
When regeneration occurs continuously such cases as running speed frequently changes or vertical feeding, consult us or a dealer
Note) 2. If the effective torque is within the rated torque, there is no limit in generative brake
Note) 3. Consult us or a dealer if the load moment of inertia exceeds the specified value.
Note) 4. Releasing time values represent the ones with DC-cutoff using a varistor.
Note) 5. The 17-bit absolute encoder can also be used as a 17-bit incremental encoder.

Permissible Load at Output Shaft

The radial load is defined as a load applied to the output shaft in the right angle direction. This load is generated when the gear head is coupled to the machine using a chain, belt, etc., but not when the gear head is directly connected to the coupling. As shown in the right figure, the permissible value is determined based on the load applied to the L/2 position of the output shaft. The thrust load is defined as a load applied to the output shaft in the axial direction.
Because the radial load and thrust load significantly affect the life of the bearing, take care not to allow the load during operation to exceed the permissible radial load and thrust load shown in the table below.

Thrust load (A and B) direction

Built-in Holding Brake

In the applications where the motor drives the vertical axis, this brake would be used to hold and prevent the work (moving load) from falling by gravity while the power to the servo is shut off

Use this built-in brake for "Holding" purpose only, that is to hold the stalling status.

Never use this for "Brake" purpose to stop the load in motion.

Output Timing of BRK-OFF Signa

- For the brake release timing at power-on, or braking timing at Servo-OFF/Servo-Alarm while the motor is in motion, refer to the Operating Instructions (Overall).
With the parameter, Pr4.38 (Setup of mechanical brake action while the motor is in motion), you can set up a time between when the motor enters to a free-run from energized status and when BRK-OFF signa turns off (brake will be engaged), when the Servo-OFF or alarm occurs while the motor is in motion. Fo details, download a copy of the instruction manual from our website.
<Note>

1. The lining sound of the brake (chattering and etc.) might be generated while running the motor with built-in brake, however this does not affect any functionality.
2. Magnetic flux might be generated through the motor shaft while the brake coil is energized (brake is open). Pay an extra attention when magnetic sensors are used nearby the motor.

- Specifications of Built-in Holding Brake

Motor series	Motor output	Static friction torque $\mathrm{N} \cdot \mathrm{m}$	$\begin{gathered} \text { Rotor } \\ \text { inertia } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \end{gathered}$	Engaging time ms	$\begin{gathered} \text { Releasing } \\ \text { time } \\ \mathrm{ms} \end{gathered}$	Exciting current DCA (at cool-off)	$\substack{\text { Releasing } \\ \text { voltage } \\ \text { DC V }}$ Exciting voltage DC V	Permissible work (J) per one braking	Permissible total work $\times 10^{3} \mathrm{~J}$	Permissible angular acceleration $\mathrm{rad} / \mathrm{s}^{2}$
MSMD	$50 \mathrm{~W}, 100 \mathrm{~W}$	0.29 or more	0.002	35 or less	20 or less	0.3	$\frac{1 \mathrm{~V} \text { or more }}{24 \pm 1.2}$	39.2	4.9	30000
	$200 \mathrm{~W}, 400 \mathrm{~W}$	1.27 or more	0.018	50 or less	15 or less	0.36		137	44.1	
	750 W	2.45 or more	0.075	70 or less	20 or less	0.42		196	147	
MSME	$50 \mathrm{~W}, 100 \mathrm{~W}$	0.29 or more	0.002	35 or less	20 or less	0.3	$\begin{array}{r} 1 \mathrm{~V} \text { or more } \\ 24 \pm 1.2 \end{array}$	39.2	4.9	30000
	$200 \mathrm{~W}, 400 \mathrm{~W}$	1.27 or more	0.018	50 or less	15 or less	0.36		137	44.1	
	750 W (200 V)	2.45 or more	0.075	70 or less	20 or less	0.42		196	147	
	$750 \mathrm{~W}(400 \mathrm{~V})$	2.5 or more	0.33	50 or less	$\begin{gathered} 15 \text { or less } \\ (100) \end{gathered}$	0.7	$\frac{2 \mathrm{~V} \text { or more }}{24 \pm 2.4}$	392	490	10000
	$\begin{gathered} 1.0 \mathrm{~kW}, 1.5 \mathrm{~kW}, \\ 2.0 \mathrm{~kW} \end{gathered}$	7.8 or more				0.81				
	3.0 kW	11.8 or more		80 or less						
	$4.0 \mathrm{~kW}, 5.0 \mathrm{~kW}$	16.2 or more	1.35	110 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.9		1470	2200	
MDME	$\begin{aligned} & 400 \mathrm{~W}(400 \mathrm{~V}), \\ & 600 \mathrm{~W}(400 \mathrm{~V}) \end{aligned}$	2.5 or more	1.35	50 or less	15 or less	0.7	$\frac{24 \pm 2.4}{2 \mathrm{~V} \text { or more }}$	392	490	10000
	1.0 kW	4.9 or more		80 or less	$\begin{gathered} 70 \text { or less } \\ (200) \end{gathered}$	0.59		588	780	
	$1.5 \mathrm{~kW}, 2.0 \mathrm{~kW}$	13.7 or more		100 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.79		1176	1500	
	3.0 kW	16.2 or more		110 or less		0.9		1470	2200	
	4.0 kW, 5.0 kW	24.5 or more	4.7	80 or less	$\begin{gathered} 25 \text { or less } \\ (200) \end{gathered}$	1.3		1372	2900	5440
	7.5 kW	58.8 or more		150 or less	50 or less	1.4				5000
	$11.0 \mathrm{~kW}, 15.0 \mathrm{~kW}$	100 or more	7.1	300 or less	140 or less	1.08		2000	4000	3000
MFME	1.5 kW	7.8 or more	4.7	80 or less	35 or less	0.83	$\begin{array}{r} 24 \mathrm{~V} \text { or more } \\ 24.2 .4 \end{array}$	1372	2900	10000
	2.5 kW	21.6 or more	8.75	150 or less	100 or less	0.75		1470	1500	
	4.5 kW	31.4 or more							2200	
MGME	0.9 kW	13.7 or more	1.35	100 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.79	2 V or more	1176	1500	10000
	2.0 kW	24.5 or more	4.7	80 or less	$\begin{aligned} & 25 \text { or less } \\ & (2000) \end{aligned}$	1.3		1372	2900	5440
	3.0 kW	58.8 or more		150 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	1.4				
	4.5 kW, 6.0 kW				50 or less					5000
MHMD	$200 \mathrm{~W}, 400 \mathrm{~W}$	1.27 or more	0.018	50 or less	15 or less	0.36	1 V or more	137	44.1	
MHMJ	750 W	2.45 or more	0.075	70 or less	20 or less	0.42	24 ± 1.2	196	147	300
MHME	1.0 kW	4.9 or more	1.35	80 or less	$70 \text { or less }$	0.59	$\frac{2 \mathrm{~V} \text { or more }}{24 \pm 2.4}$	588	780	10000
	1.5 kW	13.7 or more		100 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.79		1176	1500	
	2.0 kW $\sim 5.0 \mathrm{~kW}$	24.5 or more	4.7	80 or less	$25 \text { or less }$ (200)	1.3		1372	2900	5440
	7.5 kW	58.8 or more		150 or less	50 or less	1.4				5000

- Releasing time values represent the ones with DC-cutoff using a varistor.

Values in () represent those measured by using a diode (V03C by Hitachi, Ltd.)

- Above values (except static friction torque, releasing voltage and excitation current) represent typical values - Backlash of the built-in holding brake is kept $\pm 1^{\circ}$ or smaller at ex-factory point.
- Service life of the number of acceleration/deceleration with the above permissible angular acceleration is more than 10 million times. (Life end is defined as when the brake backlash drastically changes.)

Cable part No. Designation

Encoder Cable

Cable end (Driver side)
D \quad Connector (Incrementa)
E \quad Connector (Absolute)
M Connector (MSMD, MHMD)

Motor Cable, Brake Cable

Sectional area of cable core | 0 | $0.75 \mathrm{~mm}^{2}$ |
| :---: | :---: |
| 1 | $1.25 \mathrm{~mm}^{2}$ |
| 2 | $2.0 \mathrm{~mm}^{2}$ |
| 3 | $3.5 \mathrm{~mm}^{2}$ |

Cable end at driver side
D Rod terminal

D	Rod terminal
T	Clamp

T Clamp terminal

- Cable end at motor side

C S type cannon plug
E Tyco Electronics connector
J Japan Aviation Electronics Industry, Ltd. connector (Direction of motor shatt)
Japan Aviation Electronics Industry, Ltd. connector

Cable type

E \quad ROBO-TOP ${ }_{\text {P }} 4$-wire by DYDEN CORPORATION \begin{tabular}{c|l}
E \& ROBO-TOP $_{\circledast} 4$-wire by DYDEN CORPORATION

F \& ROBO-TOP $_{\oplus} 6$-wire by DYDEN CORPORATION

 G ROBO-TOP ${ }_{\oplus}$ 2-wire by DYDEN CORPORATION N 4 -wire by Hitachi Cable, Ltd. (Highly bendable type)

R \& 4 -wire by Hitachi Cable, Ltd. (Standard bendable type)

\hline

R \& 4-wire by Hitachi Cable, Ltd. (Standard bendable type)

\hline P \& 2-wire by Hitachi Cable, Ltd. (Highly bendable type)

S \& 2-wire by Hitachi Cable, Ltd. (Standard bendable type)

\hline
\end{tabular} ROBO-TOPs is a trade mark of DYDEN CORPORATION

Specifications of Motor connector

A5 Family

- When the motors of <MSMD, MHMD, MSMJ, MHMJ> are used, they are connected as shown below.
Connector: Made by Tyco Electronics (The figures below show connectors for the motor.)

172168-1
0 -bit Incremental

PIN No.	Application
1	NC
2	PS
3	$\overline{\text { PS }}$
4	E5V
5	EOV
6	FG(SHIELD $)$

<Remarks> Do not connect anything to NC.

PIN No.				Application
1	BAT+			
2	BAT-			
3	FG(SHIELD)			
4	PS			
	PS			
6	NC			
7	E5V			
8	EOV			
9	NC			

<Connector for motor>

<Connector for brake>


```
\begin{tabular}{|c|c|c|}
\hline PIN No. Application \\
\hline 1 & *lectromagnetic brake \\
is a nonpolar device
\end{tabular}
``` 2 Brake is a nonpolar device.
- When the motors of <MSME (50 W to \(750 \mathrm{~W}(200 \mathrm{~V})\))> are used, they are connected as shown below.
Connector: Made by Japan Aviation Electronics Industry, Ltd. (The figures below show connectors for the motor.)
* Do not remove the gasket supplied with the junction cable connector. Securely install the gasket in place. Otherwise the degree of protection of IP67 will not be guaranteed
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{20-bit Incremental} & \multicolumn{2}{|l|}{17-bit Absolute} \\
\hline & & PIN No. & Application & PIN No. & Application \\
\hline \multirow[t]{2}{*}{\({ }_{1}^{1}\) Connector for encoder} & \multirow[t]{2}{*}{\[
\frac{1}{2} \quad \frac{5}{6}
\]} & 1 & FG(SHIELD) & 1 & FG(SHIELD) \\
\hline & & 2 & - & 2 & BAT- \\
\hline \multirow[t]{5}{*}{} & & 3 & EOV & 3 & EOV \\
\hline & 4 进 7 & 4 & PS & 4 & PS \\
\hline & \multirow[t]{3}{*}{JN6CR07PM2} & 5 & - & 5 & BAT+ \\
\hline & & 6 & E5V & 6 & E5V \\
\hline & & 7 & PS & 7 & PS \\
\hline
\end{tabular}

Tightening torque of the screw (M2) \(0.19 \mathrm{~N} \cdot \mathrm{~m}\) to \(0.21 \mathrm{~N} \cdot \mathrm{~m}\) to avoid damage.

\begin{tabular}{|c|c|}
\hline PIN No. & Application \\
\hline 1 & U-phase \\
\hline 2 & V-phase \\
\hline 3 & W-phase \\
\hline PE & Ground \\
\hline
\end{tabular}

Tightening torque of the screw (M2) \(0.085 \mathrm{~N} \cdot \mathrm{~m}\) to \(0.095 \mathrm{~N} \cdot \mathrm{~m}\) Tightening torque of
(screwed to plastic)
*Be sure to use only the screw supplied with the connector, to avoid damage.
[Motor with brake]
Connector for brake

```

PIN No. Application

```
\begin{tabular}{|l|l|l}
\hline 1 & Brake & \(*\) \\
\hline 2 & Electromagnetic brake is \\
a nonpolar device. \\
\hline
\end{tabular}

Tightening torque of the screw (M2) \(0.19 \mathrm{~N} \cdot \mathrm{~m}\) to \(0.21 \mathrm{~N} \cdot \mathrm{~m}\) Be sure to use only the screw supplied with the connector, to avoid damage.
- When the motors of <MSME (\(750 \mathrm{~W}(400 \mathrm{~V}\)), 1.0 kW to 5.0 kW), MDME, MGME, MHME> are used, they are connected as shown below.
Connector: Made by Japan Aviation Electronics Industry, Ltd. (The figures below show connectors for the motor.)

\section*{- Connector for encoder}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{5}{*}{IP65 motor Connector for encoder (Large type)} & \multicolumn{4}{|l|}{<Encoder connector for IP65 motor>} & \multicolumn{4}{|l|}{<Encoder connector for IP67 motor>} \\
\hline & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{\(\bigcirc \stackrel{\circ}{\circ}{ }^{\circ}\)}} & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{\(\square\)}} \\
\hline & & & & & & & & \\
\hline & \multicolumn{4}{|c|}{} & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{}} \\
\hline & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{}} & & & & \\
\hline 1 - & & & & & \multicolumn{4}{|c|}{8990)} \\
\hline 1 & \multicolumn{4}{|c|}{N/MS3102A20-29P} & \multicolumn{4}{|c|}{JN2AS10ML3-R} \\
\hline & \multicolumn{2}{|l|}{20-bit Incremental} & \multicolumn{2}{|l|}{17-bit Absolute} & \multicolumn{2}{|l|}{20-bit Incremental} & \multicolumn{2}{|l|}{17-bit Absolute} \\
\hline & PIN No. & Application \\
\hline \multirow[b]{9}{*}{\begin{tabular}{l}
IP67 motor \\
Connector for encoder (Small type)
\end{tabular}} & A & NC & A & NC & 1 & EOV & 1 & EOV \\
\hline & B & NC & B & NC & 2 & NC & 2 & NC \\
\hline & C & NC & C & NC & 3 & PS & 3 & PS \\
\hline & D & NC & D & NC & 4 & E5V & 4 & E5V \\
\hline & E & NC & E & NC & 5 & NC & 5 & BAT- \\
\hline & F & NC & F & NC & 6 & NC & 6 & BAT+ \\
\hline & G & EOV & G & EOV & 7 & PS & 7 & PS \\
\hline & H & E5V & H & E5V & 8 & NC & 8 & NC \\
\hline & \(J\) & FG(SHIELD) & J & FG(SHIELD) & 9 & FG(SHIELD) & 9 & FG(SHIELD) \\
\hline \multirow{8}{*}{} & K & PS & K & PS & 10 & NC & 10 & NC \\
\hline & L & PS & L & PS & & & & \\
\hline & M & NC & M & NC & & & & \\
\hline & N & NC & N & NC & & & & \\
\hline & P & NC & P & NC & & & & \\
\hline & R & NC & R & NC & \multicolumn{4}{|l|}{\multirow[b]{2}{*}{<Remarks>}} \\
\hline & S & NC & S & BAT- & & & & \\
\hline & T & NC & T & BAT+ & Do not & connect an & thing to & NC. \\
\hline
\end{tabular}
- Connector for motor/brake

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Part No. & MFECA0** 0EAM & Compatible motor output & MSMD MSMJ & 50 W to 750 W , 200 W to 750 W , & \[
\begin{aligned}
& \text { MHMD } \\
& \text { MHMJ }
\end{aligned}
\] & 200 W to 750 W 200 W to 750 W \\
\hline Specifications & \multicolumn{6}{|l|}{For 20-bit incremental encoder (Without battery box)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L (m) & Part No. \\
\hline Connector (Driver side) & 3E206-0100 KV & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & 3 & MFECA0030EAM \\
\hline Shell kit & 3Е306-3200-008 & & 5 & MFECA0050EAM \\
\hline Connector (Motor side) & 172160-1 & \multirow[b]{2}{*}{Tyco Electronics} & 10 & MFECA0100EAM \\
\hline Connector pin & 170365-1 & & 20 & MFECA0200EAM \\
\hline Cable & \(0.20 \mathrm{~mm}^{2} \times 3 \mathrm{P}\) (6 -wire) & Oki Electric Cable Co., Ltd. & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Part No. & MFECAO** OEAE & Compatible motor output & \[
\begin{aligned}
& \text { MSMD } \\
& \text { MSM. }
\end{aligned}
\] & 50 W to 750 W , 200 W to 750 W , & \[
\begin{aligned}
& \text { MHMD } \\
& \text { MHMJ }
\end{aligned}
\] & 200 W to 750 W 200 W to 750 W \\
\hline Specitications & \multicolumn{6}{|l|}{For 17-bit absolute encoder (With battery box) *} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L (m) & Part No. \\
\hline Connector (Driver side) & 3E206-0100 KV & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & 3 & MFECA0030EAE \\
\hline Shell kit & ЗЕ306-3200-008 & & 5 & MFECA0050EAE \\
\hline Connector (Motor side) & 172161-1 & \multirow[b]{2}{*}{Tyco Electronics} & 10 & MFECA0100EAE \\
\hline Connector pin & 170365-1 & & 20 & MFECA0200EAE \\
\hline Cable & \(0.20 \mathrm{~mm}^{2} \times 4 \mathrm{P}\) (8-wire) & Oki Electric Cable Co., Ltd. & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Part No. & MFECAO** 0EAD & Compatible motor output & MSMD MSMJ & 50 W to 750 W , 200 W to 750 W , & \begin{tabular}{l}
MHMD \\
MHMJ
\end{tabular} & 200 W to 750 W 200 W to 750 W \\
\hline Specicications & \multicolumn{6}{|l|}{For 17-bit incremental encoder (Without battery box)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow{4}{*}{Part No.} & MFECA0 * * OMJD (Highly bendable type, Direction of motor shaft) & \multirow{4}{*}{Compatible motor output} & \multirow{4}{*}{\begin{tabular}{l}
MSME \\
50 W to 750 W (200 V)
\end{tabular}} \\
\hline & MFECAO * * OMKD (Highly bendable type, Opposite direction of motor shaft) & & \\
\hline & MFECA0 * OTJD (Standard bendable type, Direction of motor shaft) & & \\
\hline & MFECA0 * * OTKD (Standard bendable type, Opposite direction of motor shatt) & & \\
\hline
\end{tabular}
\begin{tabular}{l|l|}
\hline Specifications & For 20-bit incremental encoder (Without battery box) * 17bit-use is possible
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow{4}{*}{Part No.} & MFECA0 * 0 OMJE (Highly bendable type, Direction of motor shaft) & \multirow{4}{*}{Compatible motor output} & \multirow{4}{*}{\begin{tabular}{l}
MSME \\
50 W to 750 W \\
(200 V)
\end{tabular}} \\
\hline & MFECAO * * OMKE (Highly bendable type, Opposite direction of motor shaft) & & \\
\hline & MFECA0 * * OTJE (Standard bendable type, Direction of motor shaft) & & \\
\hline & MFECAO ** OTKE (Standard bendable type, Opposite direction of motor shaft) & & \\
\hline Specifications & \multicolumn{3}{|l|}{For 17-bit absolute encoder (With battery box) *} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L (m) & Part No.(ex.) \\
\hline Connector (Driver side) & 3E206-0100 KV & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & 3 & MFECA0030MJE \\
\hline Shell kit & ЗЕ306-3200-008 & & 5 & MFECA0050MJE \\
\hline Connector (Motor side) & JN6FR07SM1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & 10 & MFECA0100MJE \\
\hline Connector pin & LYY0-C1-A1-10000 & & 20 & MFECA0200MJE \\
\hline Cable & AWG24 4-wire, AWG22 2-wire (05.5) & Hitachi Cable, Ltd. & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Part No. & MFECAO **0ESD & \begin{tabular}{c}
Compatible \\
motor output
\end{tabular} & \begin{tabular}{l}
MDME 400 W(400 V), MDME \(600 \mathrm{~W}(400 \mathrm{~V})\) \\
MSME \(750 \mathrm{~W}(400 \mathrm{~V})\) \\
0.9 kW to 15.0 kW (IP65 Motor)
\end{tabular} \\
\hline Specifications & For 20-bit incremental encoder (Without battery box) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L (m) & Part No. \\
\hline Connector (Driver side) & 3E206-0100 KV & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & 3 & MFECA0030ESD \\
\hline Shell kit & 3E306-3200-008 & & 5 & MFECA0050ESD \\
\hline Connector (Motor side) & N/MS3106B20-29S & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & 10 & MFECA0100ESD \\
\hline Cable clamp & N/MS3057-12A & & 20 & MFECA0200ESD \\
\hline Cable & \(0.2 \mathrm{~mm}^{2} \times 3 \mathrm{P}\) (6-wire) & Oki Electric Cable Co., Ltd. & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Part No. & MFECA0 * * 0ETD & \begin{tabular}{c}
Compatible \\
motor output
\end{tabular} & \begin{tabular}{l}
MDME 400 W(400 V), MDME 600 W(400 V), \\
MSME 750 W(400 V) \\
0.9 kW to 15.0 kW (IP67 Motor)
\end{tabular} \\
\hline Specifications & \multicolumn{1}{|l|}{ For 20-bit incremental encoder (Without battery box) } \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L (m) & Part No. \\
\hline Connector (Driver side) & 3E206-0100 KV & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & 3 & MFECA0030ESE \\
\hline Shell kit & 3Е306-3200-008 & & 5 & MFECA0050ESE \\
\hline Connector (Motor side) & N/MS3106B20-29S & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & 10 & MFECA0100ESE \\
\hline Cable clamp & N/MS3057-12A & & 20 & MFECA0200ESE \\
\hline Cable & \(0.2 \mathrm{~mm}^{2} \times 4 \mathrm{P}\) (8-wire) & Oki Electric Cable Co., Ltd. & & \\
\hline
\end{tabular}

* Battery is not included. Please buy the absolute encoder battery "DVOP2990" separately.

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L (m) & Part No. \\
\hline Connector (Driver side) & 3E206-0100 KV & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & 3 & MFECA0030ETE \\
\hline Shell kit & 3Е306-3200-008 & & 5 & MFECA0050ETE \\
\hline Connector (Motor side) & JN2DS10SL1-R & \multirow[t]{2}{*}{Japan Aviation Electronics Ind} & 10 & MFECA0100ETE \\
\hline Connector pin & JN1-22-22S-PKG100 & & 20 & MFECA0200ETE \\
\hline Cable & \(0.2 \mathrm{~mm}^{2} \times 3 \mathrm{P}\) (6-wire) & Oki Electric Cable Co., Ltd. & & \\
\hline
\end{tabular}

Options
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Part No.} & \multirow[t]{2}{*}{MFMCAO** OEED} & \multirow[t]{2}{*}{Applicable model} & MSMD & 50 W to 750 W , & MHMD & 200 W to 750 W \\
\hline & & & MSMJ & 200 W to 750 W , & MHMJ & 200 W to 750 W \\
\hline
\end{tabular} (50)
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L(m) & Part No. \\
\hline Connector & 172159-1 & \multirow[b]{2}{*}{Tyco Electronics} & 3 & MFMCA0030EED \\
\hline Connector pin & 170366-1 & & 5 & MFMCA0050EED \\
\hline Rod terminal & Al0.75-8GY & Phoenix Contact & 10 & MFMCA0100EED \\
\hline Nylon insulated round terminal & N1.25-M4 & J.S.T Mfg. Co., Ltd. & 20 & MFMCA0200EED \\
\hline Cable & ROBO-TOP \(600 \mathrm{~V} 0.75 \mathrm{~mm}^{2} 4\)-wire & DYDEN CORPORATION & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline MFMCAO * * ONJD (Highy bendable type, Direcion of motor shat) & \multirow{4}{*}{Applicable model} & MSME 50 W to 750 W (200 \\
\hline MFMCAO * * ONKD (Highly bendable type, Opposite direction of motor shatt) & & MSME 200 W to \(750 \mathrm{~W}(200 \mathrm{~V})\) \\
\hline MFMCAO * * ORJD (Standard bendable type, Direction of motor shatt) & & MSME 50 W to \(750 \mathrm{~W}(200 \mathrm{~V})\) \\
\hline MFMCAO * * ORKD (Standard bendable type, Opposite direction of motor shaft) & & MSME 200 W to 750 W (200) \\
\hline
\end{tabular}
\(\substack{\text { Direction of } \\ \text { motor shaft }}\)
Opposite direction of
motor shaft

Caution - ;
ot coble for oposite direction of motor shaft cannot be used with a motor 50 W and 100 W .
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L(m) & Part No.(ex.) \\
\hline Connector & JN8FT04SJ1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & 3 & MFMCA0030NJD \\
\hline Connector pin & ST-TMH-S-C1B-3500 & & 5 & MFMCA0050NJD \\
\hline Rod terminal & Al0.75-8GY & Phoenix Contact & 10 & MFMCA0100NJD \\
\hline Nylon insulated round terminal & N1.25-M4 & J.S.T Mfg. Co., Ltd. & 20 & MFMCAO200NJD \\
\hline Cable & AWG18 4-wire (06.7) & Hitachi Cable, Ltd. & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Part No. & MFMCAO **2ECD & \(\begin{array}{l}\text { Applicable } \\
\text { model }\end{array}\) & MFME \(1.5 \mathrm{~kW}(200 \mathrm{~V})\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L (m) & Part No. \\
\hline Connector & JL04V-6A20-18SE-EB-R & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & 3 & MFMCA0032ECD \\
\hline Cable clamp & JL04-2022CK(14)-R & & 5 & MFMCA0052ECD \\
\hline Rod terminal & NTUB-2 & \multirow[b]{2}{*}{J.S.T M Mg. Co., Ltd.} & 10 & MFMCA0102ECD \\
\hline Nylon insulated round terminal & N2-M4 & & 20 & MFMCA0202ECD \\
\hline Cable & ROBO-TOP 600V 2.0mm \({ }^{2}\) 4-wire & DYDEN CORPORATION & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L (m) & Part No. \\
\hline Connector & JL04V-6A20-4SE-EB-R & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & 3 & MFMCD0032ECD \\
\hline Cable clamp & JL04-2022CK(14)-R & & 5 & MFMCD0052ECD \\
\hline Rod terminal & NTUB-2 & \multirow[b]{2}{*}{J.S.T M Mg. Co., Ltd.} & 10 & MFMCD0102ECD \\
\hline Nylon insulated round terminal & N2-M4 & & 20 & MFMCD0202ECD \\
\hline Cable & ROBO-TOP \(600 \mathrm{~V} 2.0 \mathrm{~mm}^{2} 4\)-wire & DYDEN CORPORATIO & & \\
\hline
\end{tabular}
```

Part No. MFMCEO**2ECD Applicable MHME 2.0kW

```

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L (m) & Part No. \\
\hline Connector & JL04V-6A22-22SE-EB-R & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & 3 & MFMCE0032ECD \\
\hline Cable clamp & JL04-2022CK(14)-R & & 5 & MFMCE0052ECD \\
\hline Rod terminal & NTUB-2 & \multirow[b]{2}{*}{J.S.T Mfg. Co., Ltd.} & 10 & MFMCE0102ECD \\
\hline Nylon insulated round terminal & N2-M4 & & 20 & MFMCE0202ECD \\
\hline Cable & ROBO-TOP \(600 \mathrm{~V} 2.0 \mathrm{~mm}^{2} 4\)-wire & DYDEN CORPORATION & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|ll|}
\hline Part No. & MFMCFO **2ECD & \begin{tabular}{l}
Applicable \\
model
\end{tabular} & MFME \(1.5 \mathrm{~kW}(400 \mathrm{~V}), 2.5 \mathrm{~kW}(200 \mathrm{~V}\) and 400 V commonness) \\
\hline
\end{tabular}
[Unit: m

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L (m) & Part No. \\
\hline Connector & JL04V-6A24-11SE-EB-R & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & 3 & MFMCF0032ECD \\
\hline Cable clamp & JL04-2428CK(17)-R & & 5 & MFMCF0052ECD \\
\hline Rod terminal & NTUB-2 & \multirow[b]{2}{*}{J.S.T Mfg. Co., Ltd.} & 10 & MFMCF0102ECD \\
\hline Nylon insulated round terminal & N2-M4 & & 20 & MFMCF0202ECD \\
\hline Cable & ROBO-TOP \(600 \mathrm{~V} 2.0 \mathrm{~mm}^{2} 4\)-wire & DYDEN CORPORATION & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L (m) & Part No. \\
\hline Connector & JN4FT02SJMR & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & 3 & MFMCB0030PJT \\
\hline Connector pin & ST-TMH-S-C1B-3500 & & 5 & MFMCB0050PJT \\
\hline Nylon insulated round terminal & N1.25-M4 & J.S.T Mfg. Co., Ltd. & 10 & MFMCB0100PJT \\
\hline Cable & AWG22 2-wire (ø4.3) & Hitachi Cable, Ltd. & 20 & MFMCB0200PJT \\
\hline
\end{tabular}

\section*{Interface Cable}

- Table for wiring
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Pin №. & Ior & Pin No. & color & Pin No. & color & Pin No. & color & Pin No. & coior \\
\hline 1 & Orange (Red1) & 11 & Orange (Black2) & 21 & Orange (Red3) & 31 & Orange (Red4) & 41 & Orange (Red5) \\
\hline 2 & Orange (Black1) & 12 & Yellow (Black1) & 22 & Orange (Black3) & 32 & Orange (Black4) & 42 & Orange (Black5) \\
\hline 3 & Gray (Red1) & 13 & Gray (Red2) & 23 & Gray (Red3) & 33 & Gray (Red4) & 43 & Gray (Red5) \\
\hline 4 & Gray (Black1) & 14 & y (Black & 24 & Gray (Black3) & 34 & ite (R & 44 & White (Red5) \\
\hline 5 & White (Red1) & 15 & ite (Red2) & 25 & hite (Red3) & 35 & ite (Bla & 45 & White (Black5) \\
\hline 6 & White (Black1) & 16 & Yellow (Red2) & 26 & hite (Black3) & 36 & llow (Red4) & 46 & Yellow (Red5) \\
\hline 7 & Yellow (Red1) & 17 & Yel (Bkik)/Pink (B1/2 & 27 & Yellow (Red3) & 37 & Yellow (Black4) & 47 & Yellow (Black5) \\
\hline 8 & Pink (Red1) & 18 & Pink (Red2) & 28 & Yellow (Black3) & 38 & Pink (Red4) & 48 & Pink (Red5) \\
\hline 9 & Pink (Black1) & 19 & White (Black2) & 29 & Pink (Red3) & 39 & Pink (Black4) & 49 & Pink (Black5) \\
\hline 10 & Orange (Red2) & 20 & & 30 & Pink (Black3) & 40 & Gray (Black4) & & Gray (Black \\
\hline
\end{tabular}

\section*{<Remarks>}

Color designation of the cable e.g.) Pin-1 Cable color : Orange (Red1) : One red dot on the cable The shield of this cable is connected to the connector shell but not to the terminal.

\section*{Interface Conversion Cable}

\section*{Part No. \(\quad\) DVOP4120, 4121, 4130, 4131, 4132}

Interface cables for old product (XX series or V series) can be connected to the current product by using the connector conversion cable shown below.
\begin{tabular}{|l|l|}
\hline DV0P4120 & MINAS XX \(\rightarrow\) A5II, A5 series (A4, A series) for position control/ velocity control \\
\hline DVOP4121 & MINAS XX \(\rightarrow\) A5II, A5 series (A4, A series) for torque control \\
\hline DVOP4130 & MINAS V \(\rightarrow\) A5II, A5 series (A4, A series) for position control \\
\hline DVOP4131 & MINAS V \(\rightarrow\) A5II, A5 series (A4, A series) for velocity control \\
\hline DV0P4132 & MINAS V \(\rightarrow\) A5II, A5 series (A4, A series) for torque control \\
\hline
\end{tabular}
* For details of wiring, contact our sales department.

Connector Kit

Connector Kit for Communication Cable (for RS485, RS232) (Excluding A5IIE, A5E Series)

Connector Kit for Safety (Excluding A5IE, A5E Series)

\section*{Safety bypass plug (Excluding A5IE, A5E Series)}
\begin{tabular}{|l|l|}
\hline Part No. & DVOPM20094
\end{tabular}

Connector Kit for Interface

\section*{Part No. DVOP4350}
- Components
- Components
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector & \(10150-3000\) PE & 1 & \begin{tabular}{c}
Sumitomo 3 M \\
(or equivalent)
\end{tabular} & \begin{tabular}{c}
For Connector X4 \\
(\(50-\) pins)
\end{tabular} \\
\hline Connector cover & \(10350-52\) AO-008 & 1 & \\
\hline
\end{tabular}
- Pin disposition (50 pins) (viewed from the soldering side)
- Pin disposition (50 pins) (viewed from the soldering side)

1) Check the stamped pin-No. on the connector body while making a wiring. 2) For the function of each signal title or its symbol, refer to the operating manual
Do not connect anything to NC pins in the above table

\section*{<Remarks>}
- For crimp tool etc., necessary to produce a cable, access the web site of the manufacturer or consult with the manufacturer for details. For inquiries of manufacturer, refer to P.213 "List of Peripheral Equipments"

\section*{Connector Kit for External Scale（Excluding A5IE，A5E Series）}

\section*{Part No．\({ }^{2}\) DVOPM20026}
－Components
\begin{tabular}{|c|c|c|c|}
\hline Title & Part No． & Manufacturer & Note \\
\hline Connector & MUF－PK10K－X & J．S．T Mfg．Co．，Ltd． & For Connector X5（10－pins） \\
\hline
\end{tabular}
－Pin disposition of connector，connector X5
－Dimensions

\(\overline{\text { EXB }}\)（Viewed from cable）
（苞）

Connector Kit for Analog Monitor Signal
Part No． DVOPM \(20031^{2}\)
－Components
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No． & Number & Manufacturer & Note \\
\hline Connector & 510040600 & 1 & \multirow{2}{*}{ Molex Inc } & \multirow{2}{*}{ For Connector X7（6－pins）} \\
\hline Connector pin & 500118100 & 6 & & \\
\hline
\end{tabular}

－Dimensions

\section*{＜Remarks＞}

Connector X1：use with commercially available
Configuration of connector X1：USB mini－B cable．
［倩

\section*{Connector Kit for Power Supply Input}
\begin{tabular}{|l|l}
\hline Part No． & DVOPM20032（For A－frame to C－frame 100 V ，A－frame to D－frame 200 V ：Single row type）
\end{tabular}

\section*{－Components}
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No． & Number & Manufacturer & Note \\
\hline Connector & O5JFAT－SAXGF & 1 & \multirow{2}{*}{ J．S．T Mfg．Co．，Ltd．} & \multirow{2}{*}{ For Connector XA } \\
\hline Handle lever & J－FAT－OT & 2 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l}
\hline Part No． & DVOPM20033（For A－frame to D－frame 200 V：Double row type） \\
\hline
\end{tabular}
•Components
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No． & Number & Manufacturer & Note \\
\hline Connector & 05JFAT－SAXGSA－C & 1 & \multirow{2}{*|}{ J．S．T Mfg．Co．，Ltd．} & \multirow{2}{*}{ For Connector XA } \\
\hline Handle lever & J－FAT－OT & 2 & & \\
\hline
\end{tabular}

＊When connection multiple axes in series，make sure the sum of the current value does not exceed the rated urrent（ 11.25 A）of DVOPM20033．

\section*{Remarks \(\cdots\) ：}

When using drivers MDDKT5540＊＊＊or MDDHT5540＊＊＊ in single－phase power supply，do not use DVOPM20033．
\begin{tabular}{|c|c|c|}
\hline Driver part No． & Power supply & Rated input current \\
\hline MADHT1105＊＊＊ MADKT1105＊＊夫 & Single phase & 1.7 A \\
\hline \[
\begin{aligned}
& \text { MADHT1107 *** } \\
& \text { MADKT1107*** } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { Single phase } \\
100 \mathrm{~V} \\
\hline
\end{gathered}
\] & 2.6 A \\
\hline \begin{tabular}{l}
MADHT1505＊＊＊ \\
MADKT1505＊＊＊
\end{tabular} & \[
\begin{array}{c|}
\hline \text { Single phase/3-phase } \\
200 \mathrm{~V}
\end{array}
\] & 1.6 A／0．9 A \\
\hline \[
\begin{aligned}
& \text { MADHT1507 *** } \\
& \text { MADKT1507 *** }
\end{aligned}
\] & \[
\begin{gathered}
\text { Single phase/3-phase } \\
200 \mathrm{~V}
\end{gathered}
\] & 2.4 A／1．3 A \\
\hline MBDHT2110＊＊＊ MBDKT2110＊＊＊ & Single phase & 4．3 A \\
\hline \[
\begin{aligned}
& \text { MBDHT2510 *** } \\
& \text { MBDKT2510*** }
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline \text { Single phase/3-phase } \\
200 \mathrm{~V}
\end{array}
\] & 4.1 A／2．4 A \\
\hline MCDHT3120＊＊＊ MCDKT3120＊＊＊ & \[
\begin{aligned}
& \text { Single phase } \\
& 100 \mathrm{~V} \\
& \hline
\end{aligned}
\] & 7.6 A \\
\hline MCDHT3520＊＊＊ MCDKT3520＊＊＊ & \[
\begin{array}{|c|}
\hline \text { Single phase/3-phase } \\
200 \mathrm{~V}
\end{array}
\] & 6.6 A／3．6 A \\
\hline \[
\begin{aligned}
& \text { MDDHT3530 *** } \\
& \text { MDDKT3530** }
\end{aligned}
\] & Single phase／3－phase 200 V & 9.1 A／5．2 A \\
\hline MDDHT5540＊＊＊ & Single phase／3－phase 200 V & 14.2 A／8．1 A \\
\hline
\end{tabular}

Part No． DVOPM20044（For E－frame 200 V）
－Components
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No． & Number & Manufacturer & Note \\
\hline Connector & 05JFAT－SAXGSA－L & 1 & \multirow{2}{*}{ J．S．T Mfg．Co．，Ltd．} & \multirow{2}{*}{ For Connector XA } \\
\hline Handle lever & J－FAT－OT－L & 2 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l}
\hline Part No． & DVOPM20051（For D－frame 400 V ） \\
\hline
\end{tabular}

\section*{－Components}
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No． & Number & Manufacturer & Note \\
\hline Connector & 03JFAT－SAYGSA－M & 1 & \multirow{2}{*}{ J．S．T Mfg．Co．，Ltd．} & \multirow{2}{*}{ For Connector XA } \\
\hline Handle lever & J－FAT－OT－L & 2 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Part No． & DVOPM20052（For E－frame 400 V ） \\
\hline
\end{tabular}
－Components
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No． & Number & Manufacturer & Note \\
\hline Connector & 03JFAT－SAYGSA－L & 1 & \multirow{2}{*}{ J．S．T Mfg．Co．，Ltd．} & For Connector XA \\
\hline Handle lever & J－FAT－OT－L & 2 & & \\
\hline
\end{tabular}

\section*{Connector Kit for Control Power Supply Input}
\begin{tabular}{|l|l}
\hline Part No. & DVOPM20053 (For D, E-frame 400 V) \\
\hline
\end{tabular}
- Components
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector & 02MJFAT-SAGF & 1 & \multirow{2}{*}{ J.S.T Mfg. Co., Ltd. } & \multirow{2}{*}{ For Connector XD } \\
\hline Handle lever & MJFAT-OT & 1 & \\
\hline
\end{tabular}

\section*{Connector Kit for Regenerative Resistor Connection (E-frame)}
\begin{tabular}{|l|l|}
\hline Part No. & DVOPM20045 (For E-frame 200 V/400 V) \\
\hline
\end{tabular}
- Components
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector & 04JFAT-SAXGSA-L & 1 & \multirow{2}{*}{ J.S.T Mfg. Co., Ltd. } & For Connector XC \\
\hline Handle lever & J-FAT-OT-L & 2 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l}
\hline Part No. & DVOPM20055 (For D-frame 400 V) \\
\hline
\end{tabular}
- Components
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector & 04JFAT-SAXGSA-M & 1 & \multirow{2}{*}{ J.S.T Mfg. Co., Ltd. } & For Connector XC \\
\hline Handle lever & J-FAT-OT-L & 2 & & \\
\hline
\end{tabular}

\section*{Connector Kit for Motor Connection (Driver side)}
\begin{tabular}{|l|l}
\hline Part No. & DVOPM20034 (For A-frame to C-frame 100 V, A-frame to D-frame 200 V) \\
\hline
\end{tabular}
- Components
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector & 06JFAT-SAXGF & 1 & \multirow[b]{2}{*}{J.S.T Mfg. Co., Ltd.} & \multirow[t]{2}{*}{\begin{tabular}{l}
For Connector XB \\
* Jumper wire is included.
\end{tabular}} \\
\hline Handle lever & J-FAT-OT & 2 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l}
\hline Part No. & DVOPM20046 (For E-frame 200 V/400 V) \\
\hline
\end{tabular}
- Components
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector & 03 JFAT-SAXGSA-L & 1 & \multirow{2}{*}{ J.S.T Mfg. Co., Ltd. } & \multirow{2}{*}{ For Connector XB } \\
\hline Handle lever & J-FAT-OT-L & 2 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l}
\hline Part No. & DVOPM20054 (For D-frame 400 V) \\
\hline
\end{tabular}
- Components
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector & 03 JFAT-SAXGSA-M & 1 & \multirow{2}{*}{ J.S.T Mfg. Co., Ltd. } & \multirow{2}{*}{ For Connector XB } \\
\hline Handle lever & J-FAT-OT-L & 2 & \\
\hline
\end{tabular}

\section*{Connector Kit}

\section*{A5 Family}

When IP65 or IP67 are necessary, the customer must give appropriate processing.

\section*{Connector Kit for Motor/Encoder Connection}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Part No. & DV0P4290 & Applicable model & \multicolumn{3}{|l|}{MSMD 50 W to 750 W , MHMD 200 W to 750 W (absolute encoder type)} \\
\hline \multicolumn{6}{|l|}{- Components} \\
\hline & Title & Part No. & Number & Manufacturer & Note \\
\hline & nector (Driver side) & 3E206-0100 KV & V & & \\
\hline & Shell kit & ЗЕ306-3200-008 & 8 & (or equivalent) & For Connector X6 (6-pins) \\
\hline & Connector & 172161-1 & -....-- 1 & & For Encoder cable \\
\hline & Connector pin & 170365-1 & 9 & Tyco Electronics & \[
\text { (} 9 \text {-pins) }
\] \\
\hline & Connector & \[
172159-1
\] & 1 & Tyco Electronics & For Motor cable \\
\hline & Connector pin & 170366-1 & 4 & Tyco Electronics & (4-pins) \\
\hline
\end{tabular}
- Pin disposition of connector, - Pin disposition of connector

Pin disposition of connector connector X6
for encoder cable for motor cable

 encoder"
\begin{tabular}{|l|l|l|l|}
\hline Part No. & DVOP4380 & \begin{tabular}{l}
Applicable \\
model
\end{tabular} & \begin{tabular}{l}
MSMD 50 W to 750 W, MHMD 200 W to 750 W \\
MSMJ 200 W to 750 W, MHMJ 200 W to 750 W \\
(incremental encoder type)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector (Driver side) & 3E206-0100 KV & 1 & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & \multirow[t]{2}{*}{For Connector X6 (6-pins)} \\
\hline Shell kit & 3E306-3200-008 & 1 & & \\
\hline Connector & 172160-1 & 1 & \multirow[t]{2}{*}{Tyco Electronics} & \multirow[t]{2}{*}{For Encoder cable (6-pins)} \\
\hline Connector pin & 170365-1 & 6 & & \\
\hline Connector & 172159-1 & 1 & \multirow[t]{2}{*}{Tyco Electronics} & \multirow[t]{2}{*}{For Motor cable (4-pins)} \\
\hline Connector pin & 170366-1 & 4 & & \\
\hline
\end{tabular}
- Pin disposition of connector, • Pin disposition of connector - Pin disposition of connector connector X6
for encoder cable
for motor cable
\[
\begin{aligned}
& \text { (Case) } \\
& \binom{\text { Case }}{\mathrm{FG}}
\end{aligned}
\]

\title{
Connector Kit
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Part No. & DVOPM20035 & Applicable model & MSME 50 & \multicolumn{2}{|l|}{50 W to \(400 \mathrm{~W}(100 \mathrm{~V}), 50 \mathrm{~W}\) to \(750 \mathrm{~W}(200 \mathrm{~V})\)} \\
\hline \multicolumn{6}{|l|}{- Components} \\
\hline & Title & Part No. & Number & Manufacturer & Note \\
\hline & nnector (Driver side) & 3E206-0100 KV & 1 & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & \multirow[t]{2}{*}{For Connector X6 (6-pins)} \\
\hline & Shell kit & 3Е306-3200-008 & 1 & & \\
\hline & Encoder connector & JN6FR07SM1 & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & \multirow[t]{2}{*}{For Encoder cable (7-pins)} \\
\hline & Socket contact & LY10-C1-A1-10000 & 7 & & \\
\hline & Motor connector & JN8FT04SJ1 & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & \multirow[t]{2}{*}{For Motor cable (4-pins)} \\
\hline & Socket contact & ST-TMH-S-C1B-3500 & 4 & & \\
\hline
\end{tabular}
- Pin disposition of connector, - Pin disposition of connector - Pin disposition of connector connector X6
for encoder cable
for motor cable
\begin{tabular}{|c|c|c|}
\hline 1 E 5 V & & 2 EOV \\
\hline \multirow[t]{2}{*}{\(3 \mathrm{NC}^{-1}\)} & H6 & \(4 \mathrm{NC}^{+1}\) \\
\hline & D0 & \\
\hline 5 PS & 14 & 6 PS \\
\hline & \(\left(\begin{array}{l}\text { Case } \\ \text { Case }\end{array}\right.\) & \\
\hline
\end{tabular}

[Opposite direction of motor shaft]
* 1 NC: None Connect

Secure the gasket in place without removing it from the connector. Otherwise, the degree of protection of IP67 will not be guaranteed.

- Components
\(\left.\begin{array}{|c|c|c|c|c|}\hline \text { Title } & \text { Part No. } & \text { Number } & \text { Manufacturer } & \text { Note } \\ \hline \text { Connector (Driver side) } & 3 \text { E206-0100 KV } & 1 & \begin{array}{c}\text { Sumitomo 3M } \\ \text { (or equivalent) }\end{array} & \text { For Connector X6 (6-pins) } \\ \hline \text { Shell kit } & 3 \text { E306-3200-008 } & 1\end{array}\right)\)

\footnotetext{
<Remarks>
For crimp tool etc., necessary to produce a cable, access the web site of the manufacturer or consult with the manufacturer for details. For inquiries of manufacturer, refer to P. 213 "List of Peripheral Equipments".
}

A5 Family
Options
Connector Kit
When IP65 or IP67 are necessary, the customer must give appropriate processing.
\begin{tabular}{|l|l|l|l|l|l|}
\hline Part No. & DV0P4330 & \begin{tabular}{l}
Applicable \\
model
\end{tabular} & \begin{tabular}{l}
<IP65 motor> \\
MSME 1.0 kW to \(2.0 \mathrm{~kW}, ~ M D M E ~\) \\
MHME 1.0 kW to 2.0 kW \\
(All model 200 V) to \(1.5 \mathrm{~kW}, ~ M G M E ~\) \\
0.9 kW
\end{tabular} & \begin{tabular}{c}
With \\
brake
\end{tabular} \\
\hline
\end{tabular}

\section*{- Components}
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector (Driver side) & 3E206-0100 KV & 1 & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & \multirow[t]{2}{*}{For Connector X6 (6-pins)} \\
\hline Shell kit & ЗЕ306-3200-008 & 1 & & \\
\hline Encoder connector & N/MS3106B20-29S & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & \multirow[b]{2}{*}{For Encoder cable} \\
\hline Cable clamp & NMS3057-12A & 1 & & \\
\hline Motor connector & N/MS3106B20-18S & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & \multirow[t]{2}{*}{For Motor cable} \\
\hline Cable clamp & N/MS3057-12A & 1 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Part No. & DV0PM20039 & Applicable model & \begin{tabular}{l}
<IP67 motor> \\
(200V) \\
MSME 3.0 kW to 5.0 kW , MDME 3.0 kW to 5.0 kW \\
MFME 2.5 kW to 4.5 kW (Common to with/ without brake), \\
MHME 2.0 kW to 5.0 kW , MGME 2.0 kW to 4.5 kW \\
(400V) \\
MSME 750 W to 5.0 kW , MDME 400 W to 5.0 kW \\
MFME 1.5 kW to 4.5 kW (Common to with/ without brake), \\
MHME 1.0 kW to 5.0 kW , MGME 0.9 kW to 4.5 kW
\end{tabular} & With brake \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector (Driver side) & 3E206-0100 KV & 1 & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & \multirow[b]{2}{*}{For Connector X6 (6-pins)} \\
\hline Shell kit & 3Е306-3200-008 & 1 & & \\
\hline Encoder connector & JN2DS10SL1-R & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & \multirow[t]{2}{*}{For Encoder cable} \\
\hline Connector pin & JN1-22-22S-PKG100 & 5 & & \\
\hline Motor connector & JL04V-6A24-11SE-EB-R & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & \multirow[t]{2}{*}{For Motor cable} \\
\hline Cable clamp & JL04-2428CK(17)-R & 1 & & \\
\hline
\end{tabular}

\section*{- Components}
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector (Driver side) & 3 E206-0100 KV & 1 & Sumitomo 3M \\
Shell kit & 3E306-3200-008 & 1 & For Connector X6 (6-pins) \\
\hline (or equivalent)
\end{tabular}

\footnotetext{
<Remarks>
For crimp tool etc., necessary to produce a cable, access the web site of the manufacturer or consult with the manufacturer for details. For inquiries of manufacturer, refer to P. 213 "List of Peripheral Equipments".
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Part No. & DV0PM20056 & Applicable model & \multicolumn{3}{|l|}{\begin{tabular}{l}
<IP67 motor> \\
MDME 7.5 kW to 15.0 kW \\
MGME 6.0 kW , MHME 7.5 kW
\end{tabular}} & & Without brake \\
\hline \multicolumn{8}{|l|}{- Components} \\
\hline & Title & \multicolumn{2}{|r|}{Part No.} & Number & Manufacturer & \multicolumn{2}{|l|}{Note} \\
\hline & nector (Driver side) & \multicolumn{2}{|l|}{3E206-0100 KV} & 1 & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{For Connector X6 (6-pins)}} \\
\hline & Shell kit & \multicolumn{2}{|l|}{3Е306-3200-008} & 1 & & & \\
\hline & ncoder connector & \multicolumn{2}{|l|}{JN2DS10SL1-R} & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{For Encoder cable}} \\
\hline & Connector pin & \multicolumn{2}{|l|}{JN1-22-22S-PKG100} & 5 & & & \\
\hline & Motor connector & \multicolumn{2}{|l|}{JL04V-6A32-17SE-EB-R} & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{For Motor cable}} \\
\hline & Cable clamp & \multicolumn{2}{|l|}{JL04-32CK(24)-R} & 1 & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Part No. & DVOPM20057 & \begin{tabular}{l}
Applicable \\
model
\end{tabular} & \begin{tabular}{l}
\(<\) IP67 motor> \\
MDME 7.5 kW to 15.0 kW \\
MGME 6.0 kW, MHME 7.5 kW
\end{tabular} & \begin{tabular}{c}
With \\
brake
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector (Driver side) & 3E206-0100 KV & 1 & \multirow[t]{2}{*}{Sumitomo 3M (or equivalent)} & \multirow[b]{2}{*}{For Connector X6 (6-pins)} \\
\hline Shell kit & 3Е306-3200-008 & 1 & & \\
\hline Encoder connector & JN2DS10SL1-R & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & \multirow[b]{2}{*}{For Encoder cable} \\
\hline Connector pin & JN1-22-22S-PKG100 & 5 & & \\
\hline Motor connector & JL04V-6A32-17SE-EB-R & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & \multirow[b]{2}{*}{For Motor cable} \\
\hline Cable clamp & JL04-32CK(24)-R & 1 & & \\
\hline Brake connector & N/MS3106B14S-2S & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & \multirow[t]{2}{*}{For Brake cable} \\
\hline Cable clamp & N/MS3057-6A & 1 & & \\
\hline
\end{tabular}

\section*{Connector Kit for Motor/Brake Connection}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Part No. & DVOPM20040 & \(\left\lvert\, \begin{aligned} & \text { Applicable } \\ & \text { model }\end{aligned}\right.\) MSME 50 & \multicolumn{3}{|l|}{MSME 50 W to 750 W} \\
\hline \multicolumn{6}{|l|}{- Components} \\
\hline \multicolumn{2}{|r|}{Title} & Part No. & Number & Manufacturer & Note \\
\hline & Connector & JN4FT02SJM-R & 1 & \multirow[t]{2}{*}{Japan Aviation Electronics Ind.} & \multirow[b]{2}{*}{For brake cable} \\
\hline & Socket contact & ST-TMH-S-C1B-3500 & 2 & & \\
\hline
\end{tabular}
- Pin disposition of connector for brake cable
[Direction of motor shaft] [Opposite direction of motor shaft]

\section*{<Remarks>}

Secure the gasket in place without removing it from the connector Otherwise, the degree of protection of IP67 will not be guaranteed.

\section*{<Remarks>}
- For crimp tool etc., necessary to produce a cable, access the web site of the manufacturer or consult with the manufacturer for details. For inquiries of manufacturer, refer to P. 213 "List of Peripheral Equipments".

\title{
Mounting Bracket
}

\section*{Battery for Absolute Encoder}

\section*{Part No. DVOP2990}
- Lithium battery: 3.6 V 2000 mAh

\section*{<Caution>}

This battery is categorized as hazardous substance, and you may be required to present an application of hazardous substance when you transport by air (both passenger and cargo airlines).

<Caution>
For \(\mathrm{E}, \mathrm{F}\) and G -frame, it is possible to make both a front end and back end mounting by changing the mounting direction of L -shape bracket (attachment)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Part No. & A & B & C & D & \(\mathrm{E}_{\text {(max) }}\) & F & G & H & 1 & Inductance (mH) & \[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Rated } \\
\text { current } \\
\text { (A) }
\end{array} \\
\hline
\end{array}
\] \\
\hline \multirow{6}{*}{Fig. 1} & DVOP220 & \(65 \pm 1\) & \(125 \pm 1\) & (93) & 136max & 155 & 70+3/-0 & 85 \(\pm 2\) & 4-7¢ \(\times 12\) & M4 & 6.81 &) \\
\hline & DVOP221 & \(60 \pm 1\) & \(150 \pm 1\) & (113) & 155max & 130 & 60+3/-0 & \(75 \pm 2\) & 4-7¢ \(\times 12\) & M4 & 4.02 & 5 \\
\hline & DVOP222 & \(60 \pm 1\) & 150 \(\pm 1\) & (113) & 155max & 140 & 70+3/-0 & 85さ2 & 4-7¢×12 & M4 & 2 & 8 \\
\hline & DVOP223 & \(60 \pm 1\) & 150 1 & (113) & 155 max & 150 & 79+3/-0 & 95 \(\pm 2\) & 4-7¢×12 & M4 & 1.39 & 11 \\
\hline & DVOP224 & \(60 \pm 1\) & 150 \(\pm 1\) & (113) & 160 max & 155 & 84+3/-0 & 100さ2 & 4-7¢ \(\times 12\) & M5 & 0.848 & 16 \\
\hline & DVOP225 & \(60 \pm 1\) & 150 1 & (113) & 160 max & 170 & 100+3/-0 & 115 \(\pm 2\) & 4-7¢ \(\times 12\) & M5 & 0.557 & 25 \\
\hline \multirow{3}{*}{Fig. 2} & DVOP227 & \(55 \pm 0.7\) & \(80 \pm 1\) & \(66.5 \pm 1\) & 110 max & 90 & \(41 \pm 2\) & \(55 \pm 2\) & \(4-5 \phi \times 10\) & M4 & 4.02 & 5 \\
\hline & DVOP228 & \(55 \pm 0.7\) & \(80 \pm 1\) & \(66.5 \pm 1\) & 110Max & 95 & \(46 \pm 2\) & \(60 \pm 2\) & \(4-5 \phi \times 10\) & M4 & 2 & 8 \\
\hline & DVOPM20047 & \(55 \pm 0.7\) & \(80 \pm 1\) & \(66.5 \pm 1\) & 110 max & 105 & \(56 \pm 2\) & \(70 \pm 2\) & \(4-5 \phi \times 10\) & M4 & 1.39 & 11 \\
\hline
\end{tabular}
* For application, refer to P. 21 to P. 28 and P. 153 to P. 154 "Table of Part Numbers and Options".

\section*{Harmonic restraint}

Harmonic restraint measures are not common to all countries. Therefore, prepare the measures that meet the requirements
of the destination country of the destination country.
With products for Japan, on September, 1994, "Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system" and "Guidelines for harmonic restraint on household electrical appliances and general-purpose articles" established by the Agency for Natural Resources and Energy of the Ministry of Electrical Manufacturers' Association (JEMA) have prepared technical documents (procedure to execute harmonic restraint: JEM-TR 198, JEM-TR 199 and JEM-TR 201) and have been requesting the users to understand the restraint and to cooperate with us. On January, 2004, it has been decided to exclude the general-purpose inverter and servo driver from the "Guidelines for harmonic restraint on household electrical appliances and general-purpose articles". After that, the "Guidelines for harmonic restraint on household electrical appliances and general-purpose articles" was abolished on September 6, 2004. We are pleased to inform you that the procedure to execute the harmonic restraint on general-purpose inverter and servo driver was modified as follows.
1. All types of the general-purpose inverters and servo drivers used by specific users are under the control of the "Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system", The users who are required to apply the guidelines must calculate the equivalent capacity and harmonic current according to the guidelines and must take appropriate countermeasures if the harmonic current exceeds a limit value specified in a contract demand. (Refer to JEM-TR 210 and JEM-TR 225.)
The "Guidelines for harmonic restraint on household electrical appliances and general-purpose articles" was abolished on September 6, 2004. However, based on conventional guidelines, JEMA applies the technical documents JEM-TR 226 and
JEM-TR 227 to any users who do not fit into the "Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system" from a perspective on enlightenment on general harmonic restraint. The purpose of these guidelines is the execution of harmonic restraint at every device by a user as usual to the utmost extent.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Part No.} & \multirow{4}{*}{Manufacturer's part No.} & \multicolumn{5}{|c|}{Specifications} & \multirow{4}{*}{\[
\begin{array}{|c|}
\text { Activation } \\
\text { temperature of } \\
\text { built-in thermal protector }
\end{array}
\]} \\
\hline & & \multirow[b]{2}{*}{Resistance} & \multirow[t]{2}{*}{cable core outside diameter} & \multirow[b]{2}{*}{Weight} & \multicolumn{2}{|l|}{Rated power (reference)} & \\
\hline & & & & & Free air & with fan \(1 \mathrm{~m} / \mathrm{s}\) & \\
\hline & & \(\Omega\) & mm & kg & w & W & \\
\hline DVOP4280 & RF70M & 50 & \multirow{8}{*}{\[
\left(\begin{array}{c}
\text { \$1.27 } \\
\text { AWG18 } \\
\text { stranded } \\
\text { wire }
\end{array}\right)
\]} & 0.1 & 10 & 25 & \multirow{10}{*}{\begin{tabular}{l}
\(140 \pm 5^{\circ} \mathrm{C}\) \\
B-contact Open/Close capacity (resistance load) \\
1 A 125 VAC 6000 times 0.5 A 250 VAC 10000 times
\end{tabular}} \\
\hline DV0P4281 & RF70M & 100 & & 0.1 & 10 & 25 & \\
\hline DVOP4282 & RF180B & 25 & & 0.4 & 17 & 50 & \\
\hline DVOP4283 & RF180B & 50 & & 0.2 & 17 & 50 & \\
\hline DVOP4284 & RF240 & 30 & & 0.5 & 40 & 100 & \\
\hline DVOP4285 & RH450F & 20 & & 1.2 & 52 & 130 & \\
\hline DVOPM20048 & RF240 & 120 & & 0.5 & 35 & 80 & \\
\hline DVOPM20049 & RH450F & 80 & & 1.2 & 65 & 190 & \\
\hline DVOPM20058 & RH450F \(\times 6\) & 3.3 & \(-{ }^{2}\) & 16 & \(-{ }^{\text {³}}\) & 780 & \\
\hline DVOPM20059 & RH450F \(\times 6\) & 13.3 & \(-{ }^{2}\) & 16 & \(-{ }^{*}\) & 1140 & \\
\hline
\end{tabular}

Manufacturer : Iwaki Musen Kenkyusho
*1 Power with which the driver can be used without activating the built-in thermal protector
A built-in thermal fuse and a thermal protector are provided for safety.
The circuit should be so designed that the power supply will be turned off as the thermal protector operates
The built-in thermal fuse blows depending on changes in heat dissipation condition, operating temperature limit, power supply voltage or load.
Mount the regenerative resistor on a machine operating under aggressive regenerating condition (high power supply
voltage, large load inertia, shorter deceleration time, etc.) and make sure that the surface temperature will not exceed \(100^{\circ} \mathrm{C}\).
Attach the regenerative resistor to a nonflammable material such as metal.
Cover the regenerative resistor with a nonflammable material so that it cannot be directly touched.
Temperatures of parts that may be directly touched by people should be kept below \(70^{\circ} \mathrm{C}\)
*2 Terminal block with screw tightening torque as shown below.
T1, T2,
M5: \(2.0 \mathrm{~N} \cdot \mathrm{~m}\) to \(\begin{aligned} & 2.4 \mathrm{~N} \cdot \mathrm{~m}\end{aligned}\)

R1, R2
Use the cable with the same diameter as the main circuit cable. (Refer to P.19)
*3 With built-in fan which should always be operated with the power supply connected across 24 V and 0 V .
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Frame} & \multicolumn{3}{|c|}{Power supply} \\
\hline & Single phase, 100 V & \[
\begin{gathered}
\text { Single phase, } \\
200 \mathrm{~V} \\
\text { 3-phase, } 200 \mathrm{~V}
\end{gathered}
\] & 3-phase, 400 V \\
\hline A & DVOP4280 & DVOP4281
(50 W, 100 W)
DVOP4283
(200 W) & \multirow[t]{3}{*}{-} \\
\hline B & DVOP4283 & \multirow[b]{2}{*}{DVOP4283} & \\
\hline C & DVOP4282 & & \\
\hline D & \multirow{5}{*}{-} & DV0P4284 & DV0PM20048 \\
\hline E & & \begin{tabular}{l}
DVOP4284 \\
\(\times 2\) in parallel or DVOP4285
\end{tabular} & DVOPM20049 \\
\hline F & & DVOP4285
\[
\times 2 \text { in parallel }
\] & DVOPM20049 \(\times 2\) in parallel \\
\hline G & & \begin{tabular}{l}
DVOP4285 \\
\(\times 3\) in parallel
\end{tabular} & DVOPM20049 \(\times 3\) in parallel \\
\hline H & & \begin{tabular}{l}
DV0P4285 \\
\(\times 6\) in parallel or DVOPM20058
\end{tabular} & \begin{tabular}{l}
DVOPM20049 \\
\(\times 6\) in parallel or DVOPM20059
\end{tabular} \\
\hline
\end{tabular}
<Remarks> When using a reactor, be sure to install one reactor to one servo driver

External Regenerative Resistor

DV0P4284, DVOPM20048

DVOP4285, DVOPM20049

DVOPM20058, DVOPM20059

R=20 \(\Omega\) (DVOPM20058) \(\mathrm{R}=80 \Omega\) (DVOPM20059) Circuit diagram

<Caution when using external regenerative resistor>

\footnotetext{
Regenerative resistor gets very hot.
Configure a circuit so that a power supply shuts down when built-in thermal protector of the regenerative resistor works. Because it is automatic reset thermal protector, please apply a self-holding circuit to the outside in order to maintain safety in case of sudden activation. During the failure of the driver, the surface temperature of the regenerative resistor may exceed the operating temperature before thermal protector starts to work.
Built-in thermal fuse of regenerative resistor is intended to prevent from ignition during the failure of the driver and not intended to suppress the surface temperature of the resistor.
- Be attached the regenerative resistance to non-combustible material such as metal.
- Built-in thermal fuse of regenerative resistor is intended to prevent from ignition during the failure of the driver and not intended to suppress the surface temperature of the resistor. - Do not install the regenerative resistor near flammable materials.
}

Surge Absorber for Motor Brake
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Motor} & Part No. & Manufacturer \\
\hline MSMD & 50 W to 750 W & \multirow{3}{*}{\[
\begin{aligned}
& \text { Z15D271 } \\
& \text { or } \\
& \text { TNR15G271K }
\end{aligned}
\]} & \multirow[t]{3}{*}{SEMITEC Corporation or NIPPON CHEMI-CON CORPORATION} \\
\hline MSMJ & 200 W to 750 W & & \\
\hline \multirow[b]{2}{*}{MSME} & 50 W to 750 W & & \\
\hline & \[
\begin{gathered}
750 \mathrm{~W}(400 \mathrm{~V}) \\
1.0 \mathrm{~kW} \text { to } 5.0 \mathrm{~kW}
\end{gathered}
\] & \multirow[t]{2}{*}{Z15D151} & \multirow[t]{2}{*}{SEMITEC Corporation} \\
\hline \multirow{4}{*}{MDME} & \(400 \mathrm{~W}(400 \mathrm{~V})\), \(600 \mathrm{~W}(400 \mathrm{~V}\)) & & \\
\hline & 1.0 kW to 3.0 kW & NVD07SCD082 & KOA Corporation \\
\hline & 4.0 kW to 7.5 kW & Z15D151 & SEMITEC Corporation \\
\hline & \(11 \mathrm{~kW}, 15 \mathrm{~kW}\) & \multirow{3}{*}{NVD07SCD082} & \multirow{3}{*}{KOA Corporation} \\
\hline \multirow{2}{*}{MFME} & 1.5 kW & & \\
\hline & 2.5 kW, 4.5 kW & & \\
\hline MGME & 0.9 kW to 6.0 kW & Z15D151 & SEMITEC Corporation \\
\hline \[
\begin{aligned}
& \text { MHMD } \\
& \text { MHMJ }
\end{aligned}
\] & 200 W to 750 W & \[
\begin{aligned}
& \text { Z15D271 } \\
& \text { or } \\
& \text { TNR15G271K }
\end{aligned}
\] & \begin{tabular}{l}
SEMITEC Corporation or \\
NIPPON CHEMI-CON CORPORATION
\end{tabular} \\
\hline \multirow{2}{*}{MHME} & \(1.0 \mathrm{~kW}, 1.5 \mathrm{~kW}\) & NVD07SCD082 & KOA Corporation \\
\hline & 2.0 kW to 7.5 kW & Z15D151 & SEMITEC Corporation \\
\hline
\end{tabular}

List of Peripheral Equipments
\begin{tabular}{|c|c|c|}
\hline Manufacturer & Tel No. / Home Page & Peripheral components \\
\hline Panasonic Corporation Eco Solutions Company & http://panasonic.net/es/ & Circuit breaker \\
\hline \begin{tabular}{l}
Panasonic Corporation \\
Automotive \& Industrial Systems Company
\end{tabular} & http://panasonic.net/id/ & Surge absorber Switch, Relay \\
\hline Iwaki Musen Kenkyusho Co., Ltd. & \begin{tabular}{l}
\[
+81-44-833-4311
\] \\
http://www.iwakimusen.co.jp/
\end{tabular} & Regenerative resistor \\
\hline KOA Corporation & \[
\begin{aligned}
& \hline+81-42-336-5300 \\
& \text { http://www.koanet.co.jp/en/index.htm }
\end{aligned}
\] & \multirow{3}{*}{Surge absorber for holding brake} \\
\hline NIPPON CHEMI-CON CORPORATION & \begin{tabular}{l}
+81-3-5436-7711 \\
http://www.chemi-con.co.jp/e/index.html
\end{tabular} & \\
\hline SEMITEC Corporation & \[
\begin{aligned}
& \text { +81-3-3621-2703 } \\
& \text { http://www.semitec.co.jp/english2/ }
\end{aligned}
\] & \\
\hline KK-CORP.CO.JP & \[
\begin{aligned}
& \hline+81-184-53-2307 \\
& \text { http://www.kk-corp.co.jp/ }
\end{aligned}
\] & \multirow{3}{*}{Noise filter for signal lines} \\
\hline \begin{tabular}{l}
MICROMETALS \\
(Nisshin Electric Co., Ltd.)
\end{tabular} & \begin{tabular}{l}
\[
+81-4-2934-4151
\] \\
http://www.nisshin-electric.com/
\end{tabular} & \\
\hline TDK Corporation & \[
\begin{aligned}
& \text { +81-3-5201-7229 } \\
& \text { http://www.global.tdk.com/ }
\end{aligned}
\] & \\
\hline Okaya Electric Industries Co. Ltd. & \begin{tabular}{l}
+81-3-4544-7040 \\
http://www.okayaelec.co.jp/english/index.html
\end{tabular} & Surge absorber Noise filter \\
\hline Japan Aviation Electronics Industry, Ltd. & \[
\begin{aligned}
& \hline \text { +81-3-3780-2717 } \\
& \text { http://www.jae.co.jp/e-top/index.html }
\end{aligned}
\] & \multirow{5}{*}{Connector} \\
\hline Japan Molex Inc. & \[
\begin{aligned}
& \hline+81-462-65-2313 \\
& \text { http://www.molex.co.jp }
\end{aligned}
\] & \\
\hline J.S.T. Mfg. Co., Ltd. & \begin{tabular}{l}
\[
+81-45-543-1271
\] \\
http://www.jst-mfg.com/index_e.php
\end{tabular} & \\
\hline Sumitomo 3M & \begin{tabular}{l}
+81-3-5716-7290 \\
http:/solutions.3m.com/wps/portal/3M/ja_JP/ WW2/Country/
\end{tabular} & \\
\hline Tyco Electronics & \begin{tabular}{l}
+81-44-844-8052 \\
http://www.te.com/ja/home.html
\end{tabular} & \\
\hline DYDEN CORPORATION & +81-3-5805-5880 http://www.dyden.co.jp/english/index.htm & Cable \\
\hline DR. JOHANNES HEIDENHAIN GmbH & \begin{tabular}{l}
+81-3-3234-7781 \\
http://www.heidenhain.de/de_EN/company/contact/
\end{tabular} & \multirow{6}{*}{External scale} \\
\hline Fagor Automation S.Coop. & \[
\begin{aligned}
& \text { +34-943-719-200 } \\
& \text { http://www.fagorautomation.com }
\end{aligned}
\] & \\
\hline Magnescale Co., Ltd. & \[
\begin{aligned}
& \hline+81-463-92-7971 \\
& \text { http://www.mgscale.com/mgs/language/english/ }
\end{aligned}
\] & \\
\hline Mitutoyo Corporation & \[
\begin{aligned}
& \text { +81-44-813-8234 } \\
& \text { http://www.mitutoyo.co.jp/eng/ }
\end{aligned}
\] & \\
\hline Nidec Sankyo Corporation & \begin{tabular}{l}
+81-3-5740-3006 \\
http://www.nidec-sankyo.co.jp/
\end{tabular} & \\
\hline Renishaw plc & +44 1453524524 www.renishaw.com & \\
\hline Schaffner EMC, Inc. & \[
\begin{aligned}
& \text { +81-3-5712-3650 } \\
& \text { http://www.schaffner.jp/ }
\end{aligned}
\] & \multirow[t]{2}{*}{Noise filter} \\
\hline TDK-Lambda Corporation & \begin{tabular}{l}
+81-3-5201-7140 \\
http://www.tdk-lambda.com/
\end{tabular} & \\
\hline
\end{tabular}
\(\qquad\)

\footnotetext{
* The above list is for reference only. We may change the manufacturer without notice.
}

\section*{Compact Servo Only for}

\section*{Position Control.}

\section*{Ultra compact \\ position control type}

Best Fit to Small Drives
- Further evolution in down-sizing, by \(47 \%\) in size. Note)
- Exclusively designed for position control.
(Note) Compared to MUDSO43A1

\section*{Easy to Handle, Easy to Use}
- DIN-rail mounting unit (option) improves handling/installation. - User-friendly Console makes the setup easy. - High functionality Real-Time Auto-Gain Tuning enables adjustment-free operation.
High-Speed Positioning with Resonance Suppression Filters
- Built-In notch filter suppresses resonance of the machine.
- Built-in adaptive filter detect resonance frequency and suppress vibration.
\[
4
\]

Smoother operation for Low Stiffness Machine
- Damping control function suppresses vibration during acceleration/deceleration

Contents
Features 215
Motor Line-up... 219
Model Designation. 220
Overall Wiring 221
Driver and List of Applicable Peripheral Equipments. 221
Driver.223
Driver Specifications. 223
Standard Wiring Example of Main Circuit 224
Encorder Wiring Diagram. 224
Control Circuit Standard Wiring Example 225
Dimensions of Driver. 226
Motor. 227
Specifications/Model designation/Torque Characteristics. 227
Dimensions of Moter. 231
Motors with Gear Reducer 232
Options236
Setup Support Software. 236
Cable part No. Designation 237
Cable Set 238
Encoder Cable 238
Motor Cable 238
Brake Cable 238
Connector Kit 239
Interface Cable 241
Communication Cable.. 241
Console.. 2
DIN Rail Mounting Unit 242
External Regenerative Resistor 242
Reactor 243
Surge Absorber for Motor Brake 244

\section*{1. Easy to Handle, Easy to Use}

High-functionality Real-Time Auto-Gain Tuning Note
- Offers real automatic gain tuning for low and high stiffesess machines with a combination of an adaptive filter.
- Supports the verrical axis application where the load

\section*{D. Further Reduction of Vibration}

\section*{Adaptive filter (Notel}

Makes the notch filter frequency automatically follow the machine resonance frequency in real-time auto-gain tuning
- Suppression of "Judder" noise of the machine, which is caused by variation of the machines or resonance trequency due to aging, can be expected.

\section*{DIN-rail mounting unit (option)}
- DIN-rail mounting unit allows parallel mounting with smal control devices such as PLC.
- Easy to mount and easy to dismount

50 ms/div
Effect of notch filter
with notch filter

50 ms/div

\section*{Notch filter \({ }^{\text {(Noter) }}\)}

1-channel notch filter is equipped in the driver indepen dent from adaptive filter
Each of 2 filters can set up frequency and notch width, and frequency in 1 Hz unit. Suppression of "Judder" noise be expected.

Damping control (Note1)
- You can suppress vibration occurring at both starting and stopping in low stiffness machine, by manually setting up vibration frequency in 0.1 Hz unit. Note) Only applies to manual adjustment

\footnotetext{
At high speed positioning actiod mode
 Not possible to use them all at the same time.
}

Not possible to use them all a
Adaptive filter cannot be used.

-At high-functionality positioning mode (Pro2=1) All of notch filter, damping
control, high--unctionality real-time auto-gain tuning and adaptive filter can be used at the same time.

\section*{Console (Option)}

You can set up parameters, copy and make a JOG run. - Convenient for maintenance at site.
- Refer to P.241, Options

\section*{Command control modes}
- Offers 2 command modes, "Position control" and "Internal velocity control".
- You can make a 4 -speed running at preset values with parameter at internal velocity control mode

Inrush current suppressing function
- Inrush suppressing resistor, which prevent the circuit breaker shutdown of the power supply caused by inrush current at power-on, is equipped in this driver
Prevents unintentional shutdown of the power supply circuit breaker in multi axis application and does not give load to the power line.

\section*{Regeneration discharging function}
- Discharges the regenerative energy with external resistor, where energy is generated while stopping the load with large moment of inertia, or use in up-down operation, and is returned to the driver from the motor.
No regenerative resistor is installed in the driver.
- It is highly recommended to install an external regener tive resistor (option)

\section*{Built-in dynamic brake}

You can select the dynamic brake action which short the servo motor windings of \(\mathrm{U}, \mathrm{V}\) and W , at Servo-OFF, CW CCW over- travel inhibition, power shutdown and trip.
You can select the action sequence depending on the machine requirement.

\section*{Setup support software (Option)}
- With the setup support software, "PANATERM" via RS232 / RS485 communication port, you can monitor the running status of the driver and set up parameters. Note) Refer to P. 236 for setup support software.

Key-way shaft and tapped shaft end
- Easy pulley attachment and easy maintenance

Attache screw to the tapped shaft to prevent key or pulley from being pulled out.

\section*{Nave-form graphic function}

With the setup support software, "PANATERM", you can monitor the "Command speed", "Actual speed", "Torque", "Position deviation" and "Positioning complete signal".
- Helps you to analyze the machine and shorten the setup time.
Note) Refer to P. 236 for setup support software.

\section*{Frequency analyzing function}

You can confirm the response frequency characteristics of total machine mechanism including the servo motor with the setup support software, "PANATERM
Helps you to analyze the machine and shorten the setup time.
Note) Refer to P. 236 for setup support software

\section*{Torque limit switching function}
- You can select 2 preset torque limit value from external input.
Use this function for tension control or press-hold control.

\section*{Conformity to CE and UL Standards}

\section*{C \(\in\) ix \({ }^{(1)}\)}

IEC:
EN
EMC
UL
: International Electrotechnical Conmission
EN: Europaischen Norren
UL : Underwitiers Labooratorietibs
CSA : Canadian Standards Association
Pursuant to at the directive 2004/108/EC, aricle 9 (2)
Panasonic Testing Centre
Panasonic Sevice Europe
a division of Panasonic Marketing Europe GmbH
Winsbergring 15,22525 Hamburg.F.R.Germany
When exporting this product, follow statutory provisions of the destination country.

MINAS \(\left.\mathrm{E}_{\text {series }} \circlearrowright()\right)\)
Motor Line-up

Model Designation

\section*{Servo Motor}

\section*{M U M A 5 A Z P 1 S \(* *\)}

Motor with gear reducer
 - Servo Driver

Table of Part Numbers and Options
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|c|}{2500P/r, Incremental} & \multicolumn{6}{|c|}{Option} \\
\hline Power supply & Output
(W) & Motor \({ }^{\text {Note }} 1\) & Rating/Spec. (page) & Driver & Dimensions \(\binom{\) Frame }{ symbol } & Encoder Cable Note) 2 & Motor Cable Note) 2 & Brake Cable Note) 2 & External
Regenerative
Resistor & Reactor & Noise Filter \\
\hline \multirow[t]{3}{*}{Single phase 100 V} & 50 & MUMA5AZP1 \(\square\) & 227 & MKDET1105P & 226 (K) & \multirow{11}{*}{MFECAO* *OEAM} & \multirow{11}{*}{MFMCAO * * OAEB} & \multirow{11}{*}{MFMCBO * * OGET} & \multirow{3}{*}{DVOP2890} & \multirow[t]{2}{*}{DVOP227} & \multirow{11}{*}{DVOP4160} \\
\hline & 100 & MUMA011P1 \(\square\) & 227 & MKDET1110P & 226 (K) & & & & & & \\
\hline & 200 & MUMA021P1 \(\square\) & 227 & MLDET2110P & 226 (L) & & & & & DVOP228 & \\
\hline \multirow{4}{*}{Single phase 200 V} & 50 & MUMA5AZP1 \(\square\) & 229 & MKDET1505P & 226 (K) & & & & \multirow{8}{*}{DV0P2891} & \multirow{8}{*}{DVOP220} & \\
\hline & 100 & MUMA012P1 \(\square\) & 229 & MKDET1505P & 226 (K) & & & & & & \\
\hline & 200 & MUMA022P1 \(\square\) & 229 & MLDET2210P & 226 (L) & & & & & & \\
\hline & 400 & MUMA042P1 \(\square\) & 229 & MLDET2510P & 226 (L) & & & & & & \\
\hline \multirow{4}{*}{\[
\begin{gathered}
\text { 3-phase } \\
200 \mathrm{~V}
\end{gathered}
\]} & 50 & MUMA5AZP1 \(\square\) & 229 & MKDET1505P & 226 (K) & & & & & & \\
\hline & 100 & MUMA012P1 \(\square\) & 229 & MKDET1505P & 226 (K) & & & & & & \\
\hline & 200 & MUMA022P1 \(\square\) & 229 & MKDET1310P & 226 (K) & & & & & & \\
\hline & 400 & MUMA042P1 \(\square\) & 229 & MLDET2510P & 226 (L) & & & & & & \\
\hline
\end{tabular}

Note) 1 Motor model number suffix: \(\square\)
S: Key way with center tap, without brake
Note) \(2 * *\) represents cable length. For details, refer to P. 237 .

\section*{List of recommended peripheral equipments}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Power supply} & \multicolumn{2}{|c|}{Motor} & \multirow[t]{2}{*}{Power \(\binom{\) at rated }{ output }} & \multirow[b]{2}{*}{Circuit Breaker (Rated current)} & \multirow[b]{2}{*}{Noise Filter} & \multirow[t]{2}{*}{\[
\left(\begin{array}{c}
\text { Magnetic } \\
\text { Contactor } \\
\text { Contact } \\
\text { Composition }
\end{array}\right)
\]} & \multirow[b]{2}{*}{\begin{tabular}{l}
Wire diameter \\
(L1, L2, L3, U, V and W)
\end{tabular}} \\
\hline & Series & Output & & & & & \\
\hline \multirow[t]{3}{*}{Single phase, 100 V} & \multirow{11}{*}{MUMA} & 50 W & 0.3 kVA & \multirow[t]{2}{*}{(5 A)} & \multirow{11}{*}{DVOP4160} & \multirow[t]{3}{*}{\[
\begin{gathered}
10 \mathrm{~A} \\
(3 \mathrm{P}+1 \mathrm{a})
\end{gathered}
\]} & \multirow{11}{*}{\(0.75 \mathrm{~mm}^{2}\) to \(0.85 \mathrm{~mm}^{2}\)
AWG18 AWG18} \\
\hline & & 100 W & 0.4 kVA & & & & \\
\hline & & 200 W & 0.5 kVA & (10 A) & & & \\
\hline \multirow{4}{*}{Single phase, 200 V} & & 50 W & \multirow[t]{2}{*}{0.3 kVA} & \multirow{3}{*}{(5 A)} & & \multirow{4}{*}{\[
\begin{gathered}
15 \mathrm{~A} \\
(3 \mathrm{P}+1 \mathrm{a})
\end{gathered}
\]} & \\
\hline & & 100 W & & & & & \\
\hline & & 200 W & 0.5 kVA & & & & \\
\hline & & 400 W & 0.9 kVA & (10 A) & & & \\
\hline \multirow{4}{*}{3-phase 200 V} & & 50 W & \multirow[t]{2}{*}{0.3 kVA} & \multirow{3}{*}{(5 A)} & & \multirow{4}{*}{\[
\begin{gathered}
10 \mathrm{~A} \\
(3 \mathrm{P}+1 \mathrm{a})
\end{gathered}
\]} & \\
\hline & & 100 W & & & & & \\
\hline & & 200 W & 0.5 kVA & & & & \\
\hline & & 400 W & 0.9 kVA & (10 A) & & & \\
\hline
\end{tabular}
* Select the single and 3 -phase common specifications corresponding to the power supplies.

To conform to EC Directives, install a circuit breaker which conforms to IEC and UL Standards (Listed, (4l) marked) between noise filter and power supply.
- For details of the noise filters, refer to P. 256 .

Use a copper conductor cables with temperature rating of \(60^{\circ} \mathrm{C}\) or higher for main power connector and ground

Use a cable for ground with diameter of \(2.0 \mathrm{~mm}^{2}\) (AWG14)
Parts customer to prepare
ower supply for
brake DC24 V
to P .227
to P. 223
Wiring of main circuit
Circuit Breaker (MCCB)
Protects the power lines.
Protects the power lines.
Shuts off the circuit when
\begin{tabular}{l}
overcurrent passes. \\
\hline
\end{tabular}
Noise Filter (NF)
Prevents external noise from the
Prevents external noise from
power lines. And reduces an
effect of the Anoise generated by
the servo driver.
the servo driver.
Magnetic Contactor (MC)
Turns on/off the main power
the servo driver.
Surge absorber to be used
together with this.
together with this.
Reduces harmonic current of the
main power.
Pin-5 and Pin-3 of CN POWER
- Connect an external
between \(P\) (pin-5) and \(B\) (pin- 3)
of connector, CN X1, when
regenerative energy is large.
(Refer to P. 242 for regenerative
\begin{tabular}{|l|l|}
\hline Motor & to P. 22 \\
\hline Driver & to P.22 \\
\hline Option & to P.23 \\
\hline Recommended equipments & \\
\hline Parts customer to prepare & \\
\hline
\end{tabular}

Console
(DVOP4420)
Personal Computer

nector for external equipment (DVOPO770) or interface cable (DVOPO800) terminal wiring.
or larger.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Options} & Part No. & \({ }_{\text {Carrying }}^{\text {page }}\) \\
\hline \multicolumn{3}{|l|}{Console} & DV0P4420 & 241 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Setup Support Software, PANATERM}} & Japanese & \multirow[b]{2}{*}{DVOP4460} & \multirow[b]{2}{*}{236} \\
\hline & & English & & \\
\hline \multicolumn{3}{|l|}{RS232 Communication Cable (for Connection with PC)} & DVOP1960 & 241 \\
\hline \multicolumn{3}{|l|}{Interface Cable} & DV0P0800 & 241 \\
\hline \multicolumn{3}{|l|}{Connector Kit for External Equipment} & DVOP0770 & 240 \\
\hline \multicolumn{3}{|l|}{Connector Kit for Motor and Encoder} & DVOP3670 & 239 \\
\hline \multicolumn{3}{|l|}{Connector Kit for Driver Power Supply} & DVOP2870 & 239 \\
\hline \multicolumn{2}{|l|}{Encoder Cable} & \multicolumn{2}{|l|}{MFECAO * * OEAM} & 238 \\
\hline \multicolumn{2}{|l|}{Motor Cable} & \multicolumn{2}{|l|}{MFMCAO * * OAEB} & 238 \\
\hline \multicolumn{2}{|l|}{Brake Cable} & \multicolumn{2}{|l|}{MFMCBO \(* *\) OGET} & 238 \\
\hline \multicolumn{2}{|l|}{Cable Set (3 m) \({ }^{\text {Note 3) }}\)} & \multicolumn{2}{|l|}{DVOP37300} & 238 \\
\hline \multicolumn{2}{|l|}{Cable Set (5 m) \({ }^{\text {(Note } 3)}\)} & \multicolumn{2}{|l|}{DVOP39200} & 238 \\
\hline \multicolumn{2}{|l|}{DIN Rail Mount Unit} & \multicolumn{2}{|l|}{DVOP3811} & 242 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
External \\
Regenerative \\
Resistor
\end{tabular}} & 100 V & \(50 \Omega 10 \mathrm{~W}\) & DVOP2890 & \multirow[b]{2}{*}{242} \\
\hline & 200 V & \(100 \Omega 10 \mathrm{~W}\) & DVOP2891 & \\
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{Reactor}} & \multirow[t]{2}{*}{100 V} & DVOP227 & \multirow{3}{*}{243} \\
\hline & & & DVOP228 & \\
\hline & & 200 V & DVOP220 & \\
\hline \multicolumn{3}{|l|}{Noise Filter} & DVOP4160 & 256 \\
\hline \multirow[t]{2}{*}{Surge Absorber} & & gle phase V, 200 V & DVOP4190 & \multirow[t]{2}{*}{256} \\
\hline & & hase 200 V & DVOP1450 & \\
\hline \multicolumn{3}{|l|}{Noise Filter for Signal Wire} & DVOP1460 & 256 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{(Note 3) Cable set (3 m) contains, 1) Interface cable: DV0P0800}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{2) Encoder cable (3 m) : MFECAOO3OEAM} \\
\hline \multicolumn{5}{|c|}{3) Motor cable (3 m) : MFMCAOозОAEB} \\
\hline \multicolumn{5}{|r|}{4) Connector kit for driver power supply connection : DVOP2870} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Cable set (5 m) contains, \\
1) Interface cable: DVOP0800
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|c|}{2) Encoder cable (5 m) : MFECA0050EAM} \\
\hline \multicolumn{5}{|c|}{3) Motor cable (5 m) : MFMCAOO50AEB} \\
\hline & ector kit fo & driver power su & y connection : D & VOP2870 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{3}{*}{}} & \multicolumn{3}{|l|}{Single phase, 100 V} & Single phase, 100 V to \(115 \mathrm{~V}{ }_{-15 \%}^{+10 \%}\) & \(50 \mathrm{~Hz} / 60 \mathrm{~Hz}\) \\
\hline & & \multicolumn{3}{|l|}{Single phase, 200 V} & Single phase, 200 V to \(240 \mathrm{~V}{ }_{-15 \%}^{+10 \%} 5\) & \(50 \mathrm{~Hz} / 60 \mathrm{~Hz}\) \\
\hline & & \multicolumn{3}{|l|}{3 -phase, 200 V} & 3 -phase, 200 V to \(240 \mathrm{~V}{ }_{-15 \%}^{+10 \%} 5\) & \(50 \mathrm{~Hz} / 60 \mathrm{~Hz}\) \\
\hline \multirow{16}{*}{} & T & \multicolumn{3}{|l|}{Temperature} & \multicolumn{2}{|l|}{Operating : \(0^{\circ} \mathrm{C}\) to \(55^{\circ} \mathrm{C}\), Storage : \(-20^{\circ} \mathrm{C}\) to \(65^{\circ} \mathrm{C}\) (Max.temperature guarantee \(80^{\circ} \mathrm{C}\) for 72 hours <Nomal temperature>)} \\
\hline & \% & \multicolumn{3}{|l|}{Humidity} & \multicolumn{2}{|l|}{Both operating and storage : \(90 \%\) RH or less (rree from condensation)} \\
\hline & \(\stackrel{\text { ® }}{9}\) & \multicolumn{3}{|l|}{Altitude} & \multicolumn{2}{|l|}{1000 m or lower} \\
\hline & & \multicolumn{3}{|l|}{Vibration} & \multicolumn{2}{|l|}{\(5.88 \mathrm{~m} / \mathrm{s}^{2}\) or less, 10 Hz to 60 Hz (No continuous use at resonance frequency)} \\
\hline & & \multicolumn{3}{|l|}{thstand voltage} & \multicolumn{2}{|l|}{Should be 1500 VAC (Sensed current: 20 mA) for 1 minute between Primary and Ground.} \\
\hline & \multicolumn{4}{|l|}{Control method} & \multicolumn{2}{|l|}{IGBT PWM Sinusoidal wave drive} \\
\hline & \multicolumn{4}{|l|}{Encoder feedback} & \multicolumn{2}{|l|}{\(2500 \mathrm{P} / \mathrm{r}\) (10000 resolution) incremental encoder} \\
\hline & & \multicolumn{3}{|l|}{Input} & \multicolumn{2}{|l|}{7 inputs (1) Servo-ON, (2) Alarm clear and other inputs vary depending on the control mode.} \\
\hline & - & \multicolumn{3}{|l|}{Output} & \multicolumn{2}{|l|}{\begin{tabular}{l}
(1) Servo alarm, (2) Alarm, \\
(3) Release signal of external brake and other outputs vary depending on the control mode.
\end{tabular}} \\
\hline & \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{Input} & \multicolumn{2}{|l|}{2 inputs Supports both line driver I/F and open collector I/F.} \\
\hline & & \multicolumn{3}{|l|}{Output} & \multicolumn{2}{|l|}{4 outputs Feed out the encoder pulse (A, B and Z-phase) in line driver. Z-phase pulse is also feed out in open collector.} \\
\hline & \multicolumn{3}{|l|}{Communication function} & RS232 & \multicolumn{2}{|l|}{\(1: 1\) communication to a host with RS232 interface is enabled.} \\
\hline & \multicolumn{4}{|l|}{Display LED} & \multicolumn{2}{|l|}{(1) Status LED (STATUS), (2) Alarm code LED (ALM-CODE)} \\
\hline & \multicolumn{4}{|l|}{Regeneration} & \multicolumn{2}{|l|}{No built-in regenerative resistor (external resistor only)} \\
\hline & \multicolumn{4}{|l|}{Dynamic brake} & \multicolumn{2}{|l|}{Built-in} \\
\hline & \multicolumn{4}{|l|}{Control mode} & \multicolumn{2}{|l|}{3 modes of (1) High-speed position control, (2) Internal velocity control and (3) High-functionality positioning control are selectable with parameter.} \\
\hline & \multirow{6}{*}{} & \multicolumn{3}{|l|}{Control input} & \multicolumn{2}{|l|}{(1) CW over-travel inhibition, (2) CCW over-travel inhibition, (3) Deviation counter clear, (4) Gain switching, (5) Electronic gear switching} \\
\hline & & \multicolumn{3}{|l|}{Control output} & \multicolumn{2}{|l|}{(1) Positioning complete (In-position)} \\
\hline & & \multirow{4}{*}{} & Max. command frequency & & \multicolumn{2}{|l|}{Line driver : 500 kpps , Open collector : 200 kpps} \\
\hline & & & Type of input p & ulse train & \multicolumn{2}{|l|}{Differential input. Selectable with parameter, ((1) CW/CCW, (2) A and B-phase, (3) Command and Direction)} \\
\hline & & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Electronic gear } \\
& \binom{\text { Division/Multiplication }}{\text { of command pulse }}
\end{aligned}
\]} & \multicolumn{2}{|l|}{Setup of electronic gear ratio Setup range of (1-10000) \(\times 2^{(0,-17)}(1-10000)\)} \\
\hline & & & \multicolumn{2}{|l|}{Smoothing filter} & \multicolumn{2}{|l|}{Primary delay filter or FIR type filter is selectable to the command input.} \\
\hline \multirow[t]{15}{*}{} & \multirow[t]{5}{*}{} & \multicolumn{3}{|l|}{Control input} & \multicolumn{2}{|l|}{\begin{tabular}{l}
(1) CW over-travel inhibition, (2) CCW over-travel inhibition, (3) Selection 1 of internal command speed, \\
(4) Selection 2 of internal command speed, (5) Speed zero clamp
\end{tabular}} \\
\hline & & \multicolumn{3}{|l|}{Control output} & \multicolumn{2}{|l|}{(1) Speed arrival (at-speed)} \\
\hline & & \multicolumn{3}{|l|}{Internal speed command} & \multicolumn{2}{|l|}{Internal 4-speed is selectable with control input.} \\
\hline & & \multicolumn{3}{|l|}{Soft-start/down function} & \multicolumn{2}{|l|}{Individual setup of acceleration and deceleration are enabled, with 0 s to \(10 \mathrm{~s} / 1000 \mathrm{r} / \mathrm{min}\). Sigmoid acceleration/deceleration is also enabled.} \\
\hline & & \multicolumn{3}{|l|}{Zero-speed clamp} & \multicolumn{2}{|l|}{0-clamp of internal speed command with speed zero clamp input is enabled.} \\
\hline & \multirow{10}{*}{\[
\begin{aligned}
& \text { O} \\
& \text { ol } \\
& \text { 흥 }
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Real-time} & \multicolumn{2}{|l|}{Estimates the load inertia in real-time in actual operation and sets up the gain automatically corresponding to the machine stiffness. Useable at (1) High-response position control, (2) Internal speed control and (3) High-functionality position control.} \\
\hline & & & \multicolumn{2}{|l|}{Normal mode} & \multicolumn{2}{|l|}{Estimates the load inertia with an action command inside of the driver, and sets up the gain automatically corresponding to setup of the machine stiffness. Useable at (1) High-response position control, (2) Internal speed control and (3) High-functionality position control.} \\
\hline & & \multicolumn{3}{|l|}{Masking of unnecessary input} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Masking of the following input signal is enabled \\
(1) Over-travel inhibition, (2) Speed zero clamp, (3) Torque limit switching
\end{tabular}} \\
\hline & & \multicolumn{3}{|l|}{Division of encoder feedback pulse} & \multicolumn{2}{|l|}{\(1 \mathrm{P} / \mathrm{t}\) to \(2500 \mathrm{P} / \mathrm{r}\) (encoder pulses count is the max.).} \\
\hline & & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{꿍 Hardware error} & \multicolumn{2}{|l|}{Over-voltage, under-voltage, over-speed over-load, over-heat, over-current and encoder error etc.} \\
\hline & & & \multicolumn{2}{|l|}{\(\stackrel{\text { \% }}{\sim}\)} & \multicolumn{2}{|l|}{Excess position deviation, command pulse division error, EEPROM error etc.} \\
\hline & & \multicolumn{3}{|l|}{Traceability of alarm data} & \multicolumn{2}{|l|}{Traceable up to past 14 alarms including the present one.} \\
\hline & & \multicolumn{3}{|l|}{Damping control function} & \multicolumn{2}{|l|}{Manual setup with parameter} \\
\hline & & \multirow[t]{2}{*}{\(\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}\)} & \multicolumn{2}{|l|}{Manual} & \multicolumn{2}{|l|}{Console} \\
\hline & & & \multicolumn{2}{|l|}{Setup support software} & \multicolumn{2}{|l|}{PANATERM (Supporting OS : Windows98, Windows ME, Windows2000, and WindowsXP)} \\
\hline
\end{tabular}

\section*{Standard Wiring Example of Main Circuit} Encorder Wiring Diagram

Standard Wiring Example of Main Circuit

3-Phase, 200 V

Single Phase, 100 V / 200 V

\section*{Encorder Wiring Diagram}

When you make your own junction cable for encoder (Refer to P.239, P. 240 "Options" for connector)
1) Refer the wiring diagram
) Use the twisted pair wire with shield, with core diameter of \(0.18 \mathrm{~mm}^{2}\) (AWG24) or larger, with higher bending resistance.
Use the twisted pair wire for the corresponding signal and power supply
) Shielding
Connect the shield of the driver to the case of CN X4
Connect the shield of the motor to Pin-6.

CN X 5 Wiring Example at Position Control Mode

CN X 5 Wiring Example at Internal Velocity Control Mode

Frame K

Frame L

Mass: 0.40 kg
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & \multicolumn{3}{|c|}{AC100 V} \\
\hline \multicolumn{2}{|l|}{Motor model} & MUMA & 5AZP1■ & 011P1 \(\square\) & 021P1 \(\square\) \\
\hline \multicolumn{2}{|l|}{\multirow{2}{*}{Applicable driver}} & Model No. & MKDET1105P & MKDET1110P & MLDET2110P \\
\hline & & Frame symbol & \multicolumn{2}{|c|}{Frame K} & Frame L \\
\hline \multicolumn{3}{|l|}{Power supply capacity (kVA)} & 0.3 & 0.4 & 0.5 \\
\hline \multicolumn{3}{|l|}{Rated output (W)} & 50 & 100 & 200 \\
\hline \multicolumn{3}{|l|}{Rated torque (\(\mathrm{N} \cdot \mathrm{m}\))} & 0.16 & 0.32 & 0.64 \\
\hline \multicolumn{3}{|l|}{Momentary Max. peak torque (\(\mathrm{N} \cdot \mathrm{m}\))} & 0.48 & 0.95 & 1.91 \\
\hline \multicolumn{3}{|l|}{Rated current (Arms)} & 1.0 & 1.6 & 2.5 \\
\hline \multicolumn{3}{|l|}{Max. current (Ao-p)} & 4.3 & 6.9 & 11.7 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Regenerative brake frequency \\
(times/min) Note) 1
\end{tabular}}} & Without option & \multicolumn{3}{|c|}{No limit Note)2} \\
\hline & & DVOP2890 & \multicolumn{3}{|c|}{No limit Note)2} \\
\hline \multicolumn{3}{|l|}{Rated rotational speed (r/min)} & \multicolumn{3}{|c|}{3000} \\
\hline \multicolumn{3}{|l|}{Max. rotational speed (r/min)} & \multicolumn{3}{|c|}{5000} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Moment of inertia of rotor
\[
\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
\]}} & Without brake & 0.021 & 0.032 & 0.10 \\
\hline & & With brake & 0.026 & 0.036 & 0.13 \\
\hline \multicolumn{3}{|l|}{Recommended moment of inertia ratio of the load and the rotor Note)3} & \multicolumn{3}{|c|}{30 times or less} \\
\hline \multicolumn{3}{|l|}{Rotary encoder specifications} & \multicolumn{3}{|c|}{\begin{tabular}{l}
2500 P/r \\
Incremental
\end{tabular}} \\
\hline \multicolumn{3}{|r|}{Resolution per single turn} & \multicolumn{3}{|c|}{10000} \\
\hline \multicolumn{3}{|l|}{Protective enclosure rating} & \multicolumn{3}{|c|}{IP65 (except rotating portion of output shaft and lead wire end)} \\
\hline \multirow{5}{*}{Environment} & \multicolumn{2}{|l|}{Ambient temperature} & \multicolumn{3}{|l|}{\(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) (free from freezing), Storage : \(-20^{\circ} \mathrm{C}\) to \(65^{\circ} \mathrm{C}\) (Max.temperature guarantee \(80^{\circ} \mathrm{C}\) for 72 hours <nomal humidity>)} \\
\hline & \multicolumn{2}{|l|}{Ambient humidity} & \multicolumn{3}{|c|}{\(85 \%\) RH or lower (free from condensing)} \\
\hline & \multicolumn{2}{|l|}{Installation location} & \multicolumn{3}{|l|}{Indoors (no direct sunlight), free from corrosive gas, inflammable gas, oil mist and dust} \\
\hline & \multicolumn{2}{|l|}{Altitude} & \multicolumn{3}{|c|}{1000 m or lower} \\
\hline & \multicolumn{2}{|l|}{Vibration resistance} & \multicolumn{3}{|c|}{\(49 \mathrm{~m} / \mathrm{s}^{2}\) or less} \\
\hline \multicolumn{3}{|l|}{Mass (kg), () represents holding brake type} & 0.4 (0.6) & 0.5 (0.7) & 0.96 (1.36) \\
\hline \multicolumn{6}{|l|}{Brake specifications (This brake will be released when it is energized. Do not use this for braking the motor in motion.)} \\
\hline \multicolumn{3}{|l|}{Static friction torque (\(\mathrm{N} \cdot \mathrm{m}\))} & \multicolumn{2}{|c|}{0.29} & 1.27 \\
\hline \multicolumn{3}{|l|}{Engaging time (ms)} & \multicolumn{2}{|c|}{25} & 50 \\
\hline \multicolumn{2}{|l|}{Releasing time (ms)} & Note) 4 & \multicolumn{2}{|c|}{20 (30)} & 15 (100) \\
\hline \multicolumn{3}{|l|}{Exiting current (DC) (A)} & \multicolumn{2}{|c|}{0.26} & 0.36 \\
\hline \multicolumn{3}{|l|}{Releasing voltage} & \multicolumn{3}{|c|}{DC 1 V or more} \\
\hline \multicolumn{3}{|l|}{Exciting voltage} & \multicolumn{3}{|c|}{DV \(24 \mathrm{~V} \pm 10 \%\)} \\
\hline \multicolumn{6}{|l|}{Permissible load} \\
\hline \multirow{3}{*}{During assembly} & \multicolumn{2}{|l|}{Radial load P-direction (N)} & \multicolumn{2}{|c|}{147} & 392 \\
\hline & \multicolumn{2}{|l|}{Thrust load A-direction (N)} & \multicolumn{2}{|c|}{88} & 147 \\
\hline & \multicolumn{2}{|l|}{Thrust load B-direction (N)} & \multicolumn{2}{|c|}{117} & 196 \\
\hline \multirow{3}{*}{During operation} & \multicolumn{2}{|l|}{Radial load P-direction (N)} & \multicolumn{2}{|c|}{68} & 245 \\
\hline & \multicolumn{2}{|l|}{Thrust load A-direction (N)} & \multicolumn{2}{|c|}{58} & 98 \\
\hline & Thrust 10 & ad B-direction (N) & \multicolumn{2}{|c|}{58} & 98 \\
\hline
\end{tabular}

\footnotetext{
For motor dimensions, refer to P.231, and for the diver, refer to P. 226
}

\section*{Model Designation}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Motor rated output} & \multicolumn{2}{|l|}{Voltage specifications} \\
\hline Symbol & Rated output & Symbol & Specifications \\
\hline 5A & 50 W & 1 & 100 V \\
\hline 01 & 100 W & z & 100/200 V \\
\hline 02 & 200 W & & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Rotary encoder specifications } \\
& \begin{array}{c|c|c|c|c}
\\
\hline \text { Symbol } & \text { Format } & \text { Pulse counts } & \text { Resolution } & \text { Wires } \\
\hline \text { P } & \text { Incremental } & 2500 \text { P/r } & 10000 & 5
\end{array}
\end{aligned}
\]

Torque Characteristics [at AC100 V of power voltage (Dotted line represents the torque at \(10 \%\) less supply voltage.)] MUMA5AZP1 \(\square\)

\section*{MUMA021P1 \(\square\)}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Brake specifications (This brake will be released when it is energized. Do not use this for braking the motor in motion.)} \\
\hline \multicolumn{2}{|l|}{Static friction torque (\(\mathrm{N} \cdot \mathrm{m}\))} & 0.29 & 1.27 \\
\hline \multicolumn{2}{|l|}{Engaging time (ms)} & 25 & 50 \\
\hline \multicolumn{2}{|l|}{Releasing time (ms) Note)4} & 20 (30) & 15 (100) \\
\hline \multicolumn{2}{|l|}{Exciting current (DC) (A)} & 0.26 & 0.36 \\
\hline \multicolumn{2}{|l|}{Releasing voltage} & \multicolumn{2}{|c|}{DC 1 V or more} \\
\hline \multicolumn{2}{|l|}{Exciting voltage} & \multicolumn{2}{|c|}{DV \(24 \mathrm{~V} \pm 10 \%\)} \\
\hline \multicolumn{4}{|l|}{Permissible load} \\
\hline \multirow{3}{*}{During assembly} & Radial load P-direction (N) & 147 & 392 \\
\hline & Thrust load A-direction (N) & 88 & 147 \\
\hline & Thrust load B-direction (N) & 117 & 196 \\
\hline \multirow[b]{3}{*}{During operation} & Radial load P-direction (N) & 68 & 245 \\
\hline & Thrust load A-direction (N) & 58 & 98 \\
\hline & Thrust load B-direction (N) & 58 & 98 \\
\hline
\end{tabular}

For motor dimensions, refer to P.231, and for the driver, refer to P. 226
Note) Driver for 50 W and 100 W has a common power supply of single phase and 3-phase 200 V .
Driver for 200 W , the upper row is the power supply of 3 -phase 200 V , and lower is the power supply of single-phase 200 V .
Driver for 400 W , the upper row is the power supply of 3 -phase 200 V , and lower is the common power supply of single-phase and 3 -phase 200 V .

\section*{Model Designation}
 Rotary encoder specifications \begin{tabular}{c|c|c|c|c|}
\hline Symbol & Format & Pulse counts & Resolution & Wires \\
\hline P & Incremental & \(2500 \mathrm{P} / \mathrm{r}\) & 10000 & 5
\end{tabular}

Torque Characteristics [at AC200 V of power voltage (Dotted line represents the torque at \(10 \%\) less supply voltage.)] MUMA5AZP1 \(\square\)

MUMA012P1 \(\square\)

\section*{MUMA022P1 \(\square\)}

Note) 1. Regenerative brake frequency represents the frequency of the motor's stop from the rated speed with deceleration without load.
If the load is connected, frequency will be defined as \(1 /(m+1)\), where \(m=\) (load moment of inertia) / (rotor moment of inertia). When the motor speed exceeds the rated speed, regenerative brake
requency is in inverse proportion to the square
 Power supply volage is AC 240 V (at 200 V of the main voltage) If the supply voltage fluctuates, frequency is in inverse proportion to the When regeneration occurs continuosly such cases as running spee frequently changes or vertical feeding, consult us or a dealer.
2. If the effective torque is within the rated torque, there is no limit in regenera tive brake.
Consult us or a dealer if the load moment of inertia exceeds the specified Specified releasing time is obtained with the use of surge absorber for brak (Z15D151 by SEMITEC Corporation or equivalent), () represents the actually measured value using a diode (\(200 \mathrm{~V}, 1 \mathrm{~A}\) or

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{[Unit:} \\
\hline & & \multicolumn{4}{|c|}{MUMA series (Ultra low inertia)} \\
\hline \multicolumn{2}{|l|}{Motor output} & 50 W & 100 W & 200 W & 400 W \\
\hline Motor mode & MUMA & 5A \(\square \mathbf{P 1} \square\) & \(01 \square \mathrm{P} 1 \square\) & 02 \(\square \mathbf{P 1} \square\) & 04 \(\square\) P1 \(\square\) \\
\hline \multicolumn{2}{|l|}{Rotary encoder specifications} & \begin{tabular}{l}
2500 P/r \\
Incremental
\end{tabular} \\
\hline \multirow{2}{*}{LL} & Without brake & 75.5 & 92.5 & 96 & 123.5 \\
\hline & With brake & 107 & 124 & 129 & 156.5 \\
\hline \multicolumn{2}{|c|}{LR} & 24 & 24 & 30 & 30 \\
\hline \multicolumn{2}{|c|}{S} & 8 & 8 & 11 & 14 \\
\hline \multicolumn{2}{|c|}{LA} & 48 & 48 & 70 & 70 \\
\hline \multicolumn{2}{|c|}{LB} & 22 & 22 & 50 & 50 \\
\hline \multicolumn{2}{|c|}{LC} & 42 & 42 & 60 & 60 \\
\hline \multicolumn{2}{|c|}{LE} & 2 & 2 & 3 & 3 \\
\hline \multicolumn{2}{|c|}{LF} & 7 & 7 & 7 & 7 \\
\hline \multicolumn{2}{|c|}{LH} & 34 & 34 & 43 & 43 \\
\hline \multicolumn{2}{|c|}{Lz} & 3.4 & 3.4 & 4.5 & 4.5 \\
\hline \multirow{6}{*}{Key way} & & 14 & 14 & 20 & 25 \\
\hline & & 12.5 & 12.5 & 18 & 22.5 \\
\hline & KW & 3h9 & 3h9 & 4h9 & 5 h 9 \\
\hline & KH & 3 & 3 & 4 & 5 \\
\hline & RH & 6.2 & 6.2 & 8.5 & 11 \\
\hline & TP & M3 \(\times 6\) (depth) & M \(\times\) ¢ 6 (depth) & M \(4 \times 8\) (depth) & M5 \(\times 10\) (depth) \\
\hline \multirow[b]{2}{*}{Mass (kg)} & Without brake & 0.40 & 0.50 & 0.96 & 1.5 \\
\hline & With brake & 0.60 & 0.70 & 1.36 & 1.9 \\
\hline \multicolumn{2}{|l|}{Connector/Plug specifications} & \multicolumn{4}{|c|}{refer to Options, P.239, P. 240.} \\
\hline
\end{tabular}

Connector/Plug specifications
refer to Options, P \(239, ~ P .340\)

\section*{<Cautions>}

Reduce the moment of inertia ratio if high speed response operation is required.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

\section*{MINAS E Series Motors with Gear Reducer}

\section*{Motor Types with Gear Reducer}

Model No. Designation
\begin{tabular}{|c|c|}
\hline Symbol & Type \\
\hline MUMA & \begin{tabular}{c}
Low inertia \\
\((100\) to 400 W\()\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Motor rated output} & & \\
\hline Symbol & Rated output & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Voltage specifications}} \\
\hline 01 & 100 W & & \\
\hline 02 & 200 W & Symbol & Specifications \\
\hline 04 & 400 W & 1 & 100 V \\
\hline & & 2 & 200 V \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Rotary encoder specifications } \\
& \text { Symbol Format } \\
& \text { Py Incremental } \\
& \begin{array}{|l|l|l|}
\hline \text { Pulse counts } & \text { Pulse counts } & \text { Wire } \\
\hline 2500 \mathrm{P} / \mathrm{r} & 10000 & \\
\hline
\end{array} \\
& 2500 \mathrm{P} / \mathrm{r} 10000
\end{aligned}
\]

Specifications of Motor with Gear Reducer
\begin{tabular}{|c|c|c|}
\hline & Motor type & muma \\
\hline \multirow{8}{*}{Gear reducer} & Backlash & 3 minutes or smaller (initial value) at output shaft of the reducer \\
\hline & Composition of gear & Planetary gear \\
\hline & Gear efficiency & 65 \% to \(85 \%\) \\
\hline & Rotational direction at output shaft (of reducer) & Same direction as the motor output shaft \\
\hline & Composition of gear & Planetary gear \\
\hline & Mounting method & Flange mounting \\
\hline & Permissible moment of inertia of the load (conversion to the motor shaft) & 10 times or smaller than rotor moment of inertia of the motor \\
\hline & Protective structure & IP44 (at gear reducer) \\
\hline \multirow{4}{*}{Environment} & Ambient temperature & \(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) \\
\hline & Ambient humidity & \(85 \% \mathrm{RH}\) (free from condensation) or less \\
\hline & Vibration resistance & \(49 \mathrm{~m} / \mathrm{s}^{2}\) or less (at motor frame) \\
\hline & Impact resistance & \(98 \mathrm{~m} / \mathrm{s}^{2}\) or less \\
\hline
\end{tabular}

\section*{Table of Motor with Gear Reducer Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Model} & Motor & & & & & & MA with g & reduce & & & & & \\
\hline & \multirow{2}{*}{Output} & \multirow{3}{*}{\(\underset{\text { ratio }}{\text { Reduction }}\)} & Outpu & \multirow[t]{2}{*}{Rated
speed} & \multirow[b]{2}{*}{Max．} & \multirow[t]{2}{*}{Rated
torque} & \multirow[b]{2}{*}{Peak max． torque} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Moment of inertia } \\
& \binom{\text { motor + reducer/converted }}{\text { to motor shaft }}
\end{aligned}
\]} & \multicolumn{2}{|l|}{）Mass} & \multirow[t]{2}{*}{Permissibl radial load} & \multirow[t]{2}{*}{Permissible thrust load} \\
\hline & & & & & & & & w／o brake & w／brake & w／o brake & w／brake & & \\
\hline & （W） & & （W） & （r／min） & （r／min） & （ \(\mathrm{N} \cdot \mathrm{m}\) ） & （ \(\mathrm{N} \cdot \mathrm{m}\) ） & \(J\left(\times 10^{-4}\right.\) & － \(\mathrm{kg} \cdot \mathrm{m}^{2}\) ） & 2）（k & & （ N ） & （ N ） \\
\hline MUMA01 \(\square\) P \(\square 1 \mathrm{~N}\) & \multirow{3}{*}{100} & 1／5 & 75 & 600 & 1000 & 1.18 & 3.72 & 0.072 & 0.076 & 1.05 & 1.25 & 490 & 245 \\
\hline MUMA01 \(\square \mathrm{P} \square 2 \mathrm{~N}\) & & 1／9 & 80 & 333 & 555 & 2.25 & 6.86 & 0.0663 & 0.0703 & 31.05 & 1.25 & 588 & 294 \\
\hline MUMA01 \(\square \mathrm{P} \square 4 \mathrm{~N}\) & & 1／25 & 80 & 120 & 200 & 6.27 & 19.0 & 0.0645 & 0.0685 & 35.20 & 2.40 & 1670 & 833 \\
\hline MUMA02 \(\square\) P \(\square 1 \mathrm{~N}\) & \multirow{3}{*}{200} & 1／5 & 170 & 600 & 1000 & 2.65 & 8.04 & 0.218 & 0.248 & 1.68 & 2.08 & 490 & 245 \\
\hline MUMA02 \(\square \mathrm{P} \square 2 \mathrm{~N}\) & & 1／9 & 132 & 333 & 555 & 3.72 & 11.3 & 0.368 & 0.398 & 2.66 & 3.06 & 1180 & 588 \\
\hline MUMA02 \(\square \mathrm{P} \square 4 \mathrm{~N}\) & & \(1 / 25\) & 140 & 120 & 200 & 11.1 & 33.3 & 0.388 & 0.418 & 2.66 & 3.06 & 1670 & 833 \\
\hline MUMA042P \(\square 1 \mathrm{~N}\) & \multirow{3}{*}{400} & 1／5 & 340 & 600 & 1000 & 5.39 & 16.2 & 0.533 & 0.563 & 3.2 & 3.6 & 980 & 490 \\
\hline MUMAO42P \(\square 2 \mathrm{~N}\) & & 1／9 & 332 & 333 & 555 & 9.51 & 28.5 & 0.438 & 0.468 & 3.2 & 3.6 & 1180 & 588 \\
\hline MUMA042P \(\square 4 \mathrm{~N}\) & & 1／25 & 332 & 120 & 200 & 26.4 & 79.2 & 0.470 & 0.500 & 4.7 & 5.1 & 2060 & 1030 \\
\hline \multicolumn{14}{|l|}{For dimensions，refer to P． 235 ．} \\
\hline \multicolumn{14}{|l|}{The Combination of the Driver and the Motor with Gear Reducer} \\
\hline Combination with & with driver & \multicolumn{5}{|c|}{100 V} & & & \multicolumn{5}{|c|}{200 V} \\
\hline Encoder & Motor & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Part No．of motor with gear reducer}} & \multicolumn{3}{|r|}{Single phase， 100 V} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Part No．of motor with gear reducer}} & & 3 －phase， 2 & 200 V & Single ph & ase， 200 V \\
\hline & & & & & Part No．of & of driver & & & & Part No．of & driver & Part No． & of driver \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 2500 \text { P/r } \\
& \text { Incremental }
\end{aligned}
\]} & 100 W & MUMA011 & \(1 P \square \square N\) & & MKDET & 1110P & MUMA & A012P■ \(\square\) & & MKDET15 & 505P & MKDE & T1505P \\
\hline & 200 W & MUMA021 & \(1 \mathrm{P} \square \square \mathrm{N}\) & & MLDET & 2110P & MUMA & A022P■ \(\square\) & & MKDET13 & 310P & MLDE & T2210P \\
\hline & \multirow[t]{2}{*}{400 W} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{－}} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{－}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MUMA042P \(\square \square \mathrm{N}\)}} & & MLDET25 & 510P & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MLDET2510P}} \\
\hline & & & & & & & & & & MLDET23 & 310P & & \\
\hline
\end{tabular}

\section*{For High Precision（MUMA Series 100 W to 400 W）}
\begin{tabular}{|c|c|c|c|c|}
\hline Supply voltage to driver & & 1／5 & 1／9 & 1／25 \\
\hline \multirow{2}{*}{100 V} & 100 W & MUMAO11PロIN & MUMA011P \(\square 2 N\) & MUMA011P \(\square 4 N\) \\
\hline & 200 W & MUMA021PロIN & MUMA021P■2N & MUMA021P \(\square 4 N\) \\
\hline \multirow{3}{*}{200 V} & 100 W & MUMA012P \(\square 1 N\) & MUMA012P \(\square 2 N\) & \\
\hline & 200 W & MUMAO22P■IN & MUMA022P \(\square 2 N\) & MUMAO22P \(\square 4 N\) \\
\hline & 400 W & MUMA042PロIN & \begin{tabular}{l}
MUMA042P \(\square 2 N\) \\
rotational speed［r／min］
\end{tabular} & \\
\hline
\end{tabular}

Dotted line represents the torque at \(10 \%\) less supply voltage

MUMA series with Gear Reducer

\section*{2500 P/r Encoder}

\section*{Setup Support Software "PANATERM" for MINAS series AC Servo Motor \& Driver}

> \begin{tabular}{|l|l|} \hline Part No. & DVOP4460 (Japanese/English version) \\ \hline \end{tabular}

The PANATERM assists users in setting parameters, monitoring control conditions, setup support, and analyzing mechanical operation data on the PC screen, when installed in a commercially available personal computer, and connected to the MINAS A4 series, E series through the RS232 serial interface.

\section*{Basic Function}
- Parameter setup

After a parameter is defined on the screen, it will be sent to the driver immediately.
- Once you register parameters you frequently use, they can be easily set up on the screen.

\section*{Monitoring Control Conditions}
- Monitor
- Control conditions: Control mode, velocity, torque, error and warning Driver input signal
Load conditions: Total count of command/feedback pulses, Load ratio, Regenerative resistor load ratio
- Alarm

Displays the numbers and contents of the current alarm and up to 14 error events in the past
Clears the numbers and contents of the current alarm and up to 14 error events in the past.

\section*{Setup}
- Auto tuning

Gain adjustment and inertia ratio measurement
- Graphic waveform display

The graphic display shows command velocity, actual velocity, torque, and error waveforms
- Absolute encoder setup

Clears absolute encoder at the origin.
Displays single revolution/multi-revolution data.
Displays absolute encoder status.

\section*{Analysis of Mechanical Operation Data}
- Frequency analysis

Measures frequency characteristics of the machine, and displays Bode diagram.

\section*{■ Can not use with A5 family.}

\section*{Hardware contiguration}

 [CD-ROM drive]-CD-ROM drive operable on the above-mentioned personal computer

Graphic waveform display

\section*{Encoder Cable}

\section*{Motor Cable, Brake Cable}

ROBO-TOP is a trade mark of DYDEN CORPORATION

\section*{Cable Set (3 m)}
\begin{tabular}{|l|l|}
\hline Part No. & DVOP37300
\end{tabular}
1) Interface cable : DVOPO800
2) Encoder cable (3 m) : MFECAOO3OEAM
3) Motor cable (3 m) : MFMCA0030AEB
4) Connector kit for driver power supply connection : DVOP2870

\section*{Cable Set (5 m)}

Part No. DVOP39200
1) Interface cable : DVOPO800
2) Encoder cable (5 m) : MFECA0050EAM
3) Motor cable (5 m) : MFMCA0050AEB
4) Connector kit for driver power supply connection DVOP2870

\section*{Encoder Cable}
\begin{tabular}{|l|l|}
\hline Part No. & MFECAO \(* *\) OEAM \\
\hline
\end{tabular}

Motor Cable (ROBO-TOP \({ }_{\circledast} 105^{\circ} \mathrm{C} 600 \mathrm{~V} . \mathrm{DP}\))

\section*{Brake Cable (ROBO-TOP ® \(_{\text {© }} \mathbf{1 0 5}^{\circ} \mathrm{C}\) 600V . DP)}
ROBO-TOP is is a trade mark of DYDEN CORPORATION
\begin{tabular}{|l|l}
Part No. & MFMCBO \(* *\) OGET
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Manufacturer & L(m) & Part No. \\
\hline Connector & 172157-1 & \multirow[b]{2}{*}{Tyco Electronics} & 3 & MFMCB0030GET \\
\hline Connector Pin & 170362-1, 170366-1 & & 5 & MFMCB0050GET \\
\hline Nylon insulated round terminal & N1.25-M4 & J.S.T Mfg. Co., Ltd. & 10 & MFMCB0100GET \\
\hline Cable & ROBO-TOP \(600 \mathrm{~V} 0.75 \mathrm{~mm}^{2}\) & Daiden Co.,Ltd. & 20 & MFMCB0200GET \\
\hline
\end{tabular}

\section*{Connector Kit for Power Supply Connection}

\section*{Part No. DVOP2870}
- Parts composition
Parts composition
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector (10 pins) & \(5557-10 \mathrm{R}-210\) & 1 & Molex Inc. & \begin{tabular}{c}
For connector, CN X1 \\
\((10\) pins)
\end{tabular} \\
\hline Connector pin & 5556 (BTL & 6 & \\
\hline
\end{tabular}
- Pin contiguration of connector CN X1

- Recommended manual crimping tool (to be prepared by customer)

\section*{<Cautions>}
1. The above pin disposition is shown when viewed from the terminal inserting direction. Make a correct wiring by checking the stamped pin numbers on the connector itself.
2. Refer to P. 224 for wiring and connection.
3. Do not connect anything to pins marked "NC"

\section*{Connector Kit for Motor/Encoder Connection}
\begin{tabular}{|l|l}
\hline Part No. & DVOP3670 (Incremental 2500 pulse, 5-wire) \\
\hline
\end{tabular}
This option is required when you make your own encoder cable and motor cable. (Brake cable is required for brake.)
- Parts composition
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector (Driver side) & 3E206-0100 KV & 1 & \multirow[t]{2}{*}{Sumitomo 3M or equivalent} & \multirow[t]{2}{*}{\begin{tabular}{l}
For connector, CN X4 \\
(6 pins)
\end{tabular}} \\
\hline Shell kit & ЗЕЗ06-3200-008 & 1 & & \\
\hline Connector (6 pins) & \(172160-1\) & 1 & \multirow[t]{2}{*}{Tyco Electronics} & \multirow[t]{2}{*}{For junction to encoder cable (6 pins)} \\
\hline Connector pin & 170365-1 & 6 & & \\
\hline Connector (4 pins) & 172159-1 & 1 & \multirow[t]{2}{*}{Tyco Electronics} & \multirow[t]{2}{*}{For junction to motor power cable (4 pins)} \\
\hline Connector pin & 170366-1 & 4 & & \\
\hline Connector (6 pins) & 5557-06R-210 & 1 & \multirow[t]{2}{*}{Molex Inc.} & \multirow[t]{2}{*}{For connector, CN X3 (6 pins)} \\
\hline Connector pin & 5556 PBTL & 4 & & \\
\hline
\end{tabular}

\section*{<Remarks>}

We may use parts equivalent to the above for shell and connector cove
- Pin configuration of connector CN X4 plug
\begin{tabular}{|c|c|c|}
\hline \(1+5 \mathrm{~V}\) & & 20 V \\
\hline \(3+5 \mathrm{~V}\) & 4 & 40 V \\
\hline 5 Tx/Rx & 10 & \(6 \mathrm{Tx} / \mathrm{Rx}\) \\
\hline & \[
5
\] & \[
\left(\begin{array}{c}
\text { Case } \\
\mathrm{FG}
\end{array}\right.
\] \\
\hline
\end{tabular}
- Recommended manual crimping tool (to be prepared by customer)
\begin{tabular}{|c|c|c|c|}
\hline Title & Part No. & Manufacturer & Cable material \\
\hline For encoder cable junction & 755330-1 & \multirow[b]{2}{*}{Tyco Electronics} & \multirow[t]{2}{*}{-} \\
\hline For motor power cable junction & 755331-1 & & \\
\hline For Connector CN X3 & 57026-5000 & Molex Inc. & UL1007 \\
\hline
\end{tabular}

\section*{<Remarks>}
1. The above pin configuration is shown when viewed from the pin-soldering direction. Make a correct wiring by checking the stamped pin numbers on the connector itself.
2. Connect the shield of the wire to the case (FG) without fail.
3. For wiring and connection, refer to P.224.
- Pin configuration of encoder cable junction

- Pin configuration of motor power cable junction

- Pin configuration of mating connector to \(\mathrm{CN} \times 3\) connector

\section*{<Cautions>}
1. The above pin configuration is shown when viewed from the terminal inserting direction. Make a correct wiring by checking the stamped pin numbers on the connector itself.
2. Refer to P. 224 for wiring and connection.

\section*{Connector Kit for External Peripheral Equipment}

\section*{\begin{tabular}{|l|l}
\hline Part No. & DV0P0770
\end{tabular}}
- Parts composition
\begin{tabular}{|c|c|c|c|c|}
\hline Title & Part No. & Number & Manufacturer & Note \\
\hline Connector & 10126-3000PE & 1 & Sumitomo 3M & For connector, CN X5 \\
\hline Connector cover & 10326-52AO-008 & 1 & or equivalent & (26 pins) \\
\hline
\end{tabular}
- Pin configuration of connector CN X5 (26 pins) (viewed from the soldering side)

\section*{<Cautions>}
1. Make a correct wiring by checking the stamped pin numbers on the connector itself.
2. Refer to P. 225 for symbols and functions of the above signals.

E Series
Options
Interface Cable
- Wiring table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Pin No. & Title of signal & Color or cable & Pin No. & Title of signal & Color or cable & Pin No. & Title of signal & Color or cable \\
\hline 1 & COM + & Orange (Red 1) & 10 & COIN & Pink (Black 1) & 19 & OZ + & Pink (Red 2) \\
\hline 2 & SRV-ON & Orange (Black 1) & 11 & BRK-OFF & Orange (Red 2) & 20 & OZ- & Pink (Black 2) \\
\hline 3 & A-CLR & Gray (Red 1) & 12 & WARN & Orange (Black 2) & 21 & CZ & Orange (Red 3) \\
\hline 4 & CLINTSPD2 & Gray (Black 1) & 13 & COM- & Gray (Red 2) & 22 & PULLS1 & Gray (Red 3) \\
\hline 5 & GAINZEROSPD & White (Red 1) & 14 & GND & Gray (Black 2) & 23 & PULS2 & Gray (Black 3) \\
\hline 6 & DIVINTSPD1 & White (Black 1) & 15 & OA + & White (Red 2) & 24 & SIGN1 & White (Red 3) \\
\hline 7 & CWL & Yellow (Red 1) & 16 & OA- & White (Black 2) & 25 & SIGN2 & White (Black 3) \\
\hline 8 & CCWL & Yellow (Black 1) & 17 & OB + & Yellow (Red 2) & 26 & FG & Orange (Black 3) \\
\hline 9 & ALM & Pink (Red 1) & 18 & OB- & Yellow (Black 2) & & & \\
\hline
\end{tabular}
e. g. of Pin No. designation : Pin No. 1 Wire color is orange, and one red dot.

Pin No. 12 ... Wire color is orange, and two black dot.
<Remarks>
The shield of this cable is not connected to a connector pin. To connect the shield to FG or GND at the driver side, use a connector kit for external device connection.

\section*{Communication Cable (For Connection with PC)}
\begin{tabular}{|l|lll}
\hline Part No. & DVOP1960 & \\
\hline & & \\
\hline
\end{tabular}

\footnotetext{
Console
}

\section*{DIN Rail Mounting Unit/}

External Regenerative Resistor
DIN Rail Mounting Unit

External Regenerative Resistor
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Part No.} & \multirow{3}{*}{Manufacturer's Part No.} & \multicolumn{3}{|c|}{Specifications} & \multirow{3}{*}{\[
\begin{gathered}
\text { Note } \\
\text { (Input Power of drive) }
\end{gathered}
\]} \\
\hline & & Resistance & Rated power & Activation temperature of built-in fuse & \\
\hline & & \(\Omega\) & W & \({ }^{\circ} \mathrm{C}\) & \\
\hline DV0P2890 & 45M03 & 50 & 10 & \(137 \pm\) & Single phase, 100 V \\
\hline DVOP2891 & 45M03 & 100 & 10 & \(137{ }_{-2}\) & Single/3-phase, 200 V \\
\hline \multicolumn{6}{|r|}{Manufactured by Iwaki Musen Kenkyuusho Co., Ltd} \\
\hline
\end{tabular}

<Remarks>
Thermal fuse is installed for safety
The thermal fuse may blow due to heat dissipating collure, supply voltage or Make it sure that the surface temperature of the resistor may not exceed \(100^{\circ} \mathrm{C}\) at the worst running condituation with the machine, which brings large regeneration (such case as high supply voltage, worst running conditions deceleration time is short) Please carry out air cooling if needed.

Caution of when using external regeneration resistor> Since it becomes high temperature, external regeneration resistor must be installed according to the contents shown below.
- Attach to incombustibles, such as metal
- Install in the place which cannot touch directly by covering with incombustibles etc.
Although the thermal cutoff is built in external regeneration resistor, the skin temperature of regeneration resistor may become high exceeding the operating temperature of thermal utoff by the time the thermal cutoff operates in amplifier ailure.
The thermal cutoff is for preventing ignition of the regeneration resistor in amplifier failure, and is not for controlling the skin emperature of resisto

\section*{Reactor}

\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Part No. & A & B & C & D & \(\mathbf{E}\) (Max) & F & G & \(\mathbf{H}\) & \(\mathbf{I}\) & \begin{tabular}{c}
Inductance \\
\((\mathbf{m H})\)
\end{tabular} & \begin{tabular}{c}
Rated \\
current \\
\((\mathbf{A})\)
\end{tabular} \\
\hline Fig.1 & DVOP227 & \(55 \pm 0.7\) & \(80 \pm 1\) & \(66.5 \pm 1\) & 110 Max & 90 & \(41 \pm 2\) & \(55 \pm 2\) & \(4-5 \phi \times 10\) & M 4 & 4.02 & 5 \\
\hline & DVOP228 & \(55 \pm 0.7\) & \(80 \pm 1\) & \(66.5 \pm 1\) & 110 Max & 95 & \(46 \pm 2\) & \(60 \pm 2\) & \(4-5 \phi \times 10\) & M 4 & 2 & 8 \\
\hline Fig.2 & DVOP220 & \(65 \pm 1\) & \(125 \pm 1\) & \((93)\) & 136 Max & 155 & \(70+3 /-0\) & \(85 \pm 2\) & \(4-7 \phi \times 12\) & M 4 & 6.81 & 3 \\
\hline
\end{tabular}

\section*{Harmonic restraint on general-purpose inverter and servo driver}

On September, 1994, Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system and Guidelines for harmonic restraint on household electrical appliances and generalpurpose articles established by the Agency for Natural Resources and Energy of the Ministry of Economy, Trade and Industry (the ex-Ministry of international rrade and Industry). According to those guidelines, the Japan Electrical Manufacturers Association (JEMA) have prepared technical documents (procedure to execute harmonic restraint. JEM-TR 98 , On January, 2004, it has been decided to exclude the general-purpose inverter and servo driver from the Guidelines for Un ic restraint on household electrical appliances and general-purpose articles was abolished on September 6,2004 ic restraint on household electrical appliances and general-purpose aricles was abolished on September 6, 2004. e ifitied y folows. modified as follow
. All types of the general-purpose inverters and servo drivers used by specific users are under the control of the Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system". The users who are required to apply the guidelines must calculate the equivalent capacity and harmonic current according to the guidelines and must take appropriate countermeasures if the harmonic current exceeds a limit The Guideline for
Ser Seplem 226
 ceive poic restraint. The purpose of these guidelines is the execution of harmonic restraint at every device by a user usual to the utmost extent usual to the utmost extent.

\section*{<Remarks>}

When using a reactor, be sure to install one reactor to one servo driver.

\section*{Recommended components}

Surge Absorber for Motor Brake
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Motor } & \multicolumn{2}{|c|}{ Surge absorber for motor brake } \\
\cline { 2 - 3 } & Part No. (Manufacturer's) & Manufacturer \\
\hline MUMA 50 W to 400 W & Z15D151 & SEMITEC Corporation \\
\hline
\end{tabular}

List of Peripheral Components
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Manufacturer } & \multicolumn{1}{|c|}{ Tel No. / Home Page } & \begin{tabular}{l}
Peripheral \\
components
\end{tabular} \\
\hline \begin{tabular}{l}
Panasonic Corporation \\
Eco Solutions Company
\end{tabular} & http://panasonic.net/es/ & Circuit breaker \\
\hline \begin{tabular}{l}
Panasonic Corporation \\
Automotive \& Industrial Systems Company
\end{tabular} & http://panasonic.net/id/ & \begin{tabular}{l}
Surge absorber \\
Switch, Relay
\end{tabular} \\
\hline Iwaki Musen Kenkyusho Co., Ltd. & \begin{tabular}{l}
+81-44-833-4311 \\
http://www.iwakimusen.co.jp/
\end{tabular} & \begin{tabular}{l}
Regenerative \\
resistor
\end{tabular} \\
\hline SEMITEC Corporation & \begin{tabular}{l}
+81-3-3621-2703 \\
http://www.semitec.co.jp/english2/
\end{tabular} & \begin{tabular}{l}
Surge absorber \\
for motor brake
\end{tabular} \\
\hline TDK Corporation & \begin{tabular}{l}
+81-3-5201-7229 \\
http://www.global.tdk.com/
\end{tabular} & \begin{tabular}{l}
Noise filter \\
for signal lines
\end{tabular} \\
\hline Okaya Electric Industries Co. Ltd. & \begin{tabular}{l}
+81-3-4544-7040 \\
http://www.okayaelec.co.jp/english/index.html
\end{tabular} & \begin{tabular}{l}
Surge absorber \\
Noise filter
\end{tabular} \\
\hline Sumitomo 3M & \begin{tabular}{l}
+81-3-5716-7290 \\
http:/solutions.3m.com/wps/portal/3M/ja_JP/ \\
WW2/Country/
\end{tabular} & \\
\hline Tyco Electronics & \begin{tabular}{l}
\(+81-44-844-8052\) \\
http://www.te.com/ja/home.html
\end{tabular} & Connector \\
\hline Japan Molex Inc. & \begin{tabular}{l}
\(+81-462-65-2313\) \\
http://www.molex.co.jp
\end{tabular} & \begin{tabular}{l}
Cable
\end{tabular} \\
\hline DYDEN CORPORATION & \begin{tabular}{l}
+81-3-5805-5880 \\
http://www.dyden.co.jp/english/index.htm
\end{tabular} & \begin{tabular}{l}
Can
\end{tabular} \\
\hline
\end{tabular}
* The above list is for reference only. We may change the manufacturer without notice.

\section*{Information}
Contents
A5 Family 247
EC Directives / Conformity to UL Standards / KC 247
Composition of Peripheral Equipments 249
E Series 255
Compliance to EC and EMC Directives 255
Composition of Peripheral Components 255
Conformity to UL Standards 256
Motor capacity selection software 257
AC Servo Motor Capacity Selection Software 257
Option Selection Software for AC Servo Motor 257
Guide to the International System of Units (SI) 258
Selecting Motor Capacity. 260
Request Sheet for Motor Selection. 266
Connection Between Driver and Controller 274
Connection Between A5 Family Driver and Controller. 274
Replacing Old Model Servo Driver with MINAS A5II and A5 Series 279
Connection Between E Series Driver and Controller. 283
Index. 288
Sales Office 306

\section*{EC Directives}

The EC Directives apply to all such electronic products as those having specific functions and have been exported to EU and directly sold to general consumers. Those products are required to conform to the EU unified standards and to furnish the CE marking on the products.
However, our AC servos meet the relevant EC Directives for Low Voltage Equipment so that the machine or equipment comprising our AC servos can meet EC Directives.

\section*{EMC Directives}

MINAS Servo System conforms to relevant standard under EMC Directives setting up certain model (condition) with certain locating distance and wiring of the servo motor and the driver. And actual working condition often differs from this model condition especially in wiring and grounding. Therefore, in order for the machine to conform to the EMC Directives, especially for noise emission and noise terminal voltage, it is necessary to examine the machine incorporating our servos.

\section*{Conformity to UL Standards}

Observe the following conditions of (1) and (2) to make the system conform to UL508C (E164620)
(1) Use the driver in an environment of Pollution Degree 2 or 1 prescribed in IEC60664-1.
(e.g. Install in the control box with IP54 enclosure.)
(2) Make sure to install a circuit breaker or fuse which are UL recognized (Listed (4L) marked) between the power supply and the noise filter
For rated current of circuit breaker and fuse, refer to P. 19 "Driver and List of Applicable Peripheral Equipments"
Use a copper cable with temperature rating of \(75^{\circ} \mathrm{C}\) or higher.
(3) Over-load protection level

Over-load protective function will be activated when the effective current exceeds \(115 \%\) or more than the rated current based on the time characteristics (see the graph). Confirm that the effective current of the driver does not exceed the rated current.

Set up the peak permissible current with Pro. 13 (Setup of 1st torque limit) and Pr5.22 (Setup 2nd torque limit).

\section*{Conformed Standards}
\begin{tabular}{|c|c|c|c|}
\hline & & Driver & Motor \\
\hline \multirow{3}{*}{EC Directives} & EMC Directives & \begin{tabular}{l}
EN55011 \\
EN61000-6-2 \\
EN61800-3
\end{tabular} & - \\
\hline & Low-Voltage Directives & EN61800-5-1 & \begin{tabular}{l}
EN60034-1 \\
EN60034-5
\end{tabular} \\
\hline & \begin{tabular}{l}
Machinery Directives \\
Functional safety \({ }^{\text {¹ }}\)
\end{tabular} & \begin{tabular}{l}
ISO13849-1(PL d)(Cat.3) \\
EN61508(SIL2) \\
EN62061(SILCL 2) \\
EN61800-5-2(STO) \\
IEC61326-3-1
\end{tabular} & - \\
\hline \multicolumn{2}{|l|}{UL Standards} & UL508C (E164620) & \begin{tabular}{l}
UL1004-1, UL1004-6 \\
(E327868)
\end{tabular} \\
\hline \multicolumn{2}{|l|}{CSA Standards} & C22.2 No. 14 & C22.2 No. 100 \\
\hline \multicolumn{2}{|l|}{Radio Waves Act (South Korea) (KC) \({ }^{\text {² }}\)} & \begin{tabular}{l}
KN11 \\
KN61000-4-2, 3, 4, 5, 6, 8, 11
\end{tabular} & - \\
\hline
\end{tabular}

IEC : International Electrotechnical Commission
EN : Europaischen Normen
EMC : Electromagnetic Compatibility
CSA : Canadian Standards Associatio
Pursuant to the directive 2004/108/EC, article 9 (2)
Panasonic Testing Centre
Panasonic Service Europe, a division of
Winsbergring 15, 22525 Hamburg, F.R. Germany
- When export this product, follow statutory provisions of the destination country.

1 A5IIE and A5E series doesn't correspond to the functional safety standard.
*2 Information related to the Korea Radio Law
This servo driver is a Class A commercial broadcasting radio wave generator not designed for home use. The user and dealer should be aware of this fac
A 급 기기 (업무용 방송통신기자재)
이 기기는 업무용(A 급) 전자파적합기기로서 판매자
또는 사용자는 이 점을 주의하시기 바라며, 가정외의
지역에서 사용하는 것을 목적으로 합니다.
(대상기종 : Servo Driver)

\section*{A5 Family}

International Standards

\section*{Composition of Peripheral Equipments}

\section*{Installation Environment}

Use the servo driver in the environment of Pollution Degree 1 or 2 prescribed in IEC-60664-1 (e.g. Install the driver in control panel with IP54 protection structure.)

For NF1 to NF3, refer to the Table "Noise Filter for Signal Line" (P.254).
*A5IE, A5E is not provided with X3 terminal.

\section*{<Caution>}

Use options correctly after reading Operating Instructions of the options to better understand the precautions. Take care not to apply excessive stress to each optional part.

\section*{Power Supply}
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c}
100 V type \\
(A-frame to C-frame)
\end{tabular} & Single phase, \(100 \mathrm{~V}_{-15 \%}^{+10 \%}\) to \(120 \mathrm{~V}_{-15 \%}^{+10 \%}\) & \(50 \mathrm{~Hz} / 60 \mathrm{~Hz}\) \\
\hline \begin{tabular}{c}
200 V type \\
(A-frame to D-frame)
\end{tabular} & Single/3-phase, \(200 \mathrm{~V}_{-15 \%}^{+10 \%}\) to \(240 \mathrm{~V}_{-15 \%}^{+10 \%}\) & \(50 \mathrm{~Hz} / 60 \mathrm{~Hz}\) \\
\hline \begin{tabular}{c}
200 V type \\
(E-frame to H-frame)
\end{tabular} & 3-phase, \(200 \mathrm{~V}_{-15 \%}^{+10 \%}\) to \(230 \mathrm{~V}_{-15 \%}^{+10 \%}\) & \(50 \mathrm{~Hz} / 60 \mathrm{~Hz}\) \\
\hline \begin{tabular}{c}
400 V type \\
[Main power supply] \\
(D-frame to H-frame)
\end{tabular} & 3-phase, \(380 \mathrm{~V}_{-15 \%}^{+10 \%}\) to \(480 \mathrm{~V}_{-15 \%}^{+10 \%}\) & \(50 \mathrm{Hz/60Hz}\) \\
\hline
\end{tabular}

\footnotetext{
400 V typ
}

Control power supply]
DC \(24 \mathrm{~V} \pm 15 \%\)
(1) This product is designed to be used in over-voltage category (installation category) III of EN 61800-5-1:2007
(2) Use an insulated power supply of DC12 V to 24 V which has CE marking or complies with EN60950.

\section*{Circuit Breaker}

Install a circuit breaker which complies with IEC Standards and UL recognized (Listed and marked) between power supply and noise filter
The short-circuit protection circuit on the product is not for protection of branch circuit.
The branch circuit should be protected in accordance with NEC and the applicable local regulations in your area

\section*{Noise Filter}

When you install one noise filter at the power supply for multi-axes application, contact the manufacturer of the noise filter. If noise margin is required, connect 2 filters in series to emphasize effectiveness

\section*{- Options}
\begin{tabular}{|c|c|c|c|c|}
\hline Option part No. & Voltage specifications for driver & Manufacturer's part No. & Applicable driver (frame) & Manufacturer \\
\hline DV0P4170 & Single phase \(100 \mathrm{~V}, 200 \mathrm{~V}\) & SUP-EK5-ER-6 & A-frame and B-frame & Okaya Electric Ind. \\
\hline \multicolumn{2}{|l|}{Terminal cover} & \multicolumn{2}{|l|}{[Unit: mm]} & \\
\hline Option part No. & Voltage specifications for driver & Manufacturer's part No. & Applicable driver (frame) & Manufacturer \\
\hline \multirow[b]{2}{*}{DV0PM20042} & 3-phase 200 V & \multirow[b]{2}{*}{3SUP-HU10-ER-6} & A-frame and B-frame & \multirow{4}{*}{Okaya Electric Ind.} \\
\hline & Single phase \(100 \mathrm{~V}, 200 \mathrm{~V}\) 3-phase 200 V & & C-frame & \\
\hline DV0P4220 & Single/3-phase 200 V & 3SUP-HU30-ER-6 & D-frame & \\
\hline DVOPM20043 & 3-phase 200 V & 3SUP-HU50-ER-6 & E-frame & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Option part No. & \begin{tabular}{c}
Voltage specifications \\
for driver
\end{tabular} & \begin{tabular}{c}
Manufacturer's \\
part No.
\end{tabular} & \begin{tabular}{c}
Applicable driver \\
(frame)
\end{tabular} & Manufacturer \\
\hline DVOP3410 & 3 -phase 200 V & 3SUP-HL50-ER-6B & F-frame & Okaya Electric Ind. \\
\hline
\end{tabular}

- Recommended components
\begin{tabular}{|c|c|c|c|c|}
\hline Part No. & Voltage specifications for driver & \begin{tabular}{l}
Current rating \\
(A)
\end{tabular} & Applicable driver (frame) & Manufacturer \\
\hline RTHN-5010 & \multirow{3}{*}{3-phase 200 V} & 10 & A-frame to C-frame & \multirow{3}{*}{TDK-Lambda Corp.} \\
\hline RTHN-5030 & & 30 & D-frame & \\
\hline RTHN-5050 & & 50 & E-frame and F-frame & \\
\hline
\end{tabular}
[RTHN-5010]

[RTHN-5050]

\section*{<Remarks>}

Select a noise filter of capacity that exceeds the capacity of the power source (also check for load condition).
For detailed specification of the filter, contact the manufacturer.
- When two or more servo drivers are used with a single noise filter at the common power source, consult with the noise filter manufacturer.
\begin{tabular}{|c|c|c|c|c|}
\hline Part No. & Voltage specifications for driver & Current rating (A) & Applicable driver (frame) & Manufacturer \\
\hline FS5559-60-34 & \multirow[t]{2}{*}{3-phase 200 V} & 60 & G-frame & \multirow{6}{*}{Schaffner EMC, Inc} \\
\hline FS5559-80-34 & & 80 & H -frame & \\
\hline FN258L-16-07 & \multirow{4}{*}{3-phase 400 V} & 16 & D-frame and E-frame & \\
\hline FN258L-30-07 & & 30 & F-frame & \\
\hline FN258-42-07 & & 42 & G-frame and H frame & \\
\hline FN258-42-33 & & 42 & G-frame and H -frame & \\
\hline
\end{tabular}

\section*{[FS5559-60-34, FS5559-80-34]}

[FN258L-16-07]
[FN258L-30-07]

[FN258-42-07]
[FN258-42-33]

[Unit: mm]

[Unit: mm]

\section*{<Remarks>}

Select a noise filter of capacity that exceeds the capacity of the power source (also check for load condition)
- For detailed specification of the filter, contact the manufacturer.

When two or more servo drivers are used with a single noise filter at the common power source, consult with the noise filter manufacturer.

\section*{Surge Absorber}

Provide a surge absorber for the primary side of noise filter.
\begin{tabular}{|c|c|c|c|}
\hline Option part No. & \begin{tabular}{c}
Voltage specifications \\
for driver
\end{tabular} & \begin{tabular}{c}
Manufacturer's \\
part No.
\end{tabular} & Manufacturer \\
\hline DVOP1450 & 3-phase 200 V & \(\mathrm{R} \cdot \mathrm{A} \cdot \mathrm{V}\)-781BXZ-4 & \multirow{2}{*}{ Okaya Electric Ind. } \\
\hline DVOPM20050 & 3-phase 400 V & \(\mathrm{R} \cdot \mathrm{A} \cdot \mathrm{V}-801 \mathrm{BXZ}\)-4 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Option part No. & \begin{tabular}{c}
Voltage specifications \\
for driver
\end{tabular} & \begin{tabular}{c}
Manufacturer's \\
part No.
\end{tabular} & Manufacturer \\
\hline DV0P4190 & Single phase \(100 \mathrm{~V}, 200 \mathrm{~V}\) & \(\mathrm{R} \cdot \mathrm{A} \cdot \mathrm{V}-781 \mathrm{BWZ}-4\) & Okaya Electric Ind. \\
\hline
\end{tabular}

\section*{Noise Filter for Signal Lines}

Install noise filters for signal lines to all cables (power cable, motor cable, encoder cable and interface cable)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol \({ }^{\text {¹ }}\) & Cable Name & \(100 \mathrm{~V} / 200 \mathrm{~V}\) Amp. frame symbol & \begin{tabular}{|c|}
\hline 400 V \\
Amp. frame \\
symbol
\end{tabular} & Option part No. & Manufacturer's part No. & Manufacturer & Qty. \\
\hline \multirow{3}{*}{NF1} & \multirow{3}{*}{Power cable} & A, B, C, D & D, E, F & DVOP1460 & ZCAT3035-1330 & TDK Corp. & 4 \\
\hline & & E, F & - & Recommended components & RJ8035 & KK-CORP.CO.JP & 1 \\
\hline & & G, H & G, H & Recommended components & RJ8095 & KK-CORP.CO.JP & 1 \\
\hline \multirow[b]{2}{*}{NF2} & \multirow[b]{2}{*}{Motor cable} & A, B, C, D, E, F & D, E, F & DVOP1460 & ZCAT3035-1330 & TDK Corp. & 4 \\
\hline & & G, H & G, H & Recommended components & T400-61D & MICROMETALS & 1 \\
\hline NF3 & \begin{tabular}{l}
- 24 V Power cable \\
- Encoder cable \\
- Interface cable \\
- USB cable \\
- Control power cable
\end{tabular} & \multicolumn{2}{|l|}{Common (to all frames)} & DVOP1460 & ZCAT3035-1330 & TDK Corp. & 4 \\
\hline
\end{tabular}
*1 For symbols, refer to the Block Diagram "Installation Environment" (P.249).
<Remarks>
To connect the noise filter to the connector XB connection cable, adjust the sheath length at the tip of the cable, as required
<Caution>
Fix the signal line noise filter in order to prevent excessive stress to the cables <Fig.2: Dimensions>
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Part No.} & \multirow[b]{2}{*}{Current} & \multirow[t]{2}{*}{\[
\begin{gathered}
100 \mathrm{kHz} \\
(\mu \mathrm{H})
\end{gathered}
\]} & \multicolumn{8}{|c|}{Size [Unit: mm]} \\
\hline & & & A & в & c & D1 & D2 & cre thickness & E & F \\
\hline R.J8035 & 35 A & 9.9き3 & 170 & 50 & 23 & 80 & 53 & 24 & R3. 5 & 7 \\
\hline R.J8095 & 95 A & \(7.9 \pm 3\) & 200 & 180 & 34 & 130 & 107 & 35 & R3. 5 & 7 \\
\hline
\end{tabular}

Fig.2: RJ8035, RJ8095
(Recommended components)

Fig.3: T400-61D (Recommended components)

\section*{Residual Current Device}

Install a type B Residual current device (\(R C D\)) at primary side of the power supply.
Type B: Residual current device which detects a direct-current ingredient.

\section*{Grounding}
(1) Connect the protective earth terminal \((\Theta)\) of the driver and the protective earth terminal (PE) of the control box without fail to prevent electrical shocks
(2) Do not make a joint connection to the protective earth terminals \((\oplus)\). 2 terminals are provided for protective earth.

\section*{<Note>}

For driver and applicable peripheral equipments, refer to P. 19 "Driver and List of Applicable Peripheral Equipments".

\section*{E Series}

Conformance to
International Standards

\section*{Compliance to EC and EMC Directives Composition of Peripheral Components}

\section*{Compliance to EC and EMC Directives}

\section*{EC Directives}

The EC Directives apply to all such electronic products as those having specific functions and have been exported to EU and directly sold to general consumers. Those products are required to conform to the EU unified standards and to furnish the CE marking on the products. MINAS AC Servos conforms to the EC Directives for Low Voltage Equipment so that the machine incorporating our servos has an easy access to the conformity to relevant EC Directives for the machine.

\section*{EMC Directives}

MINAS Servo System conform to relevant standard under EMC Directives setting up certain model (condition) with certain locating distance and wiring of the servo motor and the driver. And actual working condition often differs from this model condition especially in wiring and grounding. Therefore, in order for the machine to conform to the EMC Directives, especially for noise emission and noise terminal voltage, it is necessary to examine the machine incorporating our servos,

\section*{Conformed Standards}
\begin{tabular}{|c|c|c|c|c|}
\hline Subject & \multicolumn{3}{|c|}{Conformed Standard} & \multirow[t]{3}{*}{\begin{tabular}{l}
IEC : International Electrotechnical Commission \\
EN : Europaischen Normen \\
EMC: Electromagnetic Compatibility \\
UL : Underwriters Laboratories
\end{tabular}} \\
\hline \multirow[b]{2}{*}{Motor} & 003 & UL1004 CSA22.2 No. 100 & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \text { Conforms to } \\
\text { Low- Voltage } \\
\text { Directives }
\end{array}
\]} & \\
\hline & EN50178 & UL508C CSA22.2 No. 14 & & \\
\hline \multirow{7}{*}{\[
\begin{aligned}
& \begin{array}{l}
\text { otor } \\
\text { and } \\
\text { driver }
\end{array}
\end{aligned}
\]} & EN55011 & Radio Disturbance Characteristics of Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment & \multirow{8}{*}{Conforms to by EMC Directives} & \multirow{8}{*}{\begin{tabular}{l}
Pursuant to at the directive 2004/108/EC, article 9(2) \\
Panasonic Testing Centre \\
Panasonic Service Europe, \\
a division of Panasonic Marketing Europe GmbH \\
Winsbergring 15,22525 Hamburg,F.R.Germany
\end{tabular}} \\
\hline & EN61000-6-2 & Immunity for Industrial Environments & & \\
\hline & IEC61000-4-2 & Electrostatic Discharge Immunity Test & & \\
\hline & IEC61000-4-3 & Radio Frequency Electromagnetic Field Immunity Test & & \\
\hline & IEC & Electric High-Speed Transition Phenomenon/Burst Immunity Test & & \\
\hline & IEC61000-4-5 & Lightening Surge Immunity Test & & \\
\hline & IEC61000-4-6 & High Frequency Conduction Immunity Test & & \\
\hline & IEC61000-4-11 & Instantaneous Outage Immunity Test & & \\
\hline
\end{tabular}

\section*{Composition of Peripheral Components}

Precautions in using options>
Use options correctly after reading operation manuals of the options to better understand the precautions. Take care not to apply excessive stress to each optional part.

\section*{Installation Environment}

Use Minas driver in environment of Pollution Degree 1 or 2 prescribed in IEC-60664-1 (e.g. Install the driver in control panel with IP54 protection structure.)

Power Supply

(1) Use the power supply under an environment of Overvoltage Category II specified in IEC60664-1.
(2) For a interface power supply, use the insulated one with 12 VDC to 24 VDC which conforms to CE Marking or EN Standards (EN60950).

\section*{Circuit Breaker}

Connect a circuit breaker which conforms to IEC standards and is UL recognized (UL Listed, (4L) marked), between the power supply and the noise filte

\section*{Composition of Peripheral Components Conformity to UL Standards}

\section*{E Series}

Conformance to
International Standards

\section*{Noise Filte}

When you install one noise filter in the power supply for multi axis application, consult with the manufacture of the filter.
\begin{tabular}{|c|c|c|}
\hline Option part No. & Part No. & Manufacturer \\
\hline DVOP4160 & 3SUP-HU10-ER-6 & Okaya Electric Industries Co. \\
\hline
\end{tabular}

\section*{Surge Absorbe}

Install a surge absorber at primary side of the noise filter.

<Remarks>
Remove this surge absorber when you perform dielectric test on the machine, or surge absorber might be damaged

\section*{Noise Filter for Signal Lines}

Install noise filters for signal lines to all cables (Power line, motor cable, encoder cable, interface cable)
<Caution>
- Please fix a line noise filter to avoid excessive stress to the cable. -When using multiple axes, noise generated from each driver might influence driver and peripheral equipment and result to mafunction.
ease insert ine noise filters between driver and motor wires (\(\mathrm{U}, \mathrm{V}\), but grounding).
(Please refer to P. 255 "peripheral equipment configuration".)

\section*{Grounding}
(1) Connect the protective earth terminal of the driver \((\Theta)\) and protective earth terminal of the control panel (PE) withou fail to prevent electrical shocks.
(2) Do not co-clamp to the ground terminals (\(\left(\frac{\sigma}{)}\right.\)). Two ground terminals are provided

\section*{Ground-Fault Breaker}

Install a ground fault curcuit braker (RCD) to the primary side of the power supply
Please use B-type (DC sensitive) ground fault circuit breakers defined in IEC60947-2, JISC8201-2-2.

\section*{Conformity to UL Standards}

Observe the following conditions of (1) and (2) to make the system conform to UL508C (File No. E164620),
(1) Use the driver in an environment of Pollution Degree 2 or 1 prescribed in IEC60664-1. (e.g. Install in the control box with IP54 enclosure.)
(2) Install a circuit breaker or fuse which are UL recognized (LISTED (4L) marked) between the power supply and the noise filter without fail.

\section*{AC Servo Motor Capacity Selection Software}

We have prepared PC software "M-SELECT" for AC servo motor capacity selection.
Consult our sales representative or authorized distributor.
- Three-step selection
1. Select components and specified values elect appropriate mechanical parameter items and fill them with parameter values derived from To simulate the target machine s practical as ossible, use number of parameters available.
. Enter operation pattern
put the planned operation pattern that will contain [speed and rotation standard] or [absolute position standard] with
optional settings such as
S-acceleration/de celeration.
3. Select the motor

When the data required in step 1 and 2 above have been input, the software lists the motors, which will be appropriate to
use with your
machine. Select
the motor that is
best suitable for application.

Details of moto
Once the motor is selected, specifications of the motor and amplifier, and details of reason for etermination are displayed
are displayed
and may be
printed out.

\section*{Option Selection Software for AC Servo Motor}

We have prepared PC software to enable fast, easy, and correct option selection, a complicated job without the software. - Two procedures for option selection
1. Selection according to driver series and motor type
Suitable option can be selected by selecting driver series, motor type and motor specification through

Please download from our web site and use after install to the PC.
http://industrial.panasonic.com/ww/products/motors-compressors/fa-motors

Table1: Basic unit
\begin{tabular}{|c|c|c|}
\hline Quantity & Name of unit & Symbol of unit \\
\hline Length & meter & m \\
\hline Weight & kilogram & kg \\
\hline Time & second & s \\
\hline Current & ampere & A \\
\hline Thermodynamic temperature & kelvin & K \\
\hline Amount of substance & mol & mol \\
\hline Luminous intensity & candela & cd \\
\hline \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}

Table 2: Auxiliary unit
\begin{tabular}{|c|c|c|}
\hline Quantity & Name of unit & Symbol of unit \\
\hline Plane angle & radian & rad \\
\hline Solid angle & steradian & sr \\
\hline
\end{tabular}

Table 3: Major derived unit with proper name
\begin{tabular}{|c|c|c|c|}
\hline Quantity & Name & Symbol of unit & Derivation from basic unit, auxiliary unit or other derived unit \\
\hline Frequency & hertz & Hz & \(1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}\) \\
\hline Force & newton & N & \(1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\) \\
\hline Pressure, Stress & pascal & Pa & \(1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}\) \\
\hline Energy, Work, Amount of heat & joule & J & \(1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline Amount of work, Work efficiency, Power, Electric power & watt & W & \(1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}\) \\
\hline Electric charge, Amount of electricity & coulomb & C & \(1 \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~s}\) \\
\hline Electric potential, Potential difference, Voltage, Electromotive force & volt & V & \(1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}\) \\
\hline Electrostatic capacity, Capacitance & farad & F & \(1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}\) \\
\hline Electric resistance & ohm & \(\Omega\) & \(1 \Omega=1 \mathrm{~V} / \mathrm{A}\) \\
\hline Electric conductance & siemens & S & \(1 \mathrm{~S}=1 \Omega^{-1}\) \\
\hline Magnetic flux & weber & Wb & \(1 \mathrm{~Wb}=1 \mathrm{~V} \cdot \mathrm{~s}\) \\
\hline Magnetic flux density, Magnetic induction & tesla & T & \(1 \mathrm{~T}=1 \mathrm{~Wb} / \mathrm{m}^{2}\) \\
\hline Inductance & henry & H & \(1 \mathrm{H}=1 \mathrm{~Wb} / \mathrm{A}\) \\
\hline Degree centigrade (Celsius) & degree centigrade (Celsius) / degree & C & \(\mathrm{t}^{\circ} \mathrm{C}=(\mathrm{t}+273.15) \mathrm{K}\) \\
\hline Luminous flux & lumen & Im & \(1 \mathrm{~lm}=1 \mathrm{~cd} \cdot \mathrm{sr}\) \\
\hline Illuminance & lux & Ix & \(1 \mathrm{~lx}=1 \mathrm{~lm} / \mathrm{m}^{2}\) \\
\hline
\end{tabular}

Table 4: Unit combined with SI unit Table 5: Prefix
\begin{tabular}{|c|c|c|c|c|c|}
\hline Quantity & Name & Symbol of unit & \multirow[t]{2}{*}{Multiples powered to unit} & \multicolumn{2}{|c|}{Prefix} \\
\hline & minute & min & & Name & Symbol \\
\hline & & & \(10^{18}\) & exa & E \\
\hline Time & hour & h & \(10^{12}\) & peta & P \\
\hline & & d & \(10^{9}\) & giga & G \\
\hline & & & \(10^{6}\) & mega & M \\
\hline & degree & - & \(10^{3}\) & kilo & k \\
\hline Plane angle & minute & & \(10^{2}\) & hecto & h \\
\hline Plane angle & & & 10 & deca & da \\
\hline & second & " & \(10^{-1}\) & deci & d \\
\hline & & & \(10^{2}\) & centi & c \\
\hline Volume & liter & I, L & \(10^{3}\) & milli & m \\
\hline Weight & ton & t & \(10^{6}\) & micro & \(\mu\) \\
\hline & & & \(10^{-9}\) & nano & n \\
\hline & & & \(10^{15}\) & femto & f \\
\hline & & & \(10^{18}\) & atto & a \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Quantity & Symbol of conventional unit & Symbol of SI unit and compatible unit & Conversion value \\
\hline Length & \(\mu\) (micron) & \(\mu \mathrm{m}\) & \(1 \mu=1 \mu \mathrm{~m}\) (micrometer) \\
\hline Acceleration & \[
\begin{aligned}
& \text { Gal } \\
& \text { G }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{m} / \mathrm{s}^{2} \\
& \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{Gal}=10^{-2} \mathrm{~m} / \mathrm{s}^{2} \\
& 1 \mathrm{G}=9.80665 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\] \\
\hline Frequency & \(\mathrm{c} / \mathrm{s}, \mathrm{c}\) & Hz & \(1 \mathrm{c} / \mathrm{s}=\mathrm{Hz}\) \\
\hline Revolving speed, Number of revolutions & rpm & \(\mathrm{s}^{-1}\) or min \({ }^{-1}\), \(\mathrm{r} / \mathrm{min}\) & \(1 \mathrm{rpm}=1 \mathrm{~min}^{-1}\) \\
\hline Weight & kgt & & \multirow[t]{2}{*}{\}Same value} \\
\hline Mass & - & kg & \\
\hline Weight flow rate & kg/s & & Same value \\
\hline Mass flow rate & & kg/s & Same value \\
\hline Specific weight & \(\mathrm{kgf} / \mathrm{m}^{3}\) & & SSame value \\
\hline Density & & \(\mathrm{kg} / \mathrm{m}^{3}\) & \} Same value \\
\hline Specific volume & \(\mathrm{m}^{3} \mathrm{kgf}\) & \(\mathrm{m}^{3} \mathrm{~kg}\) & Same value \\
\hline Load & kgf & N & \(1 \mathrm{kgf}=9.80665 \mathrm{~N}\) \\
\hline \multirow[t]{2}{*}{Force} & kgt & N & \(1 \mathrm{kgf}=9.80665 \mathrm{~N}\) \\
\hline & dyn & N & \(1 \mathrm{dyn}=10^{-5} \mathrm{~N}\) \\
\hline Moment of force & \(\mathrm{kgf} \cdot \mathrm{m}\) & \(\mathrm{N} \cdot \mathrm{m}\) & \(1 \mathrm{kgf} \cdot \mathrm{m}=9.806 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \multirow[t]{6}{*}{Pressure} & \(\mathrm{kgf} / \mathrm{cm}^{2}\) & \(\mathrm{Pa}, \mathrm{bar}{ }^{(1)}\) or kgf/cm \({ }^{2}\) & \[
\begin{aligned}
1 \mathrm{kgf} / \mathrm{cm}^{2} & =9.80665 \times 10^{4} \mathrm{~Pa} \\
& =0.980665 \mathrm{bar}
\end{aligned}
\] \\
\hline & at (Engineering atmospheric pressure) & Pa & \(1 \mathrm{at}=9.80665 \times 10^{4} \mathrm{~Pa}\) \\
\hline & atm (Atmospheric pressure) & Pa & \(1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}\) \\
\hline & m \(\mathrm{H}^{2} \mathrm{O}, \mathrm{mAq}\) & Pa & \(1 \mathrm{mH} \mathrm{O}=9.80665 \times 10^{3} \mathrm{~Pa}\) \\
\hline & mmHg & Pa or \(\mathrm{mmHg}{ }^{(2)}\) & \(1 \mathrm{mmHg}=133.322 \mathrm{~Pa}\) \\
\hline & Torr & Pa & \\
\hline \multirow[t]{3}{*}{Stress
Elastic modulus} & kg/ \(/ \mathrm{mm}^{2}\) & Pa or \(\mathrm{N} / \mathrm{m}^{2}\) & \(1 \mathrm{~kg} / \mathrm{mm}^{2}=9.80665 \times 10^{6} \mathrm{~Pa}\) \\
\hline & kgf/cm \({ }^{2}\) & Paor \(\mathrm{N} / \mathrm{m}^{2}\) & \[
\begin{aligned}
1 \mathrm{kgf} / \mathrm{cm}^{2} & =9.80665 \times 10^{4} \mathrm{~Pa} \\
& =9.80665 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
\] \\
\hline & \(\mathrm{kg} / \mathrm{m}^{2}\) & Paor \(\mathrm{N} / \mathrm{m}^{2}\) & \[
\begin{aligned}
& 1 \mathrm{kgf} / \mathrm{m}^{2}=9.80665 \mathrm{~Pa}=9.80665 \mathrm{~N} / \mathrm{m}^{2} \\
& 1 \mathrm{kgf} / \mathrm{cm}^{2}=9.80665 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Energy, Work} & \(\mathrm{kgf} \cdot \mathrm{m}\) & J (joule) & \multirow[t]{2}{*}{\[
1 \mathrm{kgf} \cdot \mathrm{~m}=9.80665 \mathrm{~J}
\]} \\
\hline & erg & J & \\
\hline \multirow[t]{2}{*}{Work efficiency, Power} & kgf.m/s & W (watt) & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \mathrm{kgf} \cdot \mathrm{~m} / \mathrm{s}=9.80665 \mathrm{~W} \\
& 1 \mathrm{PS}=0.7355 \mathrm{~kW}
\end{aligned}
\]} \\
\hline & PS & w & \\
\hline Viscosity & PP & Pa's & \multirow[t]{2}{*}{\(1 \mathrm{P}=0.1 \mathrm{~Pa} \cdot \mathrm{~s}\)
\(10^{-2} \mathrm{St}=1 \mathrm{~mm}^{2} / \mathrm{s}\)} \\
\hline Kinetic viscosity & St & mm²/s & \\
\hline Thermodynamic temperature & K & K (kelvin) & \(1 \mathrm{~K}=1 \mathrm{~K}\) \\
\hline Temperature interval & deg & \(\mathrm{K}^{(3)}\) & \(1 \mathrm{deg}=1 \mathrm{~K}\) \\
\hline \multirow[t]{7}{*}{\begin{tabular}{c}
\hline Amount of heat \\
Heat capacity \\
Specific heat, Specific heat capacity \\
Entropy \\
Specific entropy \\
Internal energy (Enthalpy) \\
Specific internal energy (Specific enthalpy)
\end{tabular}} & \multirow[t]{7}{*}{} & \multirow[t]{7}{*}{\[
\begin{gathered}
J \\
J / K^{(3)} \\
\mathrm{cal} /(\mathrm{kgf} \cdot \mathrm{~K})^{(3)} \\
\mathrm{J} / \mathrm{K} \\
\mathrm{~J}(\mathrm{~kg} \cdot \mathrm{~K}) \\
J \\
\mathrm{~J} \\
\mathrm{Jkg} \\
\hline
\end{gathered}
\]} & \multirow[t]{7}{*}{\begin{tabular}{l}
\(1 \mathrm{cal}=4.18605 \mathrm{~J}\) \\
\(1 \mathrm{cal} /{ }^{\circ} \mathrm{C}=4.18605 \mathrm{~J} / \mathrm{K}\) \\
\(1 \mathrm{cal} /\left(\mathrm{kgf} \cdot{ }^{\circ} \mathrm{C}\right)=4.18605 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})\) \\
\(1 \mathrm{cal} / \mathrm{K}=4.18605 \mathrm{~J} / \mathrm{K}\) \\
\(1 \mathrm{cal} /(\mathrm{kgf} \cdot \mathrm{K})=4.18605 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})\) \\
\(1 \mathrm{cal}=4.18605 \mathrm{~J}\) \\
\(1 \mathrm{cal} / \mathrm{kgf}=4.18605 \mathrm{~J} / \mathrm{kg}\)
\end{tabular}} \\
\hline & & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{c}
Heat flux \\
Heat flux density \\
Thermal conductivity \\
Coefficient of thermal conductivity \\
\hline
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
\(\mathrm{cal} / \mathrm{h}\) \\
\(\mathrm{cal} /\left(\mathrm{h} \cdot \mathrm{m}^{2}\right)\) \\
cal/ \(\left(\mathrm{h} \cdot \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)\) \\
\(\mathrm{cal} /\left(\mathrm{h} \cdot \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)\)
\end{tabular}} & w & \multirow[t]{4}{*}{\[
\begin{aligned}
& 1 \mathrm{kcal} / \mathrm{h}=1.16279 \mathrm{~W} \\
& \left.1 \mathrm{kcal} / \mathrm{h} \cdot \mathrm{~m}^{2}\right)=1.16279 \mathrm{~W} / \mathrm{m}^{2} \\
& 1 \mathrm{kcal} /\left(\mathrm{h} \cdot \mathrm{~m} \cdot{ }^{\circ} \mathrm{C}\right)=1.16279 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K}) \\
& 1 \mathrm{kcal} /\left(\mathrm{h} \cdot \mathrm{~m}^{2 .} \cdot \mathrm{C}\right)=1.16279 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)
\end{aligned}
\]} \\
\hline & & \(\mathrm{W} / \mathrm{m}^{2}\) & \\
\hline & & \(\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})^{(3)}\) & \\
\hline & & \(\mathrm{w} /\left(\mathrm{m}^{2} \cdot \mathrm{k}\right)^{(3)}\) & \\
\hline Intensity of magnetic field & Oe & A/m & \(1 \mathrm{Oe}=10^{3} /(4 \pi) \mathrm{A} / \mathrm{m}\) \\
\hline Magnetic flux & Mx & Wb (weber) & \(1 \mathrm{Mx}=10^{-8} \mathrm{~Wb}\) \\
\hline Magnetic flux density & Gs,G & T (tesla) & \(1 \mathrm{Gs}=10^{-4} \mathrm{~T}\) \\
\hline
\end{tabular}

\footnotetext{
Note
ote
(1) Applicable to liquid pressure. Also applicable to atmospheric pressure of meteorological data, when "bar" is used in international standard.
} (2) Applicable to scale or indication of blood pressure manometers.
(3) "C" can be substituted for "K". (3) "C" can be substituted for " K ".

\section*{Flow of Motor Selection}
1. Definition of mechanism to be driven by motor.

Define details of individual mechanical components (ball screw length, lead and pulley diameters, etc.)

\section*{<Typical mechanism>}

Ball screw mechanism

Rack \& pinion, etc.

\section*{2. Definition of operating pattern.}

Acceleration/deceleration time, Constant-velocity time, Stop time, Cycle time, Travel distance

Note) Selection of motor capacity significantly varies depending on the operating pattern The motor capacity can be reduced if the acceleration/deceleration time and stop time are set as long as possible.

\section*{3. Calculation of load inertia and inertia ratio}

Calculate load inertia for each mechanical component. (Refer to "General inertia calculation method" described later.)
Divide the calculated load inertia by the inertia of the selected motor to check the inertia ratio For calculation of the inertia ratio, note that the catalog value of the motor inertia is expressed as " \(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) ".

\section*{4. Calculation of motor velocity}

Calculate the motor velocity from the moving distance, acceleration / deceleration time and constant-velocity time.

\section*{5. Calculation of torque}

Calculate the required motor torque from the load inertia, acceleration/deceleration time and constant-velocity time

\section*{6. Calculation of motor}

Select a motor that meets the above 3 to 5 requirements

\section*{Description on the Items Related to Motor Selection}

\section*{1. Torque}

\section*{(1) Peak torque}

Indicate the maximum torque that the motor requires during operation (mainly in acceleration and deceleration steps). The reference value is \(80 \%\) or less of the maximum motor torque. If the torque is a negative value, a regenerative discharge resistor may be required.
(2) Traveling torque, Stop holding torque

Indicates the torque that the motor requires for a long time. The reference value is \(80 \%\) or less of the rated motor torque. If the torque is a negative value, a regenerative discharge resistor may be required.

\section*{Traveling torque calculation formula for each mechanism}

\section*{Belt mechanism}

\[
\text { Traveling torque } \quad \mathrm{T} f=\frac{\mathrm{D}}{2 \pi \eta}(\mu \mathrm{gW}+\mathrm{F})
\]

\section*{W: Weight [kg] \\ \(\eta\) : Mechanical efficiency}
\(P:\) Pulley diameter \([\mathrm{m}] \quad \mu\) : Coefficient of friction
F : External force \([\mathrm{N}] \quad \mathrm{g}\) : Acceleration of gravity \(9.8\left[\mathrm{~m} / \mathrm{s}^{2}\right]\)
(3) Effective torque

Indicates a root-mean-square value of the total torque required for running and stopping the motor per unit time. The reference value is approx. \(80 \%\) or less of the rated motor torque.
\[
\text { Trms }=\sqrt{\frac{\mathrm{Ta}^{2} \times \mathrm{ta}+\mathrm{Tf}^{2} \times \mathrm{tb}+\mathrm{Td}^{2} \times \mathrm{td}}{\mathrm{tc}}}
\]
\(\mathrm{Ta}:\) Acceleration torque \([\mathrm{N} \cdot \mathrm{m}]\)
\(\mathrm{T} f\) : Traveling torque \([\mathrm{N} \cdot \mathrm{m}\)]
ta. Acceleration time [s]
\(T_{d}:\) Deceleration torque \([\mathrm{N} \cdot \mathrm{m}]\)
tb : Constant-velocity time [s]
td: Deceleration time [s]
tc : Cycle time [s]

\section*{2. Motor velocity}

Maximum velocit
Maximum velocity of motor in operation: The reference value is the rated velocity or lower value
When the motor runs at the maximum velocity, you must pay attention to the motor torque and
temperature rise. For actual calculation of motor velocity, see "Example of motor selection" described later.

\section*{3. Inertia and inertia ratio}

Inertia is like the force to retain the current moving condition
Inertia ratio is calculated by dividing load inertia by rotor inertia
Generally, for motors with 750 W or lower capacity, the inertia ratio should be " 20 " or less. For motors with 1000 W or higher capacity, the inertia ratio should be " 10 " or less.
If you need quicker response, a lower inertia ratio is required.
(For example, when the motor takes several seconds in acceleration step, the inertia ratio can be further) increased.

General inertia calculation method
\begin{tabular}{|c|c|c|c|}
\hline Shape & J calculation formula & Shape & J calculation formula \\
\hline Disk & \[
\begin{aligned}
& J=\frac{1}{8} W^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right] \\
& W: \text { Weight }[\mathrm{kg}] \\
& D: \text { Outer diameter }[\mathrm{m}]
\end{aligned}
\] & Hollow cylinder & \begin{tabular}{l}
\[
J=\frac{1}{8} W\left(D^{2}+d^{2}\right)\left[k g \cdot m^{2}\right]
\] \\
W: Weight [kg] \\
D : Outer diameter [m] \\
d : Inner diameter [m]
\end{tabular} \\
\hline Prism & \begin{tabular}{l}
\[
J=\frac{1}{12} W\left(a^{2}+b^{2}\right)\left[k g \cdot \mathrm{~m}^{2}\right]
\] \\
W: Weight [kg] \\
\(\mathrm{a}, \mathrm{b}, \mathrm{c}\) : Side length [m]
\end{tabular} & Uniform rod & \begin{tabular}{l}
\[
J=\frac{1}{48} W\left(3 D^{2}+4 L^{2}\right)\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right]
\] \\
W: Weight [kg] \\
D: Outer diameter [m] \\
L : Length [m]
\end{tabular} \\
\hline Straight rod & \begin{tabular}{l}
\[
J=\frac{1}{3} W L^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\] \\
W: Weight [kg] \\
L : Length [m]
\end{tabular} & Separated rod & \begin{tabular}{l}
\[
J=\frac{1}{8} W D^{2}+W S^{2}\left[k g \cdot \mathrm{~m}^{2}\right]
\] \\
W: Weight [kg] \\
D: Outer diameter [m] \\
S: Distance [m]
\end{tabular} \\
\hline Reduction gear & \begin{tabular}{l}
Inertia on shaft "a"
\[
\mathrm{J}=\mathrm{J}_{1}+\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}\right)^{2} \mathrm{~J}_{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\] \\
\(\mathrm{n}_{1}\) : A rotational speed of a shaft [r/min] \\
\(\mathrm{n}_{2}\) : A rotational speed of b shaft [\(\left.\mathrm{r} / \mathrm{min}\right]\)
\end{tabular} & & \\
\hline Conveyor & \begin{tabular}{l}
\[
J=\frac{1}{4} W D^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\] \\
W: Workpiece weight on conveyor [kg] \\
D : Drum diameter [m] \\
* Excluding drum J
\end{tabular} & Ball screw & \[
\begin{aligned}
& J=J_{B}+\frac{W \cdot P^{2}}{4 \pi^{2}}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right] \\
& W: \text { Weight }[\mathrm{kg}] \\
& P: \text { Lead } \\
& J B: J \text { of ball screw }
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
If weight (\(\mathrm{W}[\mathrm{kg}\)) is unknown, calculate it with the following formula:
Weight \(\mathrm{W}[\mathrm{kg}]=\) Density \(\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right] \times\) Volume \(\mathrm{V}\left[\mathrm{m}^{3}\right]\)
Density of each material
Iron \(\quad \rho=7.9 \times 10^{3}\left[\mathrm{~kg} / \mathrm{m}^{3}\right]\)
Aluminum \(\rho=2.8 \times 10^{3}\left[\mathrm{~kg} / \mathrm{m}^{3}\right]\)
}

Brass \(\rho=8.5 \times 10^{3}\left[\mathrm{~kg} / \mathrm{m}^{3}\right]\)

\section*{To Drive Ball Screw Mechanism}
1. Example of motor selection for driving ball screw mechanism

Workpiece weight
Ball screw length
Ball screw diameter
Ball screw lead
\(W_{A}=10[\mathrm{~kg}]\)

Ball screw lead \(\quad B D=0.02[\mathrm{~m}]\)
Travel distance \(0.3[\mathrm{~m}]\)
Coupling inertia \(\mathrm{Jc}=10 \times 10^{-6}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\) (Use manufacturer-specified catalog value, or calculation value.)
2. Running pattern :

Acceleration time
Constant-velocity time
Deceleration time
Cycle time
\(\mathrm{ta}=0.1[\mathrm{~s}]\)
\(\mathrm{tb}=0.8[\mathrm{~s}]\) \(\mathrm{td}=0.1[\mathrm{~s}]\) tc \(=2[\mathrm{~s}]\)
Travel distance 0.3[m]

3. Ball screw weight \(\quad B W=\rho \times \pi \times\left(\frac{B D}{2}\right)^{2} \times B L=7.9 \times 10^{3} \times \pi \times\left(\frac{0.02}{2}\right)^{2} \times 0.5\)
\[
=1.24[\mathrm{~kg}]
\]
4. Load inertia
\[
\begin{aligned}
\mathrm{JL} & =\mathrm{JC}+\mathrm{JB}=\mathrm{JC}+\frac{1}{8} \mathrm{BW} \times \mathrm{BD}^{2}+\frac{\mathrm{WA} \cdot \mathrm{BP}^{2}}{4 \pi^{2}} \\
& =0.00001+\left(1.24 \times 0.02^{2}\right) / 8+10 \times 0.02^{2} / 4 \pi^{2} \\
& =1.73 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\end{aligned}
\]
5. Provisional motor selection

In case of MSME 200 W motor : \(\mathrm{JM}=0.14 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\)

\section*{6. Calculation of inertia ratio}
\(\mathrm{JL} / \mathrm{JM}=1.73 \times 10^{-4} / 0.14 \times 10^{-4}\) Therefore, the inertia ratio is "12.3" (less than " 30 ")
(In case of MSME 100 W motor: \(\mathrm{JM}=0.051 \times 10^{-4}\) Therefore, the inertia ratio is " 33.9 ".)

\section*{7. Calculation of maximum velocity (Vmax)}
\(\frac{1}{2} \times\) Acceleration time \(\times V \max +\) Constant-velocity time \(\times V \max +\frac{1}{2} \times\) Deceleration time \(\times\) Vmax \(=\) Travel distance
\(\frac{1}{2} \times 0.1 \times \operatorname{Vmax}+0.8 \times \operatorname{Vmax}+\frac{1}{2} \times 0.1 \times \operatorname{Vmax}=0.3\)
\(0.9 \times \operatorname{Vmax}=0.3\)
Vmax \(=0.3 / 0.9=0.334[\mathrm{~m} / \mathrm{s}]\)
8. Calculation of motor velocity (\(\mathrm{N}[\mathrm{r} / \mathrm{min}]\)) Ball screw lead per resolution: \(\mathrm{BP}=0.02\) [m] \(N=0.334 / 0.02=16.7[\mathrm{r} / \mathrm{s}]\)
\(=16.7 \times 60=1002[\mathrm{r} / \mathrm{min}]<3000[\mathrm{r} / \mathrm{min}]\) (Rated velocity of MSME 200W motor)
9. Calculation of torque
\[
\text { Traveling torque } \quad \begin{aligned}
& \mathrm{T}_{f}=\frac{\mathrm{BP}}{2 \pi \mathrm{~B} \eta}(\mu \mathrm{gWA}+\mathrm{F})=\frac{0.02}{2 \pi \times 0.9}(0.1 \times 9.8 \times 10+0) \\
&=0.035[\mathrm{~N} \cdot \mathrm{~m}] \\
& \text { Acceleration torque } \quad \begin{aligned}
\mathrm{Ta} & =\frac{(\mathrm{JL}+\mathrm{JM}) \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Acceleration time }[\mathrm{s}]}+\text { Traveling torque } \\
& =\frac{\left(1.73 \times 10^{-4}+0.14 \times 10^{-4}\right) \times 2 \pi \times 16.7}{0.1}+0.035 \\
& =0.196+0.035=0.231[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
\end{aligned}
\]
\[
\text { Deceleration torque } \quad \begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\frac{(\mathrm{JL}+\mathrm{Jm}) \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Deceleration time }[\mathrm{s}]}-\text { Traveling torque } \\
& =\frac{\left(1.73 \times 10^{-4}+0.14 \times 10^{-4}\right) \times 2 \pi \times 16.7}{0.1}-0.035 \\
& =0.196-0.035=0.161[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
\]
10. Verification of maximum torque

Acceleration torque \(=\mathrm{Ta}=0.231[\mathrm{~N} \cdot \mathrm{~m}]<1.91[\mathrm{~N} \cdot \mathrm{~m}]\) (Maximum torque of MSME 200 W motor)
11. Verification of effective torque
\[
\begin{aligned}
\text { Trms } & =\sqrt{\frac{\mathrm{Ta}^{2} \times \mathrm{ta}+\mathrm{Tf}^{2} \times \mathrm{tb}+\mathrm{Td}^{2} \times \mathrm{td}}{\mathrm{tc}}} \\
& =\sqrt{\frac{0.231^{2} \times 0.1+0.035^{2} \times 0.8+0.161^{2} \times 0.1}{2}} \\
& =0.067[\mathrm{~N} \cdot \mathrm{~m}]<0.64[\mathrm{~N} \cdot \mathrm{~m}] \text { (Rated torque of MSME } 200 \mathrm{~W} \text { motor) }
\end{aligned}
\]
12. Judging from the inertia ratio calculated above, selection of 200 W motor is preferable, although the torque margin is significantly large.

\section*{Example of Motor Selection}

Example of motor selection for timing belt mechanism
1.Mechanism
\begin{tabular}{|c|}
\hline \\
\hline Pulley weight \\
\hline Mechanical efficiency \\
\hline Coupling inertia \\
\hline Belt mechanism inertia \\
\hline Pulley inertia \\
\hline \\
\hline time \(\quad \mathrm{ta}=0.1[\mathrm{~s}]\) \\
\hline locity time \(\mathrm{tb}=0.8[\mathrm{~s}]\) \\
\hline time \(\quad t d=0.1[\mathrm{~s}]\) \\
\hline tc \(=2[\mathrm{~s}]\) \\
\hline ce \(1[\mathrm{~m}]\) \\
\hline
\end{tabular}

WA \(=2[\mathrm{~kg}]\) (including belt)
\(\mathrm{PD}=0.05[\mathrm{~m}]\)
WP \(=0.5[\mathrm{~kg}]\) (Use manufacturer-specified catalog value, or calculation value.) \(\mathrm{B} \eta=0.8\)
Jc \(=0\) (Direct connection to motor shaft) Jc
JB
Belt mechanism inertia JB
Pulley inertia JP

2. Running pattern

Acceleration time \(\mathrm{ta}=0.1[\mathrm{~s}]\)
Constant-velocity time tb \(=0.8[\mathrm{~s}]\)
Deceleration time \(t d=0.1[\mathrm{~s}]\)
Cycle time tc \(=2[\mathrm{~s}]\)
Travel distance 1[m]

3. Load inertia \(\mathrm{JL}=\mathrm{JC}+\mathrm{JB}+\mathrm{JP}\)
\(=\mathrm{Jc}+\frac{1}{4} \mathrm{WA} \times \mathrm{PD}^{2}+\frac{1}{8} \mathrm{~W} \times \mathrm{PD}^{2} \times 2\)
\(=0+\frac{1}{4} \times 2 \times 0.05^{2}+\frac{1}{8} \times 0.5 \times 0.05^{2} \times 2\)
\(=0.00156=15.6 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\)
4. Provisional motor selection

In case of MSME 750 W motor : \(\mathrm{JM}=0.87 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\)
5. Calculation of inertia ratio
\(\mathrm{JL} / \mathrm{JM}=15.6 \times 10^{-4} / 0.87 \times 10^{-4}\) Therefore, the inertia ratio is "17.9" (less than "20")

\section*{6. Calculation of maximum velocity (Vmax)}
\(\frac{1}{2} \times\) Acceleration time \(\times\) Vmax + Constant-velocity time \(\times \operatorname{Vmax}+\frac{1}{2} \times\) Deceleration time \(\times\) Vmax \(=\) Travel distance
\(\frac{1}{2} \times 0.1 \times V \max +0.8 \times V \max +\frac{1}{2} \times 0.1 \times V \max =1\)
\(0.9 \times V_{m a x}=1\)
\(V \max =1 / 0.9=1.111[\mathrm{~m} / \mathrm{s}]\)

\section*{7. Calculation of motor velocity (\(\mathrm{N}[\mathrm{r} / \mathrm{min}]\))}

A single rotation of pulley : \(\pi \times \mathrm{PD}=0.157[\mathrm{~m}]\)
\(\mathrm{N}=1.111 / 0.157=7.08[\mathrm{r} / \mathrm{s}]\)
\(=7.08 \times 60=424.8[\mathrm{r} / \mathrm{min}]<3000[\mathrm{r} / \mathrm{min}]\) (Rated velocity of MSME 750 W motor)

\section*{8. Calculation of torque}
\[
\begin{aligned}
& \text { Traveling torque } \quad \mathrm{Tf}=\frac{\mathrm{PD}}{2 \eta}(\mu \mathrm{GW} A+\mathrm{F})=\frac{0.05}{2 \times 0.8}(0.1 \times 9.8 \times 3+0) \\
& =0.061[\mathrm{~N} \cdot \mathrm{~m}] \\
& \text { Acceleration torque } \\
& \mathrm{Ta}=\frac{(\mathrm{JL}+\mathrm{Jm}) \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Acceleration time } \mathrm{s}]}+\text { Traveling torque } \\
& =\frac{\left(15.6 \times 10^{-4}+0.87 \times 10^{-4}\right) \times 2 \pi \times 7.08}{0.1}+0.061 \\
& =0.751+0.061=0.812[\mathrm{~N} \cdot \mathrm{~m}] \\
& \text { Deceleration torque } \\
& \mathrm{Td}=\frac{(\mathrm{JL}+\mathrm{JM}) \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Deceleration time[s] }}-\text { Traveling torque } \\
& =\frac{\left(15.6 \times 10^{-4}+0.87 \times 10^{-4}\right) \times 2 \pi \times 7.08}{0.1}-0.061 \\
& =0.751-0.061=0.69[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
\]

\section*{1. Driven mechanism and running data}
1) Travel distance of the work load
2) Cycle time

(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force
8) Positioning accuracy of the
8) work load
9) Total weight of the work load
9) and the table
10) Power supply voltage
11) Diameter of the ball screw
12) Total length of the ball
13) Lead of the ball screw
\begin{tabular}{l}
\begin{tabular}{|cr|}
\hline \(\mathrm{ta}:\) & s \\
\hline \(\mathrm{td}:\) & s \\
\hline \(\mathrm{ts}:\) & s \\
\hline \(\mathrm{V}:\) & \(\mathrm{mm} / \mathrm{s}\) \\
\hline \(\mathrm{F}:\) & N \\
\hline \hline\(\pm\) & mm \\
\hline \(\mathrm{W}:\) & kg \\
\hline & V \\
\hline & mm \\
\hline & mm \\
\hline & \\
\hline & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Traveling direction (horizontal, vertical etc.) \(\qquad\)
2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

\section*{Request Sheet for Motor Selection}

\section*{Request for motor selection II : Timing pulley + Ball screw drive}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{1. Driven mechanism and running data} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Diameter of the pulley} & \multicolumn{2}{|l|}{Motor side} & \multicolumn{2}{|l|}{Ball screw side} \\
\hline 1) Travel distance of the work load per one cycle & \(\ell{ }_{1}\) : & mm & & & D1: & mm & D2: & mm \\
\hline 2) Cycle time & to: & s & 16) & Weight of the pulley & \(\mathrm{W}_{1}\) : & kg & \(\mathrm{W}_{2}\) : & kg \\
\hline
\end{tabular}
(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force
8) Positioning
Total weight of the work load
9) and the table
10) Power supply voltage
11) Diameter of the ball screw
12) Total length of the ball screw
13) Lead of the ball screw
14) Traveling direction
\begin{tabular}{l|ll}
& \\
17) Width of the pulley & \(\mathrm{L}:\) & mm \\
\cline { 2 - 3 } & \\
18) Material of the pulley & \\
& & \\
19) Weight of the belt & \(\mathrm{W}_{\mathrm{M}}\) & kg \\
\hline
\end{tabular}

 ed.) (or item 17) and 18))
2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

\section*{Request for motor selection III : Belt drive}

\section*{1. Driven mechanism and running data}
1) Travel distance of the work load
per one cycle
\begin{tabular}{|cr|}
\hline\(\ell_{1}:\) & mm \\
\hline to: & s \\
\hline
\end{tabular}
(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force
8) Positioning accuracy of the
8) work load
9) Total weight of the work load
10) Power supply voltage
11) Weight of the belt
12) Diameter of the driving pulley
13) Total weight of the pulley
\begin{tabular}{|c|c|}
\hline ta: & s \\
\hline td: & s \\
\hline ts: & s \\
\hline V : & mm/s \\
\hline F: & N \\
\hline \(\pm\) & mm \\
\hline WA: & kg \\
\hline & v \\
\hline Wм: & kg \\
\hline D1: & mm \\
\hline \(\mathrm{W}_{1}\) : & kg \\
\hline
\end{tabular}

Running pattern

(or item 14) and 15))
14) Width of the pulley
15) Material of the pulley
16) Traveling direction
\({ }^{16)}\) (horizontal, vertical etc.)

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

Request for motor selection IV : Timing pulley + Belt drive \(\qquad\)
1. Driven mechanism and running data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{1) Travel distance of the work load per one cycle} & & & \multirow[b]{2}{*}{16)} & \multirow[b]{2}{*}{Diameter of the pulley} & \multicolumn{2}{|l|}{Motor side} & \multicolumn{2}{|c|}{Belt side} \\
\hline & \(\ell\) 1: & mm & & & D3: & mm & D4: & mm \\
\hline 2) Cycle time & to: & s & 17) & Weight of the pulley & W3: & kg & \(\mathrm{W}_{4}\) : & kg \\
\hline
\end{tabular}
(Fill in items 3) and 4) if required.)
(or item 18) and 19))

Running pattern
7) External force
\begin{tabular}{|c|c|}
\hline ta: & s \\
\hline td: & s \\
\hline ts: & s \\
\hline V : & mm/s \\
\hline F: & N \\
\hline \(\pm\) & mm \\
\hline WA: & kg \\
\hline & v \\
\hline W : & kg \\
\hline
\end{tabular}
8) Positioning accuracy of the
9) Total weight of the work
9) load
11) Weight of motor side belt \(\qquad\) Belt side

(or item 14) and 15))
14) Width of the
belt
\begin{tabular}{|ll|}
\hline \(\mathrm{L} 1:\) & mm \\
\hline
\end{tabular}
15) Material of the

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

Request for motor selection V : Turntable drive

\section*{1. Driven mechanism and running data}
\begin{tabular}{l|lrl}
& \begin{tabular}{l}
Travel distance of the work \\
\\
1) \\
load per one cycle
\end{tabular} & \begin{tabular}{l}
14) \\
Dimensions of the \\
work load
\end{tabular} \\
2) Cycle time & to: & &
\end{tabular}
(Fill in items 3) and 4) if required.)
\begin{tabular}{|c|c|c|c|}
\hline 3) & Acceleration time & ta: & s \\
\hline 4) & Deceleration time & td: & s \\
\hline 5) & Stopping time & ts: & s \\
\hline 6) & Max. rotational speed of the table & v : & deg/s \\
\hline & (or) & v : & r/s \\
\hline 7) & Positioning accuracy of the work load & \(\pm\) & deg \\
\hline 8) & Weight of one work load & \(\mathrm{W}_{\mathrm{A}}\) : & kg \\
\hline 9) & Driving radius of the center of gravity of the work & R1: & mm \\
\hline 10) & Diameter of the table & D1: & mm \\
\hline 11) & Mass of the table & \(\mathrm{w}_{1}\) : & kg \\
\hline 12) & Diameter of the table support & T1: & mm \\
\hline 13) & Power supply voltage & & V \\
\hline
\end{tabular}
15) Number of work loads
\begin{tabular}{|lr|rr|}
\multicolumn{1}{c}{ Prism } & \multicolumn{2}{c}{ Cylinder } \\
\hline a: & mm & a: & mm \\
\hline b: & mm & \(\mathrm{b}:\) & mm \\
\hline c: & mm & \(\mathrm{c}:\) & mm \\
\hline & & & \\
\hline & & & pcs \\
\hline & & & \\
\hline
\end{tabular}

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

\section*{Request Sheet for Motor Selection}

\section*{Request for motor selection VI : Timing pulley + Turntable drive}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1. Driven mechanism a & & & \multirow[b]{2}{*}{16)} & \multirow[b]{2}{*}{Diameter of the pulley} & \multicolumn{2}{|l|}{Motor side} & \multicolumn{2}{|l|}{Turntable side} \\
\hline 1) Travel distance of the work load per one cycle & d1: & deg & & & D2: & mm & D3: & mm \\
\hline 2) Cycle time & to: & s & 17) & Weight of the pulley & \(\mathrm{W}_{2}\) : & kg & \(\mathrm{W}_{3}\) : & kg \\
\hline
\end{tabular}
(Fill in items 3) and 4) if required.)
(or item 18) and 19))
3) Acceleration time
4) Deceleration time
\begin{tabular}{|cc|}
\hline ta: & s \\
\hline \(\mathrm{td}:\) & s \\
\hline
\end{tabular}
18) Width of the pulley
19) Material of the pulley
20) Weight of the belt

6) Max. rotational speed of the table
7) \(\begin{aligned} & \text { Positioning accuracy of the } \\ & \text { work load }\end{aligned}\)
8) Weight of one work load
a) Driving radius of the center of gravity of the work
10) Diameter of the table
11) Mass of the table
12) Diameter of the table
13) Power supply voltage

\begin{tabular}{l|l|l|lr|}
& \multicolumn{1}{c}{ (Prism) } & \multicolumn{2}{c}{ (Cylinder) } \\
\begin{tabular}{lllll|}
14) \\
Dimension of the \\
work load
\end{tabular} & a: & mm & a: & mm \\
\hline & b: & mm & b: & mm \\
\hline & c: & mm & c: & mm \\
\hline
\end{tabular}

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l}
Company name: \\
Department/Section : \\
\hline Name : \\
\hline Address : \\
\hline Tel : \\
\hline Fax : \\
\hline E-mail address: \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Request for motor selection VII : Roller feed drive}

\section*{1. Driven mechanism and running data}
1) Travel distance of the work load
\begin{tabular}{|cc|}
\hline\(\ell_{1}:\) & mm \\
\hline to: & s \\
\hline
\end{tabular} (Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External pulling force
8) Positioning accuracy of the
8) work load
9) Number of rollers
10) Power supply voltage
11) Diameter of the roller
12) Mass of the roller
\begin{tabular}{|c|c|}
\hline ta: & s \\
\hline td: & s \\
\hline ts: & s \\
\hline v: & mm/s \\
\hline F: & N \\
\hline \(\pm\) & mm \\
\hline & pcs \\
\hline & v \\
\hline D 1 : & mm \\
\hline \(\mathrm{W}_{1}\) : & kg \\
\hline
\end{tabular}

(or item 13) and 14))
13) Width of the roller
14) Material of the roller

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

Request for motor selection VIII : Driving with Rack \& Pinion

\section*{1. Driven mechanism and running data}
\begin{tabular}{l|lr|}
& & \\
1) Travel distance of the work load \\
per one cycle & \(\ell_{1}:\) & mm \\
2) Cycle time & to: & s \\
\hline
\end{tabular}
(Fill in items 3) and 4) if required.)
\begin{tabular}{|c|c|c|c|}
\hline 3) & Acceleration time & ta: & s \\
\hline 4) & Deceleration time & td: & s \\
\hline 5) & Stopping time & ts: & s \\
\hline 6) & Max. velocity & V : & mm/s \\
\hline 7) & External force & F: & N \\
\hline 8) & Positioning accuracy of the work load & \(\pm\) & mm \\
\hline 9) & Total weight of the work load & \(\mathrm{W}_{\mathrm{A}}\) : & kg \\
\hline 10) & Power supply voltage & & V \\
\hline 11) & Diameter of the pinion & \(\mathrm{D}_{3}\) : & mm \\
\hline 12) & Mass of the pinion & \(\mathrm{W}_{3}\) : & kg \\
\hline 13) & Traveling direction (horizontal, vertical, etc.) & & \\
\hline
\end{tabular}

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

\title{
FP7-AFP7PP02T/L(2-axes) AFP7PP04T/L(4-axes) Connection with the Panasonic devices SUNX.
}

FPG-C32T Connection with the Panasonic devices SUNX.

\section*{A5 Family}

Connection Between
Driver and Controlle
Replacing Old Model Servo Driver with MINAS A5II, A5 series
or easier replacement of old driver (MINAS X/XX/N series) with A5II, A5 series, use the interface conversion connector.

When selecting the cable, refer to the table below because the part number of the cable is specific to the contro mode of the old model.
\begin{tabular}{|c|c|c|c|}
\hline Old model & Control mode & Conversion cable part No. & Conversion wiring table \\
\hline \multirow{3}{*}{\begin{tabular}{c}
X series \\
XX series \\
(36-pin)
\end{tabular}} & Position/velocity control & DVOP4120 & \multirow{2}{*}{ P.280 } \\
\cline { 2 - 3 } & Torque control & DVOP4121 & \\
\hline \multirow{3}{*}{\begin{tabular}{c}
V series \\
(50-pin)
\end{tabular}} & Position control & DVOP4130 & \multirow{2}{*}{ P.281 } \\
\cline { 2 - 3 } & Velocity control & DVOP4131 & \\
\cline { 2 - 3 } & Torque control & DVOP4132 & P.282 \\
\hline
\end{tabular}
* For external dimensions, refer to P. 197

\section*{Conversion Wiring Table}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin No. on Old Mode} & \multicolumn{3}{|c|}{DVOP4120} & \multicolumn{3}{|c|}{DV0P4121} \\
\hline & \[
\begin{array}{|c}
\hline \text { Pin } \\
\text { No. } \\
\text { Courrent } \\
\text { Cur } \\
\text { Model }
\end{array}
\] & Signal Name & Symbol & Pin No. on Current
Model & Signal Name & Symbol \\
\hline 1 & 23 & z-phase output & OZ+ & 23 & z-phase output & OZ+ \\
\hline 2 & 24 & z-phase output & oz- & 24 & z-phase output & Oz- \\
\hline 3 & 13 & Signal ground & GND & 13 & Signal ground & GND \\
\hline 4 & 19 & Z-phase output & Cz & 19 & z-phase output & Cz \\
\hline 5 & 4 & Command pulse input 2 & PULS2 & 4 & Command pulse input 2 & PuLS2 \\
\hline 6 & 3 & Command pulse input 2 & PULS1 & 3 & Command pulse input 2 & PULS1 \\
\hline 7 & 6 & Command pulse sign input 2 & SIGN2 & 6 & Command pulse sign input 2 & SIGN2 \\
\hline 8 & 5 & Command pulse sign input 2 & SIGN1 & 5 & Command pulse sign input 2 & SIGN1 \\
\hline 9 & 33 & Command pulse inhibition input & INH & 33 & Command pulse inhibition input & INH \\
\hline 10 & 26 & Speed zero clamp input & ZEROSPD & 26 & Speed zero clamp input & ZEROSPD \\
\hline 11 & 7 & Power supply for control signal (+) & COM+ & 7 & Power supply for control signal (+) & COM+ \\
\hline 12 & 29 & Servo-ON input & SRV-ON & 29 & Servo-ON input & SRV-ON \\
\hline 13 & 30 & Deviation counter clear input & CL & 30 & Deviation counter clear input & CL \\
\hline 14 & 14 & Speed command input & SPR & NC & & \\
\hline 15 & 15 & Signal ground & GND & 15 & Signal ground & GND \\
\hline 16 & 43 & Speed monitor output & SP & 43 & Speed monitor output & SP \\
\hline 17 & 25 & Signal ground & GND & 25 & Signal ground & GND \\
\hline 18 & 50 & Frame ground & FG & 50 & Frame ground & FG \\
\hline 19 & 21 & A-phase output & \(\mathrm{OA}_{+}\) & 21 & A-phase output & OA+ \\
\hline 20 & 22 & A-phase output & OA- & 22 & A-phase output & OA- \\
\hline 21 & 48 & B-phase output & OB+ & 48 & B-phase output & OB+ \\
\hline 22 & 49 & B-phase output & OB- & 49 & B-phase output & OB- \\
\hline 23 & NC & & & NC & & \\
\hline 24 & NC & & & NC & & \\
\hline 25 & 39 & Positioning complete output
Speed arrival output & \begin{tabular}{l}
COIN+ \\
AT-SPEED+ + \\
\hline
\end{tabular} & 39 & Positioning complete output Speed arrival output & \begin{tabular}{l}
COIN + \\
AT-SPEED + \\
\hline
\end{tabular} \\
\hline 26 & 37 & Servo-Alarm output & ALM + & 37 & Servo-Alarm output & ALM + \\
\hline 27 & 35 & Servo-Ready output & S-RDY+ & 35 & Servo-Ready output & S-RDY+ \\
\hline \multirow{4}{*}{28} & 34 & \[
\begin{aligned}
& \text { Positioning complete output (-) } \\
& \text { Speed arrival output (-) }
\end{aligned}
\] & COIN-
AT-SPEED- & 34 & Positioning complete output (-) Speed arrival output (-) & COIN-
AT-SPEED- \\
\hline & 36 & Servo-Alarm output (-) & ALM- & 36 & Servo-Alarm output (-) & ALM- \\
\hline & 38 & Servo-Ready output (-) & S-RDY- & 38 & Servo-Ready output (-) & S-RDY- \\
\hline & 41 & Power supply for control signal (-) & COM- & 41 & Power supply for control signal (-) & COM- \\
\hline 29 & 8 & CW over-travel inhibiti input & cWL & 8 & CW over-travel inhibiti input & CWL \\
\hline 30 & 9 & CCW over-travel inhibit input & CCWL & 9 & CCW over-travel inhibit input & CCWL \\
\hline 31 & 31 & Alarm clear input & A-CLR & 31 & Alarm clear input & A-CLR \\
\hline 32 & 32 & Control mode switching input & C-MODE & 32 & Control mode switching input & C-MODE \\
\hline 33 & 18 & CW direction torque limit input & CWTL & 18 & CW direction torque limit input & CWTL \\
\hline 34 & 16 & CCW direction torque limit input & CCWTL & 14 & Torque command input & TRQR \\
\hline 35 & 17 & Signal ground & GND & 17 & Signal ground & GND \\
\hline 36 & 42 & Torque monitor output & וM & 42 & Torque monitor output & IM \\
\hline
\end{tabular}

\footnotetext{
is no cornect.
}

A5 Family
Connection Between
Driver and Controller
\[
\begin{array}{l|l}
\hline & \text { DVop4130 }
\end{array}
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin No. on Old Model} & \multicolumn{3}{|c|}{DVOP4130} & \multicolumn{3}{|c|}{DVOP4131} \\
\hline & \begin{tabular}{|c|}
\hline Pin \\
No. on \\
Current \\
Model
\end{tabular} & Signal Name & Symbol & Pin
No. on
Current
Model & Signal Name & Symbol \\
\hline 1 & 8 & CW over-travel inhibit input & cWL & 8 & CW over-travel inhibit input & cWL \\
\hline 2 & 9 & CCW over-travel inhibit input & ccw & 9 & CCW over-travel inhibit input & cCWL \\
\hline 3 & 3 & Command pulse input 2 & PULS1 & NC & & \\
\hline 4 & 4 & Command pulse input 2 & PULS2 & NC & & \\
\hline 5 & 5 & Command pulse sign input 2 & SIGN1 & NC & & \\
\hline 6 & 6 & Command pulse sign input 2 & SIGN2 & NC & & \\
\hline 7 & 7 & Power supply for control signal (+) & \(\mathrm{COM}_{+}\) & 7 & Power supply for control signal (+) & COM + \\
\hline 8 & NC & & & NC & & \\
\hline 9 & NC & & & NC & & \\
\hline 10 & NC & & & NC & & \\
\hline 11 & 11 & External brake release signal & BRK-OFF+ & 11 & External brake release signal & BRK-OFF+ \\
\hline 12 & 12 & Zero-speed detection output signal & ZSP & 12 & Zero-speed detection output signal & ZSP \\
\hline 13 & 13 & Torque in-limit signal output & TLC & 13 & Torque in-limit signal output & TLC \\
\hline 14 & NC & & & 14 & Speed command input & SPR \\
\hline 15 & 15 & Signal ground & GND & 15 & Signal ground & GND \\
\hline 16 & 16 & CCW direction torque limit input & CCWTL & 16 & CCW direction torque limit input & CCWTL \\
\hline 17 & 17 & Signal ground & GND & 17 & Signal ground & GND \\
\hline 18 & 18 & CW direction torque limit input & CWTL & 18 & CW direction torque limit input & CWTL \\
\hline 19 & 19 & Z-phase output & Cz & 19 & Z-phase output & Cz \\
\hline 20 & NC & & & NC & & \\
\hline 21 & 21 & A-phase output & OA+ & 21 & A-phase output & \(\mathrm{OA}_{+}\) \\
\hline 22 & 22 & A-phase output & OA- & 22 & A-phase output & OA- \\
\hline 23 & 23 & Z-phase output & OZ+ & 23 & Z-phase output & OZ+ \\
\hline 24 & 24 & z-phase output & Oz- & 24 & z -phase output & oz- \\
\hline 25 & 50 & Frame ground & FG & 50 & Frame ground & FG \\
\hline 26 & 26 & Speed zero clamp input & ZEROSPD & 26 & Speed zero clamp input & ZEROSPD \\
\hline 27 & 27 & Gain switching input & GAIN & 27 & Gain switching input & GAIN \\
\hline 28 & NC & & & 33 & Selection 1 input of internal command speed & INTSPD1 \\
\hline 29 & 29 & Servo-ON input & SRV-ON & 29 & Servo-ON input & SRV-ON \\
\hline 30 & 30 & Deviation counter clear input & CL & NC & & \\
\hline 31 & 31 & Alarm clear input & A-CLR & 31 & Alarm clear input & A-CLR \\
\hline 32 & 32 & Control mode swith \({ }^{\text {ang input }}\) & C-MODE & 32 & Control mode switching input & C-MODE \\
\hline 33 & 33 & Command pulse inhibition input & INH & NC & & \\
\hline 34 & NC & & & NC & & \\
\hline 35 & 35 & Servo-Ready output & S-RDY+ & 35 & Servo-Ready output & S-RDY+ \\
\hline 36 & NC & & & NC & & \\
\hline 37 & 37 & Servo-Alarm output & ALM + & 37 & Servo-Alarm output & ALM+ \\
\hline 38 & NC & & & NC & & \\
\hline 39 & 39 & Positioning complete output & COIN+ & 39 & Speed arrival output & AT-SPEED+ \\
\hline 40 & 40 & Torque in-limit signal output & TLC & 40 & Torque in-limit signal output & TLC \\
\hline \multirow{5}{*}{41} & 10 & External brake release signal (-) & BRK-OFF- & 10 & External brake release signal (-) & BRK-OFF- \\
\hline & 34 & Positioning complete output (-) & COIN- & 34 & Speed arival output (-) & AT-SPEED- \\
\hline & 36 & Servo-Alarm output (-) & ALM- & 36 & Servo-Alarm output (-) & ALM- \\
\hline & 38 & Servo-Ready output (-) & S-RDY- & 38 & Servo-Ready output (-) & S-RDY- \\
\hline & 41 & Power supply for control signal (-) & COM- & 41 & Power supply for control signal (-) & COM- \\
\hline 42 & 42 & Torque monitor output & IM & 42 & Torque monitor output & IM \\
\hline 43 & 43 & Speed monitor output & SP & 43 & Speed monitor output & SP \\
\hline 44 & 25 & Signal ground & GND & 25 & Signal ground & GND \\
\hline 45 & 25 & Signal ground & GND & 25 & Signal ground & GND \\
\hline 46 & 25 & Signal ground & GND & 25 & Signal ground & GND \\
\hline 47 & NC & & & NC & & \\
\hline 48 & 48 & B-phase output & OB+ & 48 & B-phase output & \(\mathrm{OB}_{+}\) \\
\hline 49 & 49 & B-phase output & OB- & 49 & B-phase output & OB- \\
\hline 50 & 50 & Frame ground & FG & 50 & Frame ground & FG \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin No. on Old Model} & \multicolumn{3}{|c|}{DVOP4132} \\
\hline & \[
\begin{gathered}
\hline \text { Pin } \\
\text { No. on } \\
\text { Current } \\
\text { Model }
\end{gathered}
\] & Signal Name & Symbol \\
\hline 1 & 8 & CW over-travel inhibitit input & cWL \\
\hline 2 & 9 & CCW over-travel inhibit input & CCWL \\
\hline 3 & NC & & \\
\hline 4 & NC & & \\
\hline 5 & NC & & \\
\hline 6 & NC & & \\
\hline 7 & 7 & Power supply for control signal (t) & COM+ \\
\hline 8 & NC & & \\
\hline 9 & NC & & \\
\hline 10 & NC & & \\
\hline 11 & 11 & External brake release signal & BRK-OFF+ \\
\hline 12 & 12 & Zero-speed detection output signal & ZSP \\
\hline 13 & 13 & Torque in-limit signal output & TLC \\
\hline 14 & NC & & \\
\hline 15 & 15 & Signal ground & GND \\
\hline 16 & 16 & Torque command input & TRQR \\
\hline 17 & 17 & Signal ground & GND \\
\hline 18 & 18 & CW direction torque limit input & CWTL \\
\hline 19 & 19 & Z-phase output & Cz \\
\hline 20 & NC & & \\
\hline 21 & 21 & A-phase output & OA+ \\
\hline 22 & 22 & A-phase output & OA- \\
\hline 23 & 23 & z-phase output & OZ+ \\
\hline 24 & 24 & z-phase output & Oz- \\
\hline 25 & 50 & Frame ground & FG \\
\hline 26 & 26 & Speed zero clamp input & ZEROSPD \\
\hline 27 & 27 & Gain switching input & GAIN \\
\hline 28 & NC & & \\
\hline 29 & 29 & Servo-ON input & SRV-ON \\
\hline 30 & NC & & \\
\hline 31 & 31 & Alarm clear input & A-CLR \\
\hline 32 & 32 & Control mode switching input & C-MODE \\
\hline 33 & NC & & \\
\hline 34 & NC & & \\
\hline 35 & 35 & Servo-Ready output & S-RDY+ \\
\hline 36 & NC & & \\
\hline 37 & 37 & Servo-Alarm output & ALM + \\
\hline 38 & NC & & \\
\hline 39 & 39 & Speed arrival output & AT-SPEED+ \\
\hline 40 & 40 & Torque in-limit signal output & TLC \\
\hline \multirow{5}{*}{41} & 10 & External brake release signal (-) & BRK-OfF- \\
\hline & 34 & Speed arival output (-) & AT-SPEED- \\
\hline & 36 & Servo-Alarm output (-) & ALM- \\
\hline & 38 & Servo-Ready output (-) & S-RDY- \\
\hline & 41 & Power supply for control signal (-) & COM- \\
\hline 42 & 42 & Torque monitor output & IM \\
\hline 43 & 43 & Speed monitor output & SP \\
\hline 44 & 25 & Signal ground & GND \\
\hline 45 & 25 & Signal ground & GND \\
\hline 46 & 25 & Signal ground & GND \\
\hline 47 & NC & & \\
\hline 48 & 48 & B-phase output & OB+ \\
\hline 49 & 49 & B-phase output & OB- \\
\hline 50 & 50 & Frame ground & FG \\
\hline
\end{tabular}
* " NC " is no connect.

Driver and Controller

\section*{FP7-AFP7PP02T/L(2-axes) AFP7PP04T/L(4-axes) Connection with the Panasonic devices SUNX.}

F3YP22-0P/F3YP24-0P/F3YP28-0P Connection with the Yokogawa Electric Corp.

F3NC32-ON/F3NC34-ON Connection with the Yokogawa Electric Corp.

CJ1W-NC113 Connection with the Omron Corp.

QD75D1 Connection with the Mitsubishi Electric Corp.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{DVOP} \\
\hline Part No. & Title & Page \\
\hline DVOP0770 & Connector kit for external peripheral equipment & 240 \\
\hline DV0P0800 & Interface cable & 241 \\
\hline DVOP1450 & Surge absorber (3-phase) & 56 \\
\hline DV0P1460 & Noise Filter for Signal Lines & 254,256 \\
\hline DVOP1960 & Communication cable & 241 \\
\hline DVOP220 & Reactor & 209 \\
\hline DVOP221 & Reactor & 209 \\
\hline DVOP222 & Reactor & 209 \\
\hline DVOP223 & Reactor & 209 \\
\hline DVOP224 & Reactor & 209 \\
\hline DVOP225 & Reactor & 20 \\
\hline DVOP227 & Reactor & 209 \\
\hline DVOP228 & Reactor & 209 \\
\hline DVOP2870 & Connector kit for power supply connection & 239 \\
\hline DVOP2890 & External regenerative resistor & 242 \\
\hline DVOP2891 & External regenerative resistor & 242 \\
\hline DVOP2990 & Battery For Absolute Encoder & 207 \\
\hline DV0P3410 & Noise Filter & 251 \\
\hline DV0P3670 & Connector kit for motorlencoder connection & 239 \\
\hline DVOP37300 & Cable set (3 m) & 238 \\
\hline DVOP3811 & DIN rail mounting unit & 242 \\
\hline DVOP39200 & Cable set (5 m) & 238 \\
\hline DV0P4120 & Interface conversion cable & 197 \\
\hline DV0P4121 & Interface conversion cable & 197 \\
\hline DV0P4130 & Interface conversion cable & 197 \\
\hline DV0P4131 & Interface conversion cable & 197 \\
\hline DV0P4132 & Interface conversion cable & 197 \\
\hline DVOP4160 & Noise filter & 256 \\
\hline DV0P4170 & Noise Filter & 250 \\
\hline DVOP4190 & Surge absorber (Single phase) & 253,256 \\
\hline DV0P4220 & Noise Filter & 250 \\
\hline DV0P4280 & External Regenerative Resistor: \(50 \Omega 25 \mathrm{~W}\) & 210 \\
\hline DV0P4281 & External Regenerative Resistor: \(100 \Omega 25 \mathrm{~W}\) & 210 \\
\hline DV0P4282 & External Regenerative Resistor: \(25 \Omega 50 \mathrm{~W}\) & 210 \\
\hline DV0P4283 & External Regenerative Resistor: \(50 \Omega 50 \mathrm{~W}\) & 210 \\
\hline DV0P4284 & External Regenerative Resistor: \(30 \Omega 100 \mathrm{~W}\) & 210 \\
\hline DV0P4285 & External Regenerative Resistor: \(20 \Omega 130 \mathrm{~W}\) & 210 \\
\hline DVOP4290 & Connector Kit for Motor/EEcoder Connection & 202 \\
\hline DV0P4310 & Connector Kit for Motor/EEncoder Connection & 204 \\
\hline DV0P4320 & Connector Kit for Motorl/Encoder Connection & 204 \\
\hline DV0P4330 & Connector Kit for Motor/EEcoder Connection & 205 \\
\hline DV0P4340 & Connector Kit for Motor/Encoder Connection & 205 \\
\hline DVOP4350 & Interface Connector & 198 \\
\hline DVOP4360 & Interface cable & 197 \\
\hline DV0P4380 & Connector Kit for Motor/Encoder Connection & 202 \\
\hline DV0P4420 & Console & 241 \\
\hline DV0P4430 & Battery Box & 207 \\
\hline DVOP4460 & Setup support software "PANATERM" for MINAS series AC servo motor \& Driver & 236 \\
\hline DVOPM20010 & Connector Kit: Encoder & 199 \\
\hline DVOPM20024 & Connector Kit: RS485, 232 & 198 \\
\hline DVOPM20025 & Connector Kit: Safety & 198 \\
\hline DVOPM20026 & Connector Kit: External Scale & 199 \\
\hline DVOPM20027 & Mounting bracket: A-frame & 208 \\
\hline DVOPM20028 & Mounting bracket: \(B\)-frame & 208 \\
\hline DVOPM20029 & Mounting bracket: C-frame & 208 \\
\hline DVOPM20030 & Mounting bracket: D-frrame & 208 \\
\hline DVOPM20031 & Connector Kit: Analog Monitor Signal & 199 \\
\hline DVOPM20032 & Connector for Power Supply Input Connection (A-frame to D-frame (Single row type)) & 200 \\
\hline DVOPM20033 & Connector for Power Supply Input Connection (A-frame to D-frame (Double row type)) & 200 \\
\hline DVOPM20034 & Connector for Motor Connection (A-frame to D-frame) & 201 \\
\hline DVOPM20035 & Connector Kit for Motor/Encoder Connection & 203 \\
\hline DVOPM20036 & Connector Kit for Motor/Encoder Connection & 203 \\
\hline DVOPM20037 & Connector Kit for Motor/EEncoder Connection & 204 \\
\hline DVOPM20038 & Connector Kit for Motor/EEcoder Connection & 204 \\
\hline DVOPM20039 & Connector Kit for Motorl/Encoder Connection & 205 \\
\hline DVOPM20040 & Conneetior Kit for Motor/Brake Connection & 206 \\
\hline DVOPM20042 & Noise Filter & 250 \\
\hline DVOPM20043 & Noise Filter & 250 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{DVOP} \\
\hline Part No. & Title & Page \\
\hline DVOPM20044 & Connector for Power Supply Input Connection (E-frame) & 200 \\
\hline DVOPM20045 & Connector for Regenerative Resistor (E-frame \(200 \mathrm{~V} / 400 \mathrm{~V}\) common) & 201 \\
\hline DVOPM20046 & Connector for Motor Connection (E-frame \(200 \mathrm{~V} / 400 \mathrm{~V}\) common) & 201 \\
\hline DVOPM20047 & Reactor & 209 \\
\hline DVOPM20048 & External Regenerative Resistor: \(120 \Omega 240 \mathrm{~W}\) & 210 \\
\hline DVOPM20049 & External Regenerative Resistor: \(80 \Omega 450 \mathrm{~W}\) & 210 \\
\hline DVOPM20050 & Surge absorber (3-phase) & 253 \\
\hline DVOPM20051 & Connector for Power Supply Input Connection (D-frame 400 V) & 200 \\
\hline DVOPM20052 & Connector for Power Supply Input Connection (E-frame 400 V) & 200 \\
\hline DVOPM2005 & Connector for Control Power Supply Input Connection (D-frame, E-frame 400 V) & 201 \\
\hline DVOPM20054 & Connector for Motor Connection (D-frame 400V) & 201 \\
\hline DVOPM20055 & Connector for Regenerative Resistor (D-frame 400 V) & 201 \\
\hline DVOPM20056 & Connector Kit for Motor/Encoder Connection & 206 \\
\hline DVOPM20057 & Connector Kit for Motor/Encoder Connection & 206 \\
\hline DVOPM20058 & External Regenerative Resistor: 3.3 . 780 W & 210 \\
\hline DVOPM20059 & External Regenerative Resistor: \(13.3 \Omega 1140 \mathrm{~W}\) & 210 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MADHT} \\
\hline Part No. & Title & Page \\
\hline MADHT1105 & A5 series Driver: A-frame & 29,42 \\
\hline MADHT105E & A5E series Driver: A-frame & 31,42 \\
\hline MADHT1107 & A5 series Driver: A-frame & 29,42 \\
\hline MADHT107E & A5E series Driver: A-frame & 31,42 \\
\hline MADHT1505 & A5 series Driver: A-frame & 29,42 \\
\hline MADHT 1505E & A5E series Driver: A-frame & 31,42 \\
\hline MADHT1507 & A5 series Driver: A-frame & 29,42 \\
\hline MADHT 1507E & A5E series Driver: A-frame & 31,42 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MADKT} \\
\hline Part No. & Title & Page \\
\hline MADKT1105 & A5II series Driver: A-frame & 29 \\
\hline MADKT1105E & A5IIE series Driver: A-frame & 31,42 \\
\hline MADKT1107 & A5II series Driver: A-frame & 29,42 \\
\hline MADKT 1107E & A5IIE series Driver: A-frame & 31,42 \\
\hline MADKT1505 & A5II series Driver: A-frame & 29,42 \\
\hline MADKT1505E & A5IE series Driver: A-frame & 31,42 \\
\hline MADKT1507 & A5II series Driver: A-frame & 29,42 \\
\hline MADKT1507E & A5IIE series Driver: A-frame & 31,4 \\
\hline \multicolumn{3}{|l|}{MBDHT} \\
\hline Part No. & Title & Page \\
\hline MBDHT2110 & A5 series Driver: B-frame & 29,42 \\
\hline MBDHT2110E & A5E series Driver: B-frame & 31,4 \\
\hline MBDHT2510 & A5 series Driver: B-frame & 29,4 \\
\hline MBDHT2510E & A5E series Driver: B-frame & 31,42 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MBDKT} \\
\hline Part No. & Title & e \\
\hline MBDKT2110 & A5II series Driver: B-rrame & 29,42 \\
\hline MBDKT2110E & A5IIE series Driver: B-frame & 31,42 \\
\hline MBDKT2510 & A5II series Driver: B-riame & 29,42 \\
\hline MBDKT2510E & A5IIE series Driver: B-frame & 31,42 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MCDHT} \\
\hline Part No. & Title & Page \\
\hline MCDHT3120 & A5 series Driver: C-frame & 29,43 \\
\hline MCDHT3120E & A5E series Driver: C-frame & 31,43 \\
\hline MCDHT3520 & A5 series Driver: C-frame & 29,43 \\
\hline MCDHT3520E & A5E series Driver: C-frame & 31,43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MCDKT} \\
\hline Part No. & Title & Pag \\
\hline MCDKT3120 & A5II series Driver: C-frame & 29,43 \\
\hline MCDKT3120E & A5IE series Driver: C-frame & 31,43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{MCDKT} & \multicolumn{3}{|l|}{MDME (Middle inertia)} \\
\hline Part No. & Title & Page & Part No. & Title & e \\
\hline МСDкт3520 & A5II series Driver: C-frame & 29,43 & MDME102GCGM & MDME 1.0 kW Incremental encoder & 164 \\
\hline MCDKT3520E & A5IE series Driver: C-frame & 31,43 & MDME102GCH & MDME 1.0 kW Incremental encoder & 80 \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{MDDHT}} & MDME102GCHM & MDME 1.0 kW Incremental encoder & 164 \\
\hline & & & MDME102S1C & MDME 1.0 kW Absolute encoder & 80 \\
\hline Part No. & Title & Page & MDME102S1D & MDME 1.0 kW Absolute encoder & 80 \\
\hline MDDHT2407 & A5 series Driver: D-frame & 29,44 & MDME102S1G & MDME 1.0 kW Absolute encoder & 80 \\
\hline MDDHT2407E & A5E series Driver: D-frame & 31,44 & MDME102S1H & MDME 1.0 kW Absolute encoder & 80 \\
\hline MDDHT2412 & A5 series Driver: D-frame & 29,44 & MDME102SCC & MDME 1.0 kW Absolute encoder & 80 \\
\hline MDDHT2412E & A5E series Driver: D.frame & 31,44 & MDME102SCCM & MDME 1.0 kW Absolute encoder & 164 \\
\hline MDDHT3420 & A5 series Driver: D-frame & 29,44 & MDME102SCD & MDME 1.0 kW Absolute encoder & 80 \\
\hline MDDHT3420E & A5E series Driver: D-frame & 31,44 & MDME102SCDM & MDME 1.0 kW Absolute encoder & 164 \\
\hline MDDHT3530 & A5 series Driver: D-frame & 29,44 & MDME102SCG & MDME 1.0 kW Absolute encoder & 80 \\
\hline MDDHT3530E & A5E series Driver: D-frame & 31,44 & MDME102SCGM & MDME 1.0 kW Absolute encoder & 164 \\
\hline MDDHT5540 & A5 series Driver: D-frame & 29,44 & MDME102SCH & MDME 1.0 kW Absolute encoder & 80 \\
\hline MDDHT5540E & A5E series Driver: D-frame & 31,44 & MDME102SCHM & MDME 1.0 kW Absolute encoder & 164 \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{MDDKT}} & MDME104G1C & MDME 1.0 kW Incremental encoder & 113 \\
\hline & & & MDME104G1D & MDME 1.0 kW Incremental encoder & 113 \\
\hline Part No. & Title & Page & MDME104G1G & MDME 1.0 kW Incremental encoder & 113 \\
\hline MDDKT2407 & A5II series Driver: D-frame & 29,44 & MDME104G1H & MDME 1.0 kW Incremental encoder & 113 \\
\hline MDDKT2407E & A5IE series Driver: D-frame & 31,44 & MDME104GCC & MDME 1.0 kW Incremental encoder & 113 \\
\hline MDDKT2412 & A5II series Driver: D-frame & 29,44 & MDME104GCD & MDME 1.0 kW Incremental encoder & 113 \\
\hline MDDKT2412E & A5IE series Driver: D-frame & 31,44 & MDME104GCG & MDME 1.0 kW Incremental encoder & 113 \\
\hline MDDKT3420 & A5II series Driver: D-frame & 29,44 & MDME104GCH & MDME 1.0 kW Incremental encoder & 113 \\
\hline MDDKT3420E & A5IE series Driver: D-frame & 31,44 & MDME104S1C & MDME 1.0 kW Absolute encoder & 113 \\
\hline MDDKT3530 & A5II series Driver: D-frame & 29,44 & MDME104S1D & MDME 1.0 kW Absolute encoder & 113 \\
\hline MDDKT3530E & A5IE series Driver: D-frame & 31,44 & MDME104S1G & MDME 1.0 kW Absolute encoder & 113 \\
\hline MDDKT5540 & A5II series Driver: D-frame & 29,44 & MDME104S1H & MDME 1.0 kW Absolute encoder & 113 \\
\hline MDDKT5540E & A5IE series Driver: D-frame & 31,44 & MDME104SCC & MDME 1.0 kW Absolute encoder & 113 \\
\hline \multicolumn{3}{|l|}{} & MDME104SCD & MDME 1.0 kW Absolute encoder & 113 \\
\hline \multicolumn{3}{|l|}{MDME (Middle inertia)} & MDME104SCG & MDME 1.0 kW Absolute encoder & 113 \\
\hline Part No. & \multicolumn{2}{|r|}{age} & MDME104SCH & MDME 1.0 kW Absolute encoder & 113 \\
\hline MDME044G1C & MDME 400 W Incremental encoder & 111 & MDME152G1C & MDME 1.5 KW Incremental encoder & 81 \\
\hline MDME044G1D & MDME 400 W Incremental encoder & 111 & MDME152G1D & MDME 1.5 kW Incremental encoder & 81 \\
\hline MDME044G1G & MDME 400 W Incremental encoder & 111 & MDME152G1G & MDME 1.5 kW Incremental encoder & 81 \\
\hline MDME044G1H & MDME 400 W Incremental encoder & 111 & MDME152G1H & MDME 1.5 kW Incremental encoder & 81 \\
\hline MDME044GCC & MDME 400 W Incremental encoder & 111 & \multirow[t]{2}{*}{MDME152GCC} & MDME 1.5 kW Incremental encoder & 81 \\
\hline MDME044GCD & MDME 400 W Incremental encoder & 111 & & MDME 1.5 kW Incremental encoder & 65 \\
\hline MDME044GCG & MDME 400 W Incremental encoder & 111 & MDME152GCCM MDME152GCD & MDME 1.5 kW Incremental encoder & 81 \\
\hline MDME044GCH & MDME 400 W Incremental encoder & 111 & MDME152GCDM & MDME 1.5 kW Incremental encoder & 165 \\
\hline MDME044S1C & MDME 400 W Absolute encoder & 111 & MDME152GCG & MDME 1.5 kW Incremental encoder & 81 \\
\hline MDME044S1D & MDME 400 W Absolute encoder & 111 & MDME152GCGM & MDME 1.5 kW Incremental encoder & \\
\hline MDME044S1G & MDME 400 W Absolute encoder & 111 & \multirow[t]{2}{*}{MDME152GCH MDME152GCHM} & MDME 1.5 kW Incremental encoder & 81 \\
\hline MDME044S1H & MDME 400 W Absolute encoder & 111 & & MDME 1.5 kW Incremental encoder & 165 \\
\hline MDME044SCC & MDME 400 W Absolute encoder & 111 & MDME152SIC & MDME 1.5 kW Absolute encoder & 81 \\
\hline MDME044SCD & MDME 400 W Absolute encoder & 111 & MDME152S1D & MDME 1.5 kW Absolute encoder & 81 \\
\hline MDME044SCG & MDME 400 W Absolute encoder & 111 & \multirow[t]{2}{*}{MDME152S1G} & MDME 1.5 kW Absolute encoder & 81 \\
\hline MDME044SCH & MDME 400 W Absolute encoder & 111 & & MDME 1.5 kW Absolute encoder & 81 \\
\hline MDME064G1C & MDME 600 W Incremental encoder & 112 & MDME152SS & MDME 1.5 kW Absolute encoder & 81 \\
\hline MDME064G1D & MDME 600 W Incremental encoder & 112 & MDME152SCCM & MDME 1.5 kW Absolute encoder & 165 \\
\hline MDME064G1G & MDME 600 W Incremental encoder & 112 & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline MDME152SCD \\
\hline MDME152SCDM \\
\hline
\end{tabular}} & MDME 1.5 kW Absolute encoder & 81 \\
\hline MDME064G1H & MDME 600 W Incremental encoder & 112 & & MDME 1.5 kW Absolute encoder & 165 \\
\hline MDME064GCC & MDME 600 W Incremental encoder & 112 & MDME152SCG & MDME 1.5 kW Absolute encoder & 81 \\
\hline MDME064GCD & MDME 600 W Incremental encoder & 112 & MDME152SCGM & MDME 1.5 kW Absolute encoder & 165 \\
\hline MDME064GCG & MDME 600 W Incremental encoder & 112 & MDME152SCH & MDME 1.5 kW Absolute encoder & 81 \\
\hline MDME064GCH & MDME 600 W Incremental encoder & 112 & \multirow[t]{2}{*}{MDME152SCHM} & MDME 1.5 kW Absolute encoder & 165 \\
\hline MDME064S1C & MDME 600 W Absolute encoder & 112 & & MDME 1.5 kW Incremental encoder & 114 \\
\hline MDME064S1D & MDME 600 W Absolute encoder & 112 & MDME154G1D & MDME 1.5 kW Incremental encoder & 114 \\
\hline MDME064S1G & MDME 600 W Absolute encoder & 112 & MDME154G1G & MDME 1.5 kW Incremental encoder & 114 \\
\hline MDME064S1H & MDME 600 W Absolute encoder & 112 & \multirow[t]{2}{*}{MDME154G1H} & MDME 1.5 kW Incremental encoder & 14 \\
\hline MDME064SCC & MDME 600 W Absolute encoder & 112 & & MDME 1.5 kW Incremental encoder & 114 \\
\hline MDME064SCD & MDME 600 W Absolute encoder & 112 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MDE154GCD } \\
& \hline \text { MDME154GCG }
\end{aligned}
\]} & MDME 1.5 kW Incremental encoder & 114 \\
\hline MDME064SCG & MDME 600 W Absolute encoder & 112 & & MDME 1.5 kW Incremental encoder & 114 \\
\hline MDME064SCH & MDME 600 W Absolute encoder & 112 & MDME154GCH & MDME 1.5 kW Incremental encoder & 114 \\
\hline MDME102G1C & MDME 1.0 kW Incremental encoder & 80 & \multirow[t]{2}{*}{MDME154S1C} & MDME 1.5 kW Absolute encoder & 114 \\
\hline MDME102G1D & MDME 1.0 kW Incremental encoder & 80 & & MDME 1.5 kW Absolute encoder & 114 \\
\hline MDME102G1G & MDME 1.0 kW Incremental encoder & 80 & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \text { MDME154S1G } \\
\hline \text { MDME154S1H } \\
\hline
\end{array}
\]} & MDME 1.5 kW Absolute encoder & 114 \\
\hline MDME102G1H & MDME 1.0 kW Incremental encoder & 80 & & MDME 1.5 kW Absolute encoder & 114 \\
\hline MDME102GCC & MDME 1.0 kW Incremental encoder & 80 & MDME154SCC & MDME 1.5 kW Absolute encoder & 114 \\
\hline MDME102GCCM & MDME 1.0 kW Incremental encoder & 164 & \multirow[t]{2}{*}{MDME154SCD} & MDME 1.5 kW Absolute encoder & 14 \\
\hline MDME102GCD & MDME 1.0 kW Incremental encoder & 80 & & MDME 1.5 kW Absolute encoder & 114 \\
\hline MDME102GCDM & MDME 1.0 kW Incremental encoder & 164 & \multirow[t]{2}{*}{\begin{tabular}{l}
MDME154SCH \\
\hline MDME202G1C
\end{tabular}} & MDME 1.5 kW Absolute encoder & 114 \\
\hline MDME102GCG & MDME 1.0 kW Incremental encoder & 80 & & MDME 2.0 kW Incremental encoder & 82 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{MDME (Middle inertia)} & \multicolumn{3}{|l|}{MDME (Middle inertia)} \\
\hline Part No. & Title & Page & Part No. & Title & Page \\
\hline MDME202G1D & MDME 2.0 kW Incremental encoder & 82 & MDME304S1D & MDME 3.0 kW Absolute encoder & 116 \\
\hline MDME202G1G & MDME 2.0 kW Incremental encoder & 82 & MDME304S1G & MDME 3.0 kW Absolute encoder & 116 \\
\hline MDME202G1H & MDME 2.0 kW Incremental encoder & 82 & MDME304S1H & MDME 3.0 kW Absolute encoder & 116 \\
\hline MDME202GCC & MDME 2.0 kW Incremental encoder & 82 & MDME304SCC & MDME 3.0 kW Absolute encoder & 116 \\
\hline MDME202GCCM & MDME 2.0 kW Incremental encoder & 166 & MDME304SCD & MDME 3.0 kW Absolute encoder & 116 \\
\hline MDME202GCD & MDME 2.0 kW Incremental encoder & 82 & MDME304SCG & MDME 3.0 kW Absolute encoder & 116 \\
\hline MDME202GCDM & MDME 2.0 kW Incremental encoder & 166 & MDME304SCH & MDME 3.0 kW Absolute encoder & 116 \\
\hline MDME202GCG & MDME 2.0 kW Incremental encoder & 82 & MDME402G1C & MDME 4.0 kW Incremental encoder & 84 \\
\hline MDME202GCGM & MDME 2.0 kW Incremental encoder & 166 & MDME402G1D & MDME 4.0 kW Incremental encoder & 84 \\
\hline MDME202GCH & MDME 2.0 kW Incremental encoder & 82 & MDME402G1G & MDME 4.0 kW Incremental encoder & 84 \\
\hline MDME202GCHM & MDME 2.0 kW Incremental encoder & 166 & MDME402G1H & MDME 4.0 KW Incremental encoder & 84 \\
\hline MDME202S1C & MDME 2.0 kW Absolute encoder & 82 & MDME402GCC & MDME 4.0 kW Incremental encode & 84 \\
\hline MDME202S1D & MDME 2.0 kW Absolute encoder & 82 & MDME402GCCM & MDME 4.0 kW Incremental encoder & 168 \\
\hline MDME202S1G & MDME 2.0 kW Absolute encoder & 82 & MDME402GCD & MDME 4.0 kW Incremental encoder & 84 \\
\hline MDME202S1H & MDME 2.0 kW Absolute encoder & 82 & MDME402GCDM & MDME 4.0 kW Incremental encoder & 168 \\
\hline MDME202SCC & MDME 2.0 kW Absolute encoder & 82 & MDME402GCG & MDME 4.0 kW Incremental encoder & 84 \\
\hline MDME202SCCM & MDME 2.0 kW Absolute encoder & 166 & MDME402GCGM & MDME 4.0 kW Incremental encoder & 168 \\
\hline MDME202SCD & MDME 2.0 kW Absolute encoder & 82 & MDME402GCH & MDME 4.0 kW Incremental encoder & 84 \\
\hline MDME202SCDM & MDME 2.0 kW Absolute encoder & 166 & MDME402GCHM & MDME 4.0 kW Incremental encoder & 168 \\
\hline MDME202SC & MDME 2.0 kW Absolute encoder & 82 & MDME402S1C & MDME 4.0 kW Absolute encoder & 84 \\
\hline MDME202SCGM & MDME 2.0 kW Absolute encoder & 166 & MDME402S1D & MDME 4.0 kW Absolute encoder & 84 \\
\hline MDME202SCH & MDME 2.0 kW Absolute encoder & 82 & MDME402S1G & MDME 4.0 kW Absolute encoder & 84 \\
\hline MDME202SCHM & MDME 2.0 kW Absolute encoder & 166 & MDME402S1H & MDME 4.0 kW Absolute encoder & 84 \\
\hline MDME204G1C & MDME 2.0 kW Incremental encoder & 115 & MDME402SCC & MDME 4.0 kW Absolute encoder & 84 \\
\hline MDME204G1D & MDME 2.0 kW Incremental encoder & 115 & MDME402SCCM & MDME 4.0 kW Absolute encoder & 168 \\
\hline MDME204G1G & MDME 2.0 kW Incremental encoder & 115 & MDME402SCD & MDME 4.0 kW Absolute encoder & 84 \\
\hline MDME204G1H & MDME 2.0 kW Incremental encoder & 115 & MDME402SCDM & MDME 4.0 kW Absolute encoder & 168 \\
\hline MDME204GCC & MDME 2.0 kW Incremental encoder & 115 & MDME402SCG & MDME 4.0 kW Absolute encoder & 84 \\
\hline MDME204GCD & MDME 2.0 kW Incremental encoder & 115 & MDME402SCGM & MDME 4.0 kW Absolute encoder & 168 \\
\hline MDME204GCG & MDME 2.0 kW Incremental encoder & 115 & MDME402SCH & MDME 4.0 kW Absolute encoder & 84 \\
\hline MDME204GCH & MDME 2.0 kW Incremental encoder & 115 & MDME402SCHM & MDME 4.0 kW Absolute encoder & 168 \\
\hline MDME204S1C & MDME 2.0 kW Absolute encoder & 115 & MDME404G1C & MDME 4.0 kW Incremental encoder & 117 \\
\hline MDME204S1D & MDME 2.0 kW Absolute encoder & 15 & MDME404G1D & MDME 4.0 kW Incremental encoder & 117 \\
\hline MDME204S1G & MDME 2.0 kW Absolute encoder & 115 & MDME404G1G & MDME 4.0 kW Incremental encoder & 117 \\
\hline MDME204S1H & MDME 2.0 kW Absolute encoder & 115 & MDME404G1H & MDME 4.0 kW Incremental encoder & 117 \\
\hline MDME204SCC & MDME 2.0 kW Absolute encoder & 15 & MDME404GCC & MDME 4.0 kW Incremental encoder & 117 \\
\hline MDME204SCD & MDME 2.0 kW Absolute encoder & 115 & MDME404GCD & MDME 4.0 kW Incremental encoder & 117 \\
\hline MDME204SCG & MDME 2.0 kW Absolute encoder & 115 & MDME404GCG & MDME 4.0 kW Incremental encoder & 117 \\
\hline MDME204SCH & MDME 2.0 kW Absolute encoder & 115 & MDME404GCH & MDME 4.0 kW Incremental encoder & 17 \\
\hline MDME302G1C & MDME 3.0 kW Incremental encoder & 83 & MDME404S1C & MDME 4.0 kW Absolute encoder & 117 \\
\hline MDME302G1D & MDME 3.0 kW Incremental encoder & 83 & MDME404S1D & MDME 4.0 kW Absolute encoder & 117 \\
\hline MDME302G1G & MDME 3.0 kW Incremental encoder & 83 & MDME404S1G & MDME 4.0 kW Absolute encoder & 117 \\
\hline MDME302G1H & MDME 3.0 kW Incremental encoder & 83 & MDME404S1H & MDME 4.0 kW Absolute encoder & 117 \\
\hline MDME302GCC & MDME 3.0 kW Incremental encoder & 83 & MDME404SCC & MDME 4.0 kW Absolute encoder & 117 \\
\hline MDME302GCCM & MDME 3.0 kW Incremental encoder & 167 & MDME404SCD & MDME 4.0 kW Absolute encoder & 17 \\
\hline MDME302GCD & MDME 3.0 kW Incremental encoder & 83 & MDME404SCG & MDME 4.0 kW Absolute encoder & 117 \\
\hline MDME302GCDM & MDME 3.0 kW Incremental encoder & 167 & MDME404SCH & MDME 4.0 kW Absolute encoder & 117 \\
\hline MDME302GCG & MDME 3.0 kW Incremental encoder & 83 & MDME502G1C & MDME 5.0 kW Incremental encoder & 85 \\
\hline MDME302GCGM & MDME 3.0 kW Incremental encoder & 167 & MDME502G1D & MDME 5.0 kW Incremental encoder & 85 \\
\hline MDME302GCH & MDME 3.0 kW Incremental encoder & 83 & MDME502G1G & MDME 5.0 KW Incremental encoder & 85 \\
\hline MDME302GCHM & MDME 3.0 kW Incremental encoder & 167 & MDME502G1H & MDME 5.0 kW Incremental encoder & 85 \\
\hline MDME302S1C & MDME 3.0 kW Absolute encoder & 83 & MDME502GCC & MDME 5.0 kW Incremental encoder & 85 \\
\hline MDME302S1D & MDME 3.0 kW Absolute encoder & 83 & MDME502GCCM & MDME 5.0 kW Incremental encoder & 169 \\
\hline MDME302S1G & MDME 3.0 kW Absolute encoder & 83 & MDME502GCD & MDME 5.0 kW Incremental encoder & 85 \\
\hline MDME302S1H & MDME 3.0 kW Absolute encoder & 83 & MDME502GCDM & MDME 5.0 kW Incremental encoder & 169 \\
\hline MDME302SCC & MDME 3.0 kW Absolute encoder & 83 & MDME502GCG & MDME 5.0 kW Incremental encoder & 85 \\
\hline MDME302SCCM & MDME 3.0 kW Absolute encoder & 167 & MDME502GCGM & MDME 5.0 kW Incremental encoder & 169 \\
\hline MDME302SCD & MDME 3.0 kW Absolute encoder & 83 & MDME502GCH & MDME 5.0 kW Incremental encoder & 85 \\
\hline MDME302SCDM & MDME 3.0 kW Absolute encoder & 167 & MDME502GCHM & MDME 5.0 kW Incremental encoder & 169 \\
\hline MDME302SCG & MDME 3.0 kW Absolute encoder & 83 & MDME502S1C & MDME 5.0 kW Absolute encoder & 85 \\
\hline MDME302SCGM & MDME 3.0 kW Absolute encoder & 167 & MDME502S1D & MDME 5.0 kW Absolute encoder & 85 \\
\hline MDME302SCH & MDME 3.0 kW Absolute encoder & 83 & MDME502S1G & MDME 5.0 kW Absolute encoder & 85 \\
\hline MDME302SCHM & MDME 3.0 kW Absolute encoder & 167 & MDME502S1H & MDME 5.0 kW Absolute encoder & 85 \\
\hline MDME304G1C & MDME 3.0 kW Incremental encoder & 116 & MDME502SCC & MDME 5.0 kW Absolute encoder & 85 \\
\hline MDME304G1D & MDME 3.0 kW Incremental encoder & 116 & MDME502SCCM & MDME 5.0 kW Absolute encoder & 169 \\
\hline MDME304G1G & MDME 3.0 kW Incremental encoder & 116 & MDME502SCD & MDME 5.0 kW Absolute encoder & 85 \\
\hline MDME304G1H & MDME 3.0 kW Incremental encoder & 116 & MDME502SCDM & MDME 5.0 kW Absolute encoder & 169 \\
\hline MDME304GCC & MDME 3.0 kW Incremental encoder & 116 & MDME502SCG & MDME 5.0 kW Absolute encoder & 85 \\
\hline MDME304GCD & MDME 3.0 kW Incremental encoder & 116 & MDME502SCGM & MDME 5.0 kW Absolute encoder & 169 \\
\hline MDME304GCG & MDME 3.0 kW Incremental encoder & 116 & MDME502SCH & MDME 5.0 kW Absolute encoder & 85 \\
\hline MDME304GCH & MDME 3.0 kW Incremental encoder & 116 & MDME502SCHM & MDME 5.0 kW Absolute encoder & 169 \\
\hline MDME304S1C & MDME 3.0 kW Absolute encoder & 116 & MDME504G1C & MDME 5.0 kW Incremental encoder & 118 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline MEDKT & & \\
\hline Part No. & Title & Page \\
\hline MEDKT4430 & A5II series Driver: E-frame & 29,45 \\
\hline MEDKT4430E & A5IE series Driver: E-frame & 31,4 \\
\hline MEDKT7364 & A5II series Driver: E-frame & 29,4 \\
\hline MEDKT7364E & A5IIE series Driver: E-frame & 31,44 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MFDHT} \\
\hline Part No. & Title & Page \\
\hline MFDHT5440 & A5 series Driver: F--frame & 29,45 \\
\hline MFDHT5440E & A5E series Driver: F-frame & 31,45 \\
\hline MFDHTA390 & A5 series Driver: F--frame & 29,45 \\
\hline MFDHTA390E & A5E series Driver: F-frame & 31,45 \\
\hline MFDHTA464 & A5 series Driver: F-frame & 29,45 \\
\hline MFDHTA464E & A5E series Driver: F-frame & 31,45 \\
\hline MFDHTB3A2 & A5 series Driver: F-frame & 29,45 \\
\hline MFDHTB3A2E & A5E series Driver: F-frame & 31,45 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MFDKT} \\
\hline Part No. & Title & Page \\
\hline MFDKT5440 & A5II series Driver: F--frame & 29,45 \\
\hline MFDKT5440E & A5IIE series Driver: F-frame & 31,45 \\
\hline MFDKTA390 & A5II series Driver: F--frame & 29,45 \\
\hline MFDKTA390E & A5IIE series Driver: F-frame & 31,45 \\
\hline MFDKTA464 & A5II series Driver: F--frame & 29,45 \\
\hline MFDKTA464E & A5IIE series Driver: F-frame & 31,45 \\
\hline MFDKTB3A2 & A5II series Driver: F--frame & 29,45 \\
\hline MFDKTB3A2E & A5IIE series Driver: F-frame & 31,45 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{4}{l}{} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MFECA} \\
\hline Part No. & Title & Page \\
\hline MFECA0100TKD & Encoder Cable (without Battery Box) & 189 \\
\hline MFECA0000TKE & Encoder Cable (with Battery Box) & 189 \\
\hline MFECA0200EAD & Encoder Cable (without Battery Box) & 188 \\
\hline MFECAO200EAE & Encoder Cable (with Battery Box) & 188 \\
\hline MFECAO200EAM & Encoder Cable (without Battery Box) & \\
\hline MFECA0200ESD & Encoder Cable (without Battery Box) & 189 \\
\hline MFECAO200ESE & Encoder Cable (with Battery Box) & \\
\hline MFECA0200ETD & Encoder Cable (without Battery Box) & 190 \\
\hline MFECAO200ETE & Encoder Cable (with Battery Box) & 190 \\
\hline MFECAO200MJD & Encoder Cable (without Battery Box) & \\
\hline MFECA0200MJE & Encoder Cable (with Battery Box) & \\
\hline MFECAO200MKD & Encoder Cable (without Battery Box) & \\
\hline MFECAO200MKE & Encoder Cable (with Battery Box) & \\
\hline MFECAO200TJD & Encoder Cable (without Battery Box) & 189 \\
\hline MFECAO200TJE & Encoder Cable (with Battery Box) & \\
\hline MFECAO200TKD & Encoder Cable (without Battery Box) & \\
\hline MFECAO200TKE & Encoder Cable (with Battery Box) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MFMCA} \\
\hline Part No. & Title & Page \\
\hline MFMCAOO30AEB & Motor Cable & 238 \\
\hline MFMCA0030EED & Motor Cable (without Brake) & 191 \\
\hline MFMCAOOBONJD & Motor Cable (without Brake) & 191 \\
\hline MFMCAOOOONKD & Motor Cable (without Brake) & 191 \\
\hline MFMCAOOSORJD & Motor Cable (without Brake) & 191 \\
\hline MFMCAOO30RKD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0032ECD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0032FCD & Motor Cable (with Brake) & 194 \\
\hline MFMCA0оззECT & Motor Cable (without Brake) & 193 \\
\hline MFMCAооззFСТ & Motor Cable (with Brake) & 195 \\
\hline MFMCA0050AEB & Motor Cable & 238 \\
\hline MFMCA0050EED & Motor Cable (without Brake) & 191 \\
\hline MFMCA0050NJD & Motor Cable (without Brake) & 91 \\
\hline MFMCA0050NKD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0050RJD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0050RKD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0052ECD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0052FCD & Motor Cable (with Brake) & 194 \\
\hline MFMCA0053ECT & Motor Cable (without Brake) & 193 \\
\hline MFMCA0053FCT & Motor Cable (with Brake) & 195 \\
\hline MFMCA0100AEB & Motor Cable & 238 \\
\hline MFMCA0100EED & Motor Cable (without Brake) & 191 \\
\hline MFMCA0100NJD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0100NKD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0100RJD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0100RKD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0102ECD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0102FCD & Motor Cable (with Brake) & 194 \\
\hline MFMCA0103ECT & Motor Cable (without Brake) & 193 \\
\hline MFMCA0103FCT & Motor Cable (with Brake) & 195 \\
\hline MFMCA0200AEB & Motor Cable & 238 \\
\hline MFMCA0200EED & Motor Cable (without Brake) & 191 \\
\hline MFMCAO200NJD & Motor Cable (without Brake) & 191 \\
\hline MFMCAO200NKD & Motor Cable (without Brake) & 191 \\
\hline MFMCAO200RJD & Motor Cable (without Brake) & 191 \\
\hline MFMCAO200RKD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0202ECD & Motor Cable (without Brake) & 191 \\
\hline MFMCA0202FCD & Motor Cable (with Brake) & 194 \\
\hline MFMCA0203ECT & Motor Cable (without Brake) & 193 \\
\hline MFMCA0203FCT & Motor Cable (with Brake) & 195 \\
\hline \multicolumn{3}{|l|}{MFMCB} \\
\hline Part No. & Title & Page \\
\hline MFMCB0030GET & Brake Cable & 196,238 \\
\hline MFMCB0030PJT & Brake Cable & 196 \\
\hline MFMCB0030РKT & Brake Cable & 196 \\
\hline MFMCBOO30SJT & Brake Cable & 196 \\
\hline MFMCB0030SKT & Brake Cable & 196 \\
\hline MFMCB0050GET & Brake Cable & 196,238 \\
\hline MFMCB0050PJT & Brake Cable & 196 \\
\hline MFMCB0050PKT & Brake Cable & 196 \\
\hline MFMCB0050SJT & Brake Cable & 96 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MCB} \\
\hline Part No. & Title & Page \\
\hline MFMCB0050SKT & Brake Cable & 196 \\
\hline MFMCB0100GET & Brake Cable & 196,238 \\
\hline MFMCB0100PJT & Brake Cable & 196 \\
\hline MFMCB0100PKT & Brake Cable & 196 \\
\hline MFMCB0100SJT & Brake Cable & 196 \\
\hline MFMCB0100SKT & Brake Cable & 196 \\
\hline MFMCB0200GET & Brake Cable & 196,2 \\
\hline MFMCB0200PJT & Brake Cable & 196 \\
\hline MFMCB0200PKT & Brake Cable & 196 \\
\hline MFMCB0200SJT & Brake Cable & 196 \\
\hline MFMCB0200SKT & Brake Cable & 196 \\
\hline
\end{tabular}

\section*{}
\begin{tabular}{|l|l|l|}
\hline MFMCD & & \\
\hline \multicolumn{1}{|c|}{ Part No. } & & Title \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MFME (Middle inertia)} \\
\hline Part No. & Title & Page \\
\hline MFME152G1C & MFME 1.5 KW Incremental encoder & 89 \\
\hline MFME152G1D & MFME 1.5 kW Incremental encoder & 89 \\
\hline MFME152G1G & MFME 1.5 kW Incremental encoder & 89 \\
\hline MFME152G1H & MFME 1.5 kW Incremental encoder & 89 \\
\hline MFME152S1C & MFME 1.5 kW Absolute encoder & 89 \\
\hline MFME152S1D & MFME 1.5 kW Absolute encoder & 89 \\
\hline MFME152S1G & MFME 1.5 kW Absolute encoder & 89 \\
\hline MFME152S1 & MFME 1.5 kW Absolute encoder & 89 \\
\hline MFME154G1C & MFME 1.5 kW Incremental encoder & 122 \\
\hline MFME154G1D & MFME 1.5 KW Incremental encoder & 122 \\
\hline MFME154G1G & MFME 1.5 kW Incremental encoder & 122 \\
\hline MFME154G1H & MFME 1.5 kW Incremental encoder & 122 \\
\hline MFME154S1C & MFME 1.5 kW Absolute encoder & 22 \\
\hline MFME154S1D & MFME 1.5 kW Absolute encoder & 122 \\
\hline MFME154S1G & MFME 1.5 kW Absolute encoder & 122 \\
\hline MFME154S1H & MFME 1.5 kW Absolute encoder & 122 \\
\hline MFME252G1C & MFME 2.5 kW Incremental encoder & 90 \\
\hline MFME252G1D & MFME 2.5 KW Incremental encoder & 90 \\
\hline MFME252G1G & MFME 2.5 KW Incremental encoder & 90 \\
\hline MFME252G1H & MFME 2.5 kW Incremental encoder & 90 \\
\hline MFME252S1C & MFME 2.5 kW Absolute encoder & 90 \\
\hline MFME252S1D & MFME 2.5 kW Absolute encoder & 90 \\
\hline MFME252S1G & MFME 2.5 kW Absolute encoder & 90 \\
\hline MFME252S1H & MFME 2.5 kW Absolute encoder & 90 \\
\hline MFME254G1C & MFME 2.5 KW Incremental encoder & 123 \\
\hline MFME254G1D & MFME 2.5 KW Incremental encoder & 123 \\
\hline MFME254G1G & MFME 2.5 kW Incremental encoder & 123 \\
\hline MFME254G1H & MFME 2.5 KW Incremental encoder & 123 \\
\hline MFME254S1C & MFME 2.5 kW Absolute encoder & 123 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MGDKT} \\
\hline Part No. & Title & Page \\
\hline MGDKTB4A2 & A5II series Driver: G-frame & 29,46 \\
\hline MGDKTC3B4 & A5II series Driver: G-frame & 29,46 \\
\hline \multicolumn{3}{|l|}{MGME (Middle inertia)} \\
\hline Part No. & Title & Page \\
\hline MGME092G1C & MGME 0.9 KW Incremental encoder & 92 \\
\hline MGME092G1D & MGME 0.9 kW Incremental encoder & 92 \\
\hline MGME092G1G & MGME 0.9 kW Incremental encode & 92 \\
\hline MGME092G1H & MGME 0.9 kW Incremental encoder & 92 \\
\hline MGME092GCC & MGME 0.9 kW Incremental encoder & 92 \\
\hline MGME092GCCM & MGME 0.9 kW Incremental encoder & 170 \\
\hline MGME092GCD & MGME 0.9 kW Incremental encoder & 92 \\
\hline MGME092GCDM & MGME 0.9 kW Incremental encoder & 170 \\
\hline MGME092GCG & MGME 0.9 kW Incremental encoder & 92 \\
\hline MGME092GCGM & MGME 0.9 kW Incremental encoder & 170 \\
\hline MGMEO92GCH & MGME 0.9 kW Incremental encoder & 92 \\
\hline MGME092GCHM & MGME 0.9 kW Incremental encoder & 170 \\
\hline MGME092S1C & MGME 0.9 kW Absolute encoder & 92 \\
\hline MGME092S1D & MGME 0.9 kW Absolute encoder & 92 \\
\hline MGME092S1G & MGME 0.9 kW Absolute encoder & 92 \\
\hline MGME092S1H & MGME 0.9 kW Absolute encoder & 92 \\
\hline MGME092SCC & MGME 0.9 kW Absolute encoder & 92 \\
\hline MGME092SCCM & MGME 0.9 kW Absolute encoder & 170 \\
\hline MGME092SCD & MGME 0.9 kW Absolute encoder & 92 \\
\hline MGME092SCDM & MGME 0.9 kW Absolute encoder & 170 \\
\hline MGME092SCG & MGME 0.9 kW Absolute encoder & 92 \\
\hline MGME092SCGM & MGME 0.9 kW Absolute encode & 170 \\
\hline MGME092SCH & MGME 0.9 kW Absolute encoder & 92 \\
\hline MGME092SCHM & MGME 0.9 kW Absolute encoder & 170 \\
\hline MGME094G1C & MGME 0.9 kW Incremental encoder & 125 \\
\hline MGME094G1D & MGME 0.9 kW Incremental encoder & 125 \\
\hline MGME094G1G & MGME 0.9 kW Incremental encoder & 125 \\
\hline MGME094G1H & MGME 0.9 kW Incremental encoder & 125 \\
\hline MGME094GCC & MGME 0.9 kW Incremental encoder & 125 \\
\hline MGME094GCD & MGME 0.9 kW Incremental encoder & 125 \\
\hline MGME094GCG & MGME 0.9 kW Incremental encoder & 125 \\
\hline MGME094GCH & MGME 0.9 kW Incremental encoder & 125 \\
\hline MGMEO94SIC & MGME 0.9 kW Absolute encoder & 125 \\
\hline MGME094S1D & MGME 0.9 kW Absolute encoder & 125 \\
\hline MGME094SIG & MGME 0.9 kW Absolute encoder & 125 \\
\hline MGME094S1H & MGME 0.9 kW Absolute encoder & 125 \\
\hline MGME094SCC & MGME 0.9 kW Absolute encoder & 125 \\
\hline MGME094SCD & MGME 0.9 kW Absolute encoder & 125 \\
\hline MGME094SCG & MGME 0.9 kW Absolute encoder & 125 \\
\hline MGME094SCH & MGME 0.9 kW Absolute encoder & 125 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MGME (Middle inertia)} \\
\hline Part No. & Title & Page \\
\hline MGME202G1C & MGME 2.0 kW Incremental encoder & 93 \\
\hline MGME202G1D & MGME 2.0 kW Incremental encoder & 93 \\
\hline MGME202G1G & MGME 2.0 kW Incremental encoder & 93 \\
\hline MGME202G1H & MGME 2.0 kW Incremental encode & 93 \\
\hline MGME202GCC & MGME 2.0 kW Incremental encoder & 93 \\
\hline MGME202GCCM & MGME 2.0 kW Incremental encoder & 171 \\
\hline MGME202GCD & MGME 2.0 kW Incremental encode & 93 \\
\hline MGME202GCDM & MGME 2.0 kW Incremental encoder & 171 \\
\hline MGME202GCG & MGME 2.0 kW Incremental encode & 93 \\
\hline MGME202GCGM & MGME 2.0 kW Incremental encoder & 171 \\
\hline MGME202GCH & MGME 2.0 kW Incremental encoder & 93 \\
\hline MGME202GCHM & MGME 2.0 kW Incremental encoder & 171 \\
\hline MGME202S1C & MGME 2.0 kW Absolute encoder & 93 \\
\hline MGME202S1D & MGME 2.0 kW Absolute encoder & 93 \\
\hline MGME202S1G & MGME 2.0 kW Absolute encoder & 93 \\
\hline MGME202S1H & MGME 2.0 kW Absolute encoder & 93 \\
\hline MGME202SCC & MGME 2.0 kW Absolute encoder & 93 \\
\hline MGME202SCCM & MGME 2.0 kW Absolute encoder & 171 \\
\hline MGME202SCD & MGME 2.0 kW Absolute encoder & 93 \\
\hline MGME202SC & MGME 2.0 kW Absolute encoder & 171 \\
\hline MGME202SCG & MGME 2.0 kW Absolute encoder & 93 \\
\hline MGME202SCGM & MGME 2.0 kW Absolute encoder & 171 \\
\hline MGME202SCH & MGME 2.0 kW Absolute encoder & 93 \\
\hline MGME202SCHM & MGME 2.0 kW Absolute encoder & 171 \\
\hline MGME204G1C & MGME 2.0 kW Incremental encoder & 126 \\
\hline MGME204G1D & MGME 2.0 kW Incremental encoder & 126 \\
\hline MGME204G19 & MGME 2.0 kW Incremental encode & 126 \\
\hline MGME204G1H & MGME 2.0 kW Incremental encode & 126 \\
\hline MGME204GCC & MGME 2.0 kW Incremental encoder & 126 \\
\hline MGME204GCD & MGME 2.0 kW Incremental encode & 126 \\
\hline MGME204GCG & MGME 2.0 kW Incremental encoder & 126 \\
\hline MGME204GCH & MGME 2.0 kW Incremental encoder & 126 \\
\hline MGME204S1C & MGME 2.0 kW Absolute encoder & 126 \\
\hline MGME204S1D & MGME 2.0 kW Absolute encoder & 126 \\
\hline MGME204S1G & MGME 2.0 kW Absolute encoder & 126 \\
\hline MGME204S1H & MGME 2.0 kW Absolute encoder & 126 \\
\hline MGME204SCC & MGME 2.0 kW Absolute encoder & 26 \\
\hline MGME204SCD & MGME 2.0 kW Absolute encoder & 126 \\
\hline MGME204SCG & MGME 2.0 kW Absolute encoder & 126 \\
\hline MGME204SCH & MGME 2.0 kW Absolute encoder & 126 \\
\hline MGME302G1C & MGME 3.0 kW Incremental encoder & 94 \\
\hline MGME302G1D & MGME 3.0 kW Incremental encoder & 94 \\
\hline MGME302G1G & MGME 3.0 kW Incremental encode & 94 \\
\hline MGME302G1H & MGME 3.0 kW Incremental encoder & 94 \\
\hline MGME302GCC & MGME 3.0 kW Incremental encoder & 94 \\
\hline MGME302GCCM & MGME 3.0 kW Incremental encoder & 172 \\
\hline MGME302GCD & MGME 3.0 kW Incremental encoder & 94 \\
\hline MGME302GCDM & MGME 3.0 kW Incremental encoder & \\
\hline MGME302GCG & MGME 3.0 kW Incremental encoder & 94 \\
\hline MGME302GCGM & MGME 3.0 kW Incremental encoder & \\
\hline MGME302GCH & MGME 3.0 kW Incremental encoder & 94 \\
\hline MGME302GCHM & MGME 3.0 kW Incremental encoder & 172 \\
\hline MGME302S1C & MGME 3.0 kW Absolute encoder & 94 \\
\hline MGME302S1D & MGME 3.0 kW Absolute encoder & 94 \\
\hline MGME302S1G & MGME 3.0 kW Absolute encoder & 94 \\
\hline MGME302S1H & MGME 3.0 kW Absolute encoder & 94 \\
\hline MGME302SCC & MGME 3.0 kW Absolute encoder & 94 \\
\hline MGME302SCCM & MGME 3.0 kW Absolute encoder & 72 \\
\hline MGME302SCD & MGME 3.0 kW Absolute encoder & 94 \\
\hline MGME302SCDM & MGME 3.0 kW Absolute encoder & 172 \\
\hline MGME302SCG & MGME 3.0 kW Absolute encoder & 94 \\
\hline MGME302SCGM & MGME 3.0 kW Absolute encoder & 172 \\
\hline MGME302SCH & MGME 3.0 kW Absolute encoder & 94 \\
\hline MGME302SCHM & MGME 3.0 kW Absolute encoder & 172 \\
\hline MGME304G1C & MGME 3.0 kW Incremental encode & 127 \\
\hline MGME304G1D & MGME 3.0 kW Incremental encoder & 127 \\
\hline MGME304G1G & MGME 3.0 kW Incremental encoder & 127 \\
\hline MGME304G1H & MGME 3.0 kW Incremental encoder & 127 \\
\hline MGME304GCC & MGME 3.0 kW Incremental encoder & 127 \\
\hline MGME304GCD & MGME 3.0 kW Incremental encoder & 127 \\
\hline MGME304GCG & MGME 3.0 kW Incremental encoder & 127 \\
\hline MGME304GCH & MGME 3.0 kW Incremental encoder & 127 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MGME (Middle inertia)} \\
\hline Part No. & Title & Page \\
\hline MGME304SIC & MGME 3.0 kW Absolute encoder & 127 \\
\hline MGME304S1D & MGME 3.0 kW Absolute encoder & 127 \\
\hline MGME304SIG & MGME 3.0 kW Absolute encoder & 127 \\
\hline MGME304S1H & MGME 3.0 kW Absolute encoder & 127 \\
\hline MGME304SCC & MGME 3.0 kW Absolute encoder & 127 \\
\hline MGME304SCD & MGME 3.0 kW Absolute encoder & 127 \\
\hline MGME304SCG & MGME 3.0 kW Absolute encoder & 127 \\
\hline MGME304SCH & MGME 3.0 kW Absolute encoder & 127 \\
\hline MGME452G1C & MGME 4.5 KW Incremental encoder & 95 \\
\hline MGME452G1D & MGME 4.5 KW Incremental encoder & 95 \\
\hline MGME452G1G & MGME 4.5 KW Incremental encoder & 95 \\
\hline MGME452G1H & MGME 4.5 KW Incremental encoder & 95 \\
\hline MGME452S1C & MGME 4.5 kW Absolute encoder & 95 \\
\hline MGME452S1D & MGME 4.5 kW Absolute encoder & 95 \\
\hline MGME452S1G & MGME 4.5 KW Absolute encoder & 95 \\
\hline MGME452S1H & MGME 4.5 kW Absolute encoder & 95 \\
\hline MGME454G1C & MGME 4.5 KW Incremental encoder & 128 \\
\hline MGME454G1D & MGME 4.5 KW Incremental encoder & 128 \\
\hline MGME454G1G & MGME 4.5 KW Incremental encoder & 128 \\
\hline MGME454G1H & MGME 4.5 kW Incremental encoder & 128 \\
\hline MGME454S1C & MGME 4.5 KW Absolute encoder & 128 \\
\hline MGME454S1D & MGME 4.5 kW Absolute encoder & 128 \\
\hline MGME454S1G & MGME 4.5 kW Absolute encoder & 128 \\
\hline MGME454S1H & MGME 4.5 kW Absolute encoder & 128 \\
\hline MGME602G1C & MGME 6.0 kW Incremental encoder & 96 \\
\hline MGME602G1D & MGME 6.0 kW Incremental encoder & 96 \\
\hline MGME602G1G & MGME 6.0 kW Incremental encoder & 96 \\
\hline MGME602G1H & MGME 6.0 kW Incremental encoder & 96 \\
\hline MGME602S1C & MGME 6.0 kW Absolute encoder & 96 \\
\hline MGME602S1D & MGME 6.0 kW Absolute encoder & 96 \\
\hline MGME602S1G & MGME 6.0 kW Absolute encoder & 96 \\
\hline MGME602S1H & MGME 6.0 kW Absolute encoder & 96 \\
\hline MGME604G1C & MGME 6.0 kW Incremental encoder & 129 \\
\hline MGME604G1D & MGME 6.0 kW Incremental encoder & 129 \\
\hline MGME604G1G & MGME 6.0 kW Incremental encoder & 129 \\
\hline MGME604G1H & MGME 6.0 kW Incremental encoder & 129 \\
\hline MGME604S1C & MGME 6.0 kW Absolute encoder & 129 \\
\hline MGME604S1D & MGME 6.0 kW Absolute encoder & 129 \\
\hline MGME604S1G & MGME 6.0 kW Absolute encoder & 129 \\
\hline MGME604S1H & MGME 6.0 kW Absolute encoder & 129 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MHDHT} \\
\hline Part No. & Title & ge \\
\hline MHDHTB4A2 & A5 series Driver: H -frame & 29,47 \\
\hline MHDHTC3B4 & A5 series Diviver: H -frame & 29.47 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MHDKT} \\
\hline Part No. & Title & Page \\
\hline MHDKтB4A2 & A5II series Driver: H -frame & 29,47 \\
\hline MHDKтСЗв4 & A5II series Driver: H -frame & 29,47 \\
\hline \multicolumn{3}{|l|}{MHMD (High inertia)} \\
\hline Part No. & Title & Page \\
\hline MHMD021G1A & MHMD 200 W Incremental encoder & 59 \\
\hline MHMD021G1B & MHMD 200 W Incremental encoder & 59 \\
\hline MHMD021G1C & MHMD 200 W Incremental encoder & 59 \\
\hline MHMD021G1D & MHMD 200 W Incremental encoder & 59 \\
\hline MHMD021G1N & MHMD 200 W Incremental encoder & 59 \\
\hline MHMD021G1P & MHMD 200 W Incremental encoder & 59 \\
\hline MHMD021G1Q & MHMD 200 W Incremental encoder & 59 \\
\hline MHMD021G1R & MHMD 200 W Incremental encoder & 59 \\
\hline MHMD021G1S & MHMD 200 W Incremental encoder & 59 \\
\hline MHMD021G1T & MHMD 200 W Incremental encoder & 59 \\
\hline MHMD021G1U & MHMD 200 W Incremental encoder & 59 \\
\hline MHMDO21G1V & MHMD 200 W Incremental encoder & 59 \\
\hline MHMD021S1A & MHMD 200 W Absolute encoder & 59 \\
\hline MHMD021S1B & MHMD 200 W Absolute encoder & 59 \\
\hline MHMD021S1C & MHMD 200 W Absolute encoder & 59 \\
\hline MHMD021S1D & MHMD 200 W Absolute encoder & 59 \\
\hline MHMD021S1N & MHMD 200 W Absolute encoder & 59 \\
\hline MHMD021S1P & MHMD 200 W Absolute encoder & 59 \\
\hline MHMD021S1Q & MHMD 200 W Absolute encoder & 59 \\
\hline
\end{tabular}

\section*{MHMD (High inertia)}
\begin{tabular}{|c|c|}
\hline Part No. & Title \\
\hline MHMD021S1R & MHMD 200 W Absolute encoder \\
\hline MHMD021S1S & MHMD 200 W Absolute encoder \\
\hline MHMD021S & MHMD 200 W Absolute encoder \\
\hline MHMD021S1U & MHMD 200 W Absolute encoder \\
\hline MHMD021S1V & MHMD 200 W Absolute encoder \\
\hline MHMD022G1A & MHMD 200 W Incremental encode \\
\hline MHMD022G1B & MHMD 200 W Incremental encoder \\
\hline MHMD022G1C & MHMD 200 W Incremental encode \\
\hline MHMD022G1D & MHMD 200 W Incremental encoder \\
\hline MHMD022G1N & MHMD 200 W Incremental encoder \\
\hline MHMD022G1P & MHMD 200 W Incremental encoder \\
\hline MHMD022G1Q & MHMD 200 W Incremental encoder \\
\hline MHMD022G1R & MHMD 200 W Incremental encoder \\
\hline MHMD022G1S & MHMD 200 W Incremental encoder \\
\hline MHMD022G1T & MHMD 200 W Incremental encoder \\
\hline MHMD022G1U & MHMD 200 W Incremental encoder \\
\hline MHMDO22G1V & MHMD 200 W Incremental encoder \\
\hline MHMD022S1A & MHMD 200 W Absolute encoder \\
\hline MHMD022S1B & MHMD 200 W Absolute encoder \\
\hline MHMD022S1C & MHMD 200 W Absolute encoder \\
\hline MHMD022S1D & MHMD 200 W Absolute encoder \\
\hline MHMD022S1N & MHMD 200 W Absolute encoder \\
\hline MHMD022S1P & MHMD 200 W Absolute encoder \\
\hline MHMD022S1Q & MHMD 200 W Absolute encoder \\
\hline MHMD022S1R & MHMD 200 W Absolute encoder \\
\hline MHMD022S1S & MHMD 200 W Absolute encoder \\
\hline MHMD022S1T & MHMD 200 W Absolute encoder \\
\hline MHMD022S1U & MHMD 200 W Absolute encoder \\
\hline MHMD022S1V & MHMD 200 W Absolute encoder \\
\hline MHMD041G1A & MHMD 400 W Incremental encoder \\
\hline MHMD041G1B & MHMD 400 W Incremental encoder \\
\hline MHMD041G1C & MHMD 400 W Incremental encoder \\
\hline MHMD041G1D & MHMD 400 W Incremental encoder \\
\hline MHMD041G1N & MHMD 400 W Incremental encoder \\
\hline MHMD041G1P & MHMD 400 W Incremental encoder \\
\hline MHMD041G1Q & MHMD 400 W Incremental encoder \\
\hline MHMD041G1R & MHMD 400 W Incremental encoder \\
\hline MHMD041G1S & MHMD 400 W Incremental encoder \\
\hline MHMD041G1T & MHMD 400 W Incremental encoder \\
\hline MHMD041G1U & MHMD 400 W Incremental encoder \\
\hline MHMD041G1V & MHMD 400 W Incremental encoder \\
\hline MHMD041S1A & MHMD 400 W Absolute encoder \\
\hline MHMD041S1B & MHMD 400 W Absolute encoder \\
\hline MHMD041S1C & MHMD 400 W Absolute encoder \\
\hline MHMD041S1D & MHMD 400 W Absolute encoder \\
\hline MHMD041S1N & MHMD 400 W Absolute encoder \\
\hline MHMD041S1P & MHMD 400 W Absolute encoder \\
\hline MHMD041S1Q & MHMD 400 W Absolute encoder \\
\hline MHMD041S1R & MHMD 400 W Absolute encoder \\
\hline MHMD041S1S & MHMD 400 W Absolute encoder \\
\hline MHMD041STT & MHMD 400 W Absolute encoder \\
\hline MHMD041STU & MHMD 400 W Absolute encoder \\
\hline MHMD041S1V & MHMD 400 W Absolute encoder \\
\hline MHMD042G1A & MHMD 400 W Incremental encoder \\
\hline MHMD042G1B & MHMD 400 W Incremental encoder \\
\hline MHMD042G1C & MHMD 400 W Incremental encoder \\
\hline MHMD042G1D & MHMD 400 W Incremental encoder \\
\hline MHMD042G1N & MHMD 400 W Incremental encoder \\
\hline MHMD042G1P & MHMD 400 W Incremental encoder \\
\hline MHMD042G1Q & MHMD 400 W Incremental encoder \\
\hline MHMD042G1R & MHMD 400 W Incremental encoder \\
\hline MHMD042G1S & MHMD 400 W Incremental encoder \\
\hline MHMD042G1T & MHMD 400 W Incremental encoder \\
\hline MHMD042G1U & MHMD 400 W Incremental encoder \\
\hline MHMD042GiV & MHMD 400 W Incremental encoder \\
\hline MHMD042S1A & MHMD 400 W Absolute encoder \\
\hline MHMD042S1B & MHMD 400 W Absolute encoder \\
\hline MHMD042SIC & MHMD 400 W Absolute encoder \\
\hline MHMD042S1D & MHMD 400 W Absolute encoder \\
\hline MHMD042S1N & MHMD 400 W Absolute encoder \\
\hline MHMD042SIP & MHMD 400 W Absolute encoder \\
\hline MHMD042S1Q & MHMD 400 W Absolute encoder \\
\hline
\end{tabular}

Index
(Alphabetical Order)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MHMD (High inertia)} \\
\hline Part No. & Title & Page \\
\hline MHMD042S1R & MHMD 400 W Absolute encoder & 62 \\
\hline MHMD042S1S & MHMD 400 W Absolute encoder & 62 \\
\hline MHMD042S1T & MHMD 400 W Absolute encoder & 62 \\
\hline MHMD042SIU & MHMD 400 W Absolut encoder & 62 \\
\hline MHMD042SIV & MHMD 400 W Absolute encoder & 62 \\
\hline MHMD082G1A & MHMD 750 W Incremental encoder & 63 \\
\hline MHMD082G1B & MHMD 750 W Incremental encoder & 63 \\
\hline MHMD082G1C & MHMD 750 W Incremental encoder & \\
\hline MHMD082G1D & MHMD 750 W Incremental encoder & 63 \\
\hline MHMD082G1N & MHMD 750 W Incremental encoder & 63 \\
\hline MHMD082G1P & MHMD 750 W Incremental encoder & 63 \\
\hline MHMD082G1Q & MHMD 750 W Incremental encoder & 63 \\
\hline MHMD082G1R & MHMD 750 W Incremental encoder & 63 \\
\hline MHMD082G1S & MHMD 750 W Incremental encoder & 63 \\
\hline MHMD082G1T & MHMD 750 W Incremental encoder & 63 \\
\hline MHMD082G1U & MHMD 750 W Incremental encoder & 63 \\
\hline MHMD082G1V & MHMD 750 W Incremental encoder & 63 \\
\hline MHMD082S1A & MHMD 750 W Absolute encoder & \\
\hline MHMD082S1B & MHMD 750 W Absolute encoder & 63 \\
\hline MHMD082S1C & MHMD 750 W Absolute encoder & \\
\hline MHMD082S1D & MHMD 750 W Absolute encoder & 63 \\
\hline MHMD082S1N & MHMD 750 W Absolute encoder & 63 \\
\hline MHMD082S1P & MHMD 750 W Absolute encoder & \\
\hline MHMD082S1Q & MHMD 750 W Absolute encoder & 63 \\
\hline MHMD082S1R & MHMD 750 W Absolute encoder & 63 \\
\hline MHMD082S1S & MHMD 750 W Absolute encoder & 63 \\
\hline MHMD082SIT & MHMD 750 W Absolute encoder & 63 \\
\hline MHMD082S1U & MHMD 750 W Absolute encoder & 63 \\
\hline MHMD082SiV & MHMD 750 W Absolute encoder & 63 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{MHMD with Gear Reducer (High inertia)}} & & & \\
\hline & & & MHMD082G43N & HMD with reducioon gear 750 W Incremental enc & \\
\hline Part No. & Title & Page & MHMD082G44N & MHMD with reduction gear 750 W Incremental encoder & 141,149 \\
\hline MHMD021G31N & MHMD with reduction gear 200 W Incremental encoder & 141,149 & MHMD082S31N & MHMD with reduction gear 750 W Absolute encoder & \\
\hline MD & MHMD with reduction gear 200 W Incremental encoder & & MHMD082S32 & MHMD with reduction gear 750 W Absolute encoder & 141,14 \\
\hline MHMD021G33N & MHMD with reduction gear 200 W Incremental encoder & 141,149 & MHMD082S33N & MHMD with reduction gear 750 W Absolute encoder & \\
\hline MD021G34N & MHMD with reduction gear 200 W Incremental encoder & & MD082S & MHMD with reduction gear 750 W Absolute encoder & \\
\hline MD021G41N & MHMD with reduction gear 200 W Incremental encoder & 141,149 & MHMD082S4 & MHMD with reduction gear 750 W Absolute encoder & 141,1 \\
\hline MHMD021G42N & MHMD with reduction gear 200 W Incremental encoder & 141,14 & MHMD082S42N & MHMD with reducioon gear 750 W Absolute encoder & \\
\hline MHMD021G4 & MHMD with reduction gear 200 W Incremental encoder & & MHMD082S43N & MHMD with reduction gear 750 W Absolute encoder & 141.1 \\
\hline MD021G44N & MHMD with reduction gear 200 W Incremental encoder & 141,14 & MD082S & MHMD with reduction gear 750 W Absolute encoder & \\
\hline MD021S31N & MHMD with reduction gear 200 W Absolut e encoder & 141,149 & & & \\
\hline MHMD021S32N & MHMD with reduction gear 200 W Absolut e encoder & 141,149 & \multicolumn{3}{|l|}{MHME (High inertia)} \\
\hline 3 N & MHMD with reduction gear 200 W Absolute encoder & 141,149 & Part No. & Title & \\
\hline MHMD021S34N & MHMD with reduction gear 200 W Absolut e encoder & & MHME102G1C & MHME 1.0 kW Incremental encode & \\
\hline 021S41N & MHMD with reduction gear 200 W Absolut e encoder & 141,14. & MHME102G1D & MHME 1.0 kW Incremental encoca & 97 \\
\hline MD021S42N & MHMD with reduction gear 200 W Absolut e encoder & 141,149 & MHME102G19 & MHME 1.0 kW Incremental encoder & \\
\hline MHMD021543N & MHMD with reduction gear 200 W Absolut e encoder & 141 & MHME102G1H & MHME 1.0 kW Incremental encoder & \\
\hline 021S44N & MHMD with reduction gear 200 W Absolut e encoder & 141,149 & HME102GCC & MHME 1.0 kW Incremental encoder & \\
\hline HMD022G31N & MHMD with reduction gear 200 W Incremental encoder & 41,149 & MHME102GCCM & MHME 1.0 kW Incremental encoder & \\
\hline MHMD022G32N & MHMD with reduction gear 200 W Incremental e encoder & 141,149 & MHME102GCD & MHME 1.0 kW Incremental encoder & \\
\hline MHMD022G33N & MHMD with reduction gear 200 W Incremental encoder & 141,144 & 102 C & MHME 1.0 kW Incremental & \\
\hline MHMD022G34N & MHMD with reduction gear 200 W Incremental encoder & 141 & MHME102GCG & MHME 1.0 kW Incremental encoder & \\
\hline MHMD022G41N & MHMD with reduction gear 200 W Incremental encoder & 141 & MHME102GCGM & MHME 1.0 kW Incremental encoder & \\
\hline MHMD022G42N & MHMD with reduction gear 200 W Incremental encoder & 141,149 & MHME102GCH & MHME 1.0 kW Incremental encod & \\
\hline MHMD022G43N & MHMD with reduction gear 200 W Incremental e encoder & 141, & MHME102GCHM & MHME 1.0 kW Incremental encoder & \\
\hline MD022G4 & MHMD with reduction gear 200 W Incremental encoder & & 102S1C & MHME 1.0 kW Absolute encoder & \\
\hline MD022S31N & MHMD with reduction gear 200 W Absolute encoder & 141 & MHME102S1D & MHME 1.0 kW Absolute encoder & \\
\hline HMD022S32N & MHMD with reduction gear 200 W Absolut e encoder & 141, & MHME102S1G & MHME 1.0 kW Absolute encoder & \\
\hline MHMD022S33N & MHMD with reduction gear 200 W Absolut e encoder & 141,1 & MHME102S1H & MHME 1.0 kW Absolute encoder & \\
\hline MHMD022S34N & MHMD with reduction gear 200 W Absolute encoder & 141,149 & MHME102SCC & MHME 1.0 kW Absolute encoder & \\
\hline MD022S41N & MHMD with reduction gear 200 W Absolut e encoder & 141, & MHME102SCCM & MHME 1.0 kW Absolute encoder & 76 \\
\hline MHMD022S42 & MHMD with reduction gear 200 W Absolut e encoder & 141, & MHME102SCD & MHME 1.0 kW Absolute encoder & \\
\hline MHMD022S43N & MHMD with reduction gear 200 W Absolut e encoder & 141,14 & MHME102SCDM & MHME 1.0 kW Absolute encoder & 176 \\
\hline MHMD022544N & MHMD with reduction gear 200 W Absolut e encoder & 141,14 & MHME102SCG & MHME 1.0 kW Absolute encoder & \\
\hline MHMD041G31N & MHMD with reduction gear 400 W Incremental encoder & 141,14 & MHME102SCGM & MHME 1.0 kW Absolute encoder & 176 \\
\hline MD041G32N & MHMD with reduction gear 400 W Incremental encoder & 141, & MHME102SCH & MHME 1.0 kW Absolute encoder & \\
\hline MD041G33N & MHMD with reduction gear 400 W Incremental encoder & 141, & MHME102SCHM & MHME 1.0 kW Absolute encoder & 176 \\
\hline MHMD041G34N & MHMD with reduction gear 400 W Incremental encoder & 141,149 & MHME104G1C & MHME 1.0 kW Incremental encoder & 130 \\
\hline MHMD041G41N & MHMD with reduction gear 400 W Incremental encoder & 141,149 & MHME104G1D & MHME 1.0 kW Incremental encoder & 130 \\
\hline MHMD041G42N & MHMD with reduction gear 400 W Incremental encoder & 141,14 & MHME104G1G & MHME 1.0 kW Incremental encoder & 130 \\
\hline MHMD041G43N & MHMD with reduction gear 400 W Incremental encoder & 141,149 & MHME104G1H & MHME 1.0 kW Incremental encoder & 130 \\
\hline HMD041G44N & MHMD with reduction gear 400 W Incremental enco & & MHME104GCC & MHME 1.0 kW Incremental encoder & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MHME (High inertia)} \\
\hline Part No. & Title & Page \\
\hline MHME104GCD & MHME 1.0 kW Incremental encoder & 130 \\
\hline MHME104GCG & MHME 1.0 kW Incremental encoder & 130 \\
\hline MHME104GCH & MHME 1.0 kW Incremental encoder & 130 \\
\hline MHME104S1C & MHME 1.0 kW Absolute encoder & 130 \\
\hline MHME104S1D & MHME 1.0 kW Absolute encoder & 130 \\
\hline MHME104S1G & MHME 1.0 kW Absolute encoder & 130 \\
\hline MHME104S1H & MHME 1.0 kW Absolute encoder & 130 \\
\hline MHME104SCC & MHME 1.0 kW Absolute encoder & 130 \\
\hline MHME104SCD & MHME 1.0 kW Absolute encoder & 130 \\
\hline MHME104SCG & MHME 1.0 kW Absolute encoder & 130 \\
\hline MHME104SCH & MHME 1.0 kW Absolute encoder & 130 \\
\hline MHME152G1C & MHME 1.5 kW Incremental encoder & 98 \\
\hline MHME152G1D & MHME 1.5 kW Incremental encoder & 98 \\
\hline MHME152G1G & MHME 1.5 kW Incremental encoder & 98 \\
\hline MHME152G1H & MHME 1.5 kW Incremental encoder & 98 \\
\hline MHME152GCC & MHME 1.5 kW Incremental encoder & 98 \\
\hline MHME152GCCM & MHME 1.5 kW Incremental encoder & 177 \\
\hline MHME152GCD & MHME 1.5 kW Incremental encoder & 98 \\
\hline MHME152GCDM & MHME 1.5 kW Incremental encoder & 177 \\
\hline MHME152GCG & MHME 1.5 kW Incremental encoder & 98 \\
\hline MHME152GCGM & MHME 1.5 kW Incremental encoder & 177 \\
\hline MHME152GCH & MHME 1.5 kW Incremental encoder & 98 \\
\hline MHME152GCHM & MHME 1.5 kW Incremental encoder & 177 \\
\hline MHME152S1C & MHME 1.5 kW Absolute encoder & 98 \\
\hline MHME152S1D & MHME 1.5 kW Absolute encoder & 98 \\
\hline MHME152S1G & MHME 1.5 kW Absolute encoder & 98 \\
\hline MHME152S1H & MHME 1.5 kW Absolute encoder & 98 \\
\hline MHME152SCC & MHME 1.5 KW Absolute encoder & 98 \\
\hline MHME152SCCM & MHME 1.5 kW Absolute encoder & 177 \\
\hline MHME152SCD & MHME 1.5 kW Absolute encoder & 98 \\
\hline MHME152SCDM & MHME 1.5 kW Absolute encoder & 177 \\
\hline MHME152SCG & MHME 1.5 kW Absolute encoder & 98 \\
\hline MHME152SCGM & MHME 1.5 kW Absolute encoder & 177 \\
\hline MHME152SCH & MHME 1.5 kW Absolute encoder & 98 \\
\hline MHME152SCHM & MHME 1.5 kW Absolute encoder & 177 \\
\hline MHME154G1C & MHME 1.5 kW Incremental encoder & 131 \\
\hline MHME154G1D & MHME 1.5 kW Incremental encoder & 131 \\
\hline MHME154G1G & MHME 1.5 kW Incremental encoder & 131 \\
\hline MHME154G1H & MHME 1.5 kW Incremental encoder & 131 \\
\hline MHME154GCC & MHME 1.5 kW Incremental encoder & 131 \\
\hline MHME154GCD & MHME 1.5 kW Incremental encoder & 131 \\
\hline MHME154GCG & MHME 1.5 kW Incremental encoder & 131 \\
\hline MHME154GCH & MHME 1.5 kW Incremental encoder & 131 \\
\hline MHME154S1C & MHME 1.5 kW Absolute encoder & 131 \\
\hline MHME154S1D & MHME 1.5 kW Absolute encoder & 131 \\
\hline MHME154S1G & MHME 1.5 kW Absolute encoder & 131 \\
\hline MHME154S1H & MHME 1.5 kW Absolute encoder & 131 \\
\hline MHME154SCC & MHME 1.5 kW Absolute encoder & 131 \\
\hline MHME154SCD & MHME 1.5 kW Absolute encoder & 131 \\
\hline MHME154SCG & MHME 1.5 kW Absolute encoder & 131 \\
\hline MHME154SCH & MHME 1.5 kW Absolute encoder & 131 \\
\hline MHME202G1C & MHME 2.0 kW Incremental encoder & 99 \\
\hline MHME202G1D & MHME 2.0 kW Incremental encoder & 99 \\
\hline MHME202G1G & MHME 2.0 kW Incremental encoder & 99 \\
\hline MHME202G1H & MHME 2.0 kW Incremental encoder & 99 \\
\hline MHME202GCC & MHME 2.0 kW Incremental encoder & 99 \\
\hline MHME202GCCM & MHME 2.0 kW Incremental encoder & 178 \\
\hline MHME202GCD & MHME 2.0 kW Incremental encoder & 99 \\
\hline MHME202GCDM & MHME 2.0 kW Incremental encoder & 178 \\
\hline MHME202GCG & MHME 2.0 kW Incremental encoder & 99 \\
\hline MHME202GCGM & MHME 2.0 kW Incremental encoder & 178 \\
\hline MHME202GCH & MHME 2.0 kW Incremental encoder & 99 \\
\hline MHME202GCHM & MHME 2.0 kW Incremental encoder & 178 \\
\hline MHME202S1C & MHME 2.0 kW Absolute encoder & 99 \\
\hline MHME202S1D & MHME 2.0 kW Absolute encoder & 99 \\
\hline MHME202S1G & MHME 2.0 kW Absolute encoder & 99 \\
\hline MHME202S1H & MHME 2.0 kW Absolute encoder & 99 \\
\hline MHME202SCC & MHME 2.0 kW Absolute encoder & 99 \\
\hline MHME202SCCM & MHME 2.0 kW Absolute encoder & 178 \\
\hline MHME202SCD & MHME 2.0 kW Absolute encoder & 99 \\
\hline MHME202SCDM & MHME 2.0 kW Absolute encoder & 178 \\
\hline MHME202SCG & MHME 2.0 kW Absolute encoder & 99 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MHME (High inertia)} \\
\hline Part No. & Title & e \\
\hline MHME202SCGM & MHME 2.0 kW Absolute encoder & 178 \\
\hline MHME202SCH & MHME 2.0 kW Absolute encoder & 99 \\
\hline MHME202SCHM & MHME 2.0 kW Absolute encoder & 178 \\
\hline MHME204G1C & MHME 2.0 kW Incremental encoder & 132 \\
\hline MHME204G1D & MHME 2.0 kW Incremental encoder & 132 \\
\hline MHME204G1G & MHME 2.0 kW Incremental encoder & 132 \\
\hline MHME204G1H & MHME 2.0 kW Incremental encoder & 132 \\
\hline MHME204GCC & MHME 2.0 kW Incremental encoder & 132 \\
\hline MHME204GCD & MHME 2.0 kW Incremental encoder & 132 \\
\hline MHME204GCG & MHME 2.0 kW Incremental encoder & 132 \\
\hline MHME204GCH & MHME 2.0 kW Incremental encoder & 132 \\
\hline MHME204S1C & MHME 2.0 kW Absolute encoder & 132 \\
\hline MHME204S1D & MHME 2.0 kW Absolute encoder & 132 \\
\hline MHME204S1G & MHME 2.0 kW Absolute encoder & 132 \\
\hline MHME204S1H & MHME 2.0 kW Absolute encoder & 132 \\
\hline MHME204SCC & MHME 2.0 kW Absolute encoder & 132 \\
\hline MHME204SCD & MHME 2.0 kW Absolute encoder & 132 \\
\hline MHME204SCG & MHME 2.0 kW Absolute encoder & 132 \\
\hline MHME204SCH & MHME 2.0 kW Absolute encoder & 132 \\
\hline MHME302G1C & MHME 3.0 kW Incremental encoder & 100 \\
\hline MHME302G1D & MHME 3.0 kW Incremental encoder & 100 \\
\hline MHME302G19 & MHME 3.0 kW Incremental encoder & 100 \\
\hline MHME302G1H & MHME 3.0 kW Incremental encoder & 100 \\
\hline MHME302GCC & MHME 3.0 kW Incremental encoder & 100 \\
\hline MHME302GCCM & MHME 3.0 kW Incremental encoder & 179 \\
\hline MHME302GCD & MHME 3.0 kW Incremental encoder & 100 \\
\hline MHME302GCDM & MHME 3.0 kW Incremental encoder & 179 \\
\hline MHME302GCG & MHME 3.0 kW Incremental encoder & 100 \\
\hline MHME302GCGM & MHME 3.0 kW Incremental encoder & 179 \\
\hline MHME302GCH & MHME 3.0 kW Incremental encoder & 100 \\
\hline MHME302GCHM & MHME 3.0 kW Incremental encoder & 179 \\
\hline MHME302S1C & MHME 3.0 kW Absolute encoder & 100 \\
\hline MHME302S1D & MHME 3.0 kW Absolute encoder & 100 \\
\hline MHME302S1G & MHME 3.0 kW Absolute encoder & 100 \\
\hline MHME302S1H & MHME 3.0 kW Absolute encoder & 100 \\
\hline MHME302SCC & MHME 3.0 kW Absolute encoder & 100 \\
\hline MHME302SCCM & MHME 3.0 kW Absolute encoder & 179 \\
\hline MHME302SCD & MHME 3.0 kW Absolute encoder & 100 \\
\hline MHME302SCDM & MHME 3.0 kW Absolute encoder & 179 \\
\hline MHME302SCG & MHME 3.0 kW Absolute encoder & 100 \\
\hline MHME302SCGM & MHME 3.0 kW Absolute encoder & 179 \\
\hline MHME302SCH & MHME 3.0 kW Absolute encoder & 100 \\
\hline MHME302SCHM & MHME 3.0 kW Absolute encoder & 179 \\
\hline MHME304G1C & MHME 3.0 kW Incremental encoder & 133 \\
\hline MHME304G1D & MHME 3.0 kW Incremental encoder & 133 \\
\hline MHME304G1G & MHME 3.0 kW Incremental encoder & 133 \\
\hline MHME304G1H & MHME 3.0 kW Incremental encoder & 133 \\
\hline MHME304GCC & MHME 3.0 kW Incremental encoder & 133 \\
\hline MHME304GCD & MHME 3.0 kW Incremental encoder & 133 \\
\hline MHME304GCG & MHME 3.0 kW Incremental encoder & 133 \\
\hline MHME304GCH & MHME 3.0 kW Incremental encoder & 133 \\
\hline MHME304S1C & MHME 3.0 kW Absolute encoder & 133 \\
\hline MHME304S1D & MHME 3.0 kW Absolute encoder & 133 \\
\hline MHME304S1G & MHME 3.0 kW Absolute encoder & 133 \\
\hline MHME304S1H & MHME 3.0 kW Absolute encoder & 133 \\
\hline MHME304SCC & MHME 3.0 kW Absolute encoder & 133 \\
\hline MHME304SCD & MHME 3.0 kW Absolute encoder & 133 \\
\hline MHME304SCG & MHME 3.0 kW Absolute encoder & 133 \\
\hline MHME304SCH & MHME 3.0 kW Absolute encoder & 133 \\
\hline MHME402G1C & MHME 4.0 kW Incremental encoder & 101 \\
\hline MHME402G1D & MHME 4.0 KW Incremental encoder & 101 \\
\hline MHME402G1G & MHME 4.0 kW Incremental encoder & 101 \\
\hline MHME402G1H & MHME 4.0 kW Incremental encoder & 101 \\
\hline MHME402GCC & MHME 4.0 kW Incremental encoder & 101 \\
\hline MHME402GCCM & MHME 4.0 kW Incremental encoder & 180 \\
\hline MHME402GCD & MHME 4.0 kW Incremental encoder & 101 \\
\hline MHME402GCDM & MHME 4.0 kW Incremental encoder & 180 \\
\hline MHME402GCG & MHME 4.0 kW Incremental encoder & 101 \\
\hline MHME402GCGM & MHME 4.0 kW Incremental encoder & 180 \\
\hline MHME402GCH & MHME 4.0 kW Incremental encoder & 101 \\
\hline MHME402GCHM & MHME 4.0 kW Incremental encoder & 180 \\
\hline MHME402S1C & MHME 4.0 kW Absolute encoder & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{MHME (High ineritia)} & \multicolumn{3}{|l|}{MLDET} \\
\hline Part No. & Title & Page & Part No. & Title & Pag \\
\hline MHME752S1D & MHME 7.5 kW Absolute encoder & 103 & MLDET2110P & E series Driver: L-frame & 223,22 \\
\hline MHME752S1G & MHME 7.5 kW Absolute encoder & 103 & MLDET2210P & E series Driver: L-frame & 223,2 \\
\hline MHME752S1H & MHME 7.5 kW Absolute encoder & 103 & MLDET2310P & E series Driver: L-frame & 223 \\
\hline MHME754G1C & MHME 7.5 kW Incremental encoder & 136 & MLDET2510P & E series Driver: L-frame & 223,22 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MSMD (Low inertia)} \\
\hline Part No. & Title & Page \\
\hline MSMD011G1A & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011G1B & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011G1C & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011G1D & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011G1N & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011G1P & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011G1Q & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011G1R & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011G1S & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011G1T & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011G1U & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011GiV & MSMD 100 W Incremental encoder & 51 \\
\hline MSMD011STA & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD011S1B & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD011S1C & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD011S1D & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD011S1N & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD011S1P & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD011S1Q & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD011S1R & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD011S1S & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD011S1T & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD011S1U & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD011S1V & MSMD 100 W Absolute encoder & 51 \\
\hline MSMD012G1A & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012G1B & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012G1C & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012G1D & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012G1N & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012G1P & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012G1Q & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012G1R & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012G1S & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012G1T & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012G1U & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012GiV & MSMD 100 W Incremental encoder & 52 \\
\hline MSMD012S1A & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD012S1B & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD012S1C & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD012S1D & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD012STN & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD012S1P & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD012S1Q & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD012S1R & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD012S1S & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD012S1T & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD012SIU & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD012S1V & MSMD 100 W Absolute encoder & 52 \\
\hline MSMD021G1A & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021G1B & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021G1C & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021G1D & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021G1N & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021G1P & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021G1Q & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021G1R & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021G1S & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021G1T & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021G1U & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021G1V & MSMD 200 W Incremental encoder & 53 \\
\hline MSMD021STA & MSMD 200 W Absolute encoder & 53 \\
\hline MSMD021S1B & MSMD 200 W Absolute encoder & 53 \\
\hline MSMD021S1C & MSMD 200 W Absolute encoder & 53 \\
\hline MSMD021S1D & MSMD 200 W Absolute encoder & 53 \\
\hline MSMD021S1N & MSMD 200 W Absolute encoder & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MSMD (Low inertia)} \\
\hline Part No. & Title & ge \\
\hline MSMD021S1P & MSMD 200 W Absolute encoder & 53 \\
\hline MSMD021S1Q & MSMD 200 W Absolute encoder & 53 \\
\hline MSMD021S1R & MSMD 200 W Absolute encoder & 53 \\
\hline MSMD021S1S & MSMD 200 W Absolute encoder & 53 \\
\hline MSMD021S1T & MSMD 200 W Absolute encoder & 53 \\
\hline MSMD021S1U & MSMD 200 W Absolute encoder & 53 \\
\hline MSMD021S1V & MSMD 200 W Absolute encoder & 53 \\
\hline MSMD022G1A & MSMD 200 W Incremental encoder & 54 \\
\hline MSMD022G1B & MSMD 200 W Incremental encoder & 54 \\
\hline MSMD022G1C & MSMD 200 W Incremental encoder & 54 \\
\hline MSMD022G1D & MSMD 200 W Incremental encoder & 54 \\
\hline MSMD022G1N & MSMD 200 W Incremental encoder & 54 \\
\hline MSMD022G1P & MSMD 200 W Incremental encoder & 54 \\
\hline MSMD022G1Q & MSMD 200 W Incremental encoder & 54 \\
\hline MSMD022G1R & MSMD 200 W Incremental encoder & 54 \\
\hline MSMDO22G1S & MSMD 200 W Incremental encoder & 54 \\
\hline MSMD022G1T & MSMD 200 W Incremental encoder & 54 \\
\hline MSMDoz2G1U & MSMD 200 W Incremental encoder & 54 \\
\hline MSMD022G1V & MSMD 200 W Incremental encoder & 54 \\
\hline MSMD022S1A & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD022S1B & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD022S1C & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD022S1D & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD022S1N & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD022S1P & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD022S1Q & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD022S1R & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD022S1S & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD022S1T & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD022S1U & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD022S1V & MSMD 200 W Absolute encoder & 54 \\
\hline MSMD041G1A & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041G1B & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041G1C & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041G1D & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041G1N & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041G1P & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041G1Q & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041G1R & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041G1S & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041G1T & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041G1U & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041G1V & MSMD 400 W Incremental encoder & 55 \\
\hline MSMD041STA & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD041S1B & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD041S1C & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD041S1D & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD041S1N & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD041S1P & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD041S1Q & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD041S1R & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD041S1S & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD041S1T & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD041S1U & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD041S1V & MSMD 400 W Absolute encoder & 55 \\
\hline MSMD042G1A & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042G1B & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042G1C & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042G1D & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042G1N & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042G1P & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042G1Q & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042G1R & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042G1S & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042G1T & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042G1U & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042G1V & MSMD 400 W Incremental encoder & 56 \\
\hline MSMD042S1A & MSMD 400 W Absolute encoder & 56 \\
\hline MSMD042S1B & MSMD 400 W Absolute encoder & 56 \\
\hline MSMD042SIC & MSMD 400 W Absolute encoder & 56 \\
\hline MSMD042S1D & MSMD 400 W Absolute encoder & 56 \\
\hline MSMD042S1N & MSMD 400 W Absolute encoder & 56 \\
\hline
\end{tabular}

Index
(Alphabetical Order)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & MSMD041G42N & MSMD with reduction gear 400 W Incremental e encoder & \\
\hline \multicolumn{3}{|l|}{MSMD with Gear Reducer (Low inertia)} & MSMD041G43N & MSMD with reduction gear 400 W Incremental e encoder & 141,148 \\
\hline Part No. & Title & Page & MSMD & MSMD with reduction gear 400 W Incremental e encoder & \\
\hline 211G31N & MSMD with reductio & 141,1 & MSMD041S31N & MSMD with reduction gear 400 W Absolute encoder & 141,14 \\
\hline MSMD011G32N & MSMD with reduction gear 100 W Incremental encoder & 141,148 & MS & MSMD with reduction gear 400 W Absolute encoder & \\
\hline MSMD011G33N & MSMD with reduction gear 100 W Incremental encoder & 141,148 & MSMD041S33N & MSMD with reduction gear 400 W Absolute encoder & \\
\hline MSMD011G34N & MSMD with reduction gear 100 W Incremental encoder & 4,148 & MSMD041534N & MSMD with reduction gear 400 W Absolute encod & \\
\hline MSMD011G41N & MSMD with reduction gear 100 W Incremental encoder & 141,148 & MSMD041541N & MSMD with reduction gear 400 W Absolu & \\
\hline MSMD011G42N & MSMD with reduction gear 100 W Incremental e encoder & 141,148 & MSMD041S42N & MSMD with reduction gear 400 W Absolute encoder & 141,141 \\
\hline MSMD011G43N & MSMD with reduction gear 100 W Incremental encoder & 141,148 & MSMD04154 & MSMD with reduction gear 400 W Absolute encoder & \\
\hline MSMD011G44N & MSMD with reduction gear 100 W Incremental encoder & 141,148 & D04 & MSMD with reduction gear 400 W Absolute encod & 141,14 \\
\hline MSMD011S31N & MSMD with reduction gear 100 W Absolute encoder & 141,148 & MSMD042G3 & MSMD with reduction gear 400 W Incremental e encoder & \\
\hline MSMD0111S32N & MSMD with reduction gear 100 W Absolute encoder & 141,148 & MSMDO4 & MSMD with reduction gear 400 W Incremental e encoder & \\
\hline MSMD011S33N & MSMD with reduction gear 100 W Absolute encoder & 141,148 & MSMD042G3 & MSMD with reduction gear 400 W Incremental e encoder & \\
\hline MSMD011S34N & MSMD with reduction gear 100 W Absolute encoder & 141,148 & MSMD042G34N & MSMD with reduction gear 400 W Incremental encoder & \\
\hline MSMD011541N & MSMD with reduction gear 100 W Absolute encoder & 141,148 & MSMD042G41N & MSMD with reduction gear 400 W Incremental en & \\
\hline SMD011S4 & MSMD with reduction gear 100 W Absolute enc & 141,148 & MSMD042G42N & MSMD with reduction gear 400 W Incremental & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline Part No. & Title & \\
\hline MSMD042G43N & rrser & \\
\hline SMD042 & MSMD with reduction gear 400 W Incremental encoder & \\
\hline MSMD042S31N & MSMD with reduction gear 40 & \\
\hline MSMD042S32N & SMD with reduction gear 40 O & \\
\hline MD042S & MSMD with reduction gear 400 W Absolute encoder & \\
\hline MSMD042S34N & SMD with reduction gear 400 W Absolute encoder & \\
\hline MSMD042S41N & MSMD with reduction gear 400 W Absolute encood & \\
\hline MD042S4 & ISMD with reduction gear 400 W Absolute encoder & \\
\hline MSMD042S43N & MSMD with reduction gear 40 & \\
\hline MSMD042S44N & D with reduction gear 40, & \\
\hline MSMD082G31N & SMD with reduction gear 750 W Incremental er & \\
\hline MSMD082G32N & MSMD with reduction gear 750 W I ncremental en & \\
\hline MSMD082G33N & MSMD with reducioon gear 750 W Incremental e & \\
\hline MSMD082G3 & MSMD with reduction gear 750 W Incremental en & \\
\hline MSMD082G41N & D with reduction gear 750 W Incremen & \\
\hline MSMD082G42N & MSMD with reduction gear 750 W Incremental en & \\
\hline MSMD082G43N & MSMD with reduction gear 750 W Incremental enc & \\
\hline MSMD082G44N & SMD with reducioon gear 750 W Incree & \\
\hline MSMD082S31N & MSMD with reduction gear 750 W Absolute enco & \\
\hline & MSMD with reduction gear 750 W Absolute encoder & \\
\hline MSMD082S33N & MSMD with reduction gear 750 W Absolute encode & \\
\hline SmD082S34N & MSMD with reduction gear 750 W Absolute encoder & \\
\hline SMD082S41N & MSMD with reduction gear 750 W Absolute encoder & \\
\hline MSMD082S42N & SMD with reduction gear 750 W Absolute & \\
\hline MSMD082S43N & MSMD with reduction gear 750 W Absolute encoder & \\
\hline SMD082S44N & ccion gear 750 W Absolute enco & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MSME (Low inertia)} \\
\hline Part No. & Title & Page \\
\hline MSME01 & MSME 100 W Incremental encoder & 67 \\
\hline MSME011G1B & MSME 100 W Incremental encoder & 67 \\
\hline MSME011G1C & MSME 100 W Incremental encoder & 67 \\
\hline MSME011G1D & MSME 100 W Incremental encoder & 67 \\
\hline MSME011G1N & MSME 100 W Incremental encoder & 67 \\
\hline MSME011G1P & MSME 100 W Incremental encoder & 67 \\
\hline MSME011G1Q & MSME 100 W Incremental encoder & 67 \\
\hline MSME011G1R & MSME 100 W Incremental encoder & 67 \\
\hline MSME011G1S & MSME 100 W Incremental encoder & 67 \\
\hline MSME011G1T & MSME 100 W Incremental encoder & 67 \\
\hline MSMEO11G1U & MSME 100 W Incremental encoder & 67 \\
\hline MSME011G1V & MSME 100 W Incremental encoder & 67 \\
\hline MSME011STA & MSME 100 W Absolute encoder & 67 \\
\hline MSME011S1B & MSME 100 W Absolute encoder & 67 \\
\hline MSME011S1C & MSME 100 W Absolute encoder & 67 \\
\hline MSME011S1D & MSME 100 W Absolute encoder & 67 \\
\hline MSME011S1N & MSME 100 W Absolute encoder & 67 \\
\hline MSME011S1P & MSME 100 W Absolute encoder & 67 \\
\hline MSME011S1Q & MSME 100 W Absolute encoder & 67 \\
\hline MSME011S1R & MSME 100 W Absolute encoder & 67 \\
\hline MSME011S1S & MSME 100 W Absolute encoder & 67 \\
\hline MSME011S1T & MSME 100 W Absolute encoder & 67 \\
\hline MSME011S1U & MSME 100 W Absolute encoder & 67 \\
\hline MSME011S1V & MSME 100 W Absolute encoder & 67 \\
\hline MSME012G1A & MSME 100 W Incremental encoder & 68 \\
\hline MSME012G1B & MSME 100 W Incremental encoder & 68 \\
\hline MSME012G1C & MSME 100 W Incremental encoder & 68 \\
\hline MSME012G1D & MSME 100 W Incremental encoder & 68 \\
\hline MSME012G1N & MSME 100 W Incremental encoder & 68 \\
\hline MSME012G1P & MSME 100 W Incremental encoder & 68 \\
\hline MSME012G1Q & MSME 100 W Incremental encoder & 68 \\
\hline MSME012G1R & MSME 100 W Incremental encoder & 68 \\
\hline MSME012G1S & MSME 100 W Incremental encoder & 68 \\
\hline MSME012G1T & MSME 100 W Incremental encoder & 68 \\
\hline MSME012G1U & MSME 100 W Incremental encoder & 68 \\
\hline MSME012G1V & MSME 100 W Incremental encoder & 68 \\
\hline MSME012S1A & MSME 100 W Absolute encoder & 68 \\
\hline MSME012S1B & MSME 100 W Absolute encoder & 68 \\
\hline MSME012S1C & MSME 100 W Absolute encoder & 68 \\
\hline MSME012S1D & MSME 100 W Absolute encoder & 68 \\
\hline MSME012S1N & MSME 100 W Absolute encoder & 68 \\
\hline MSME012S1P & MSME 100 W Absolute encoder & 68 \\
\hline MSME012S1Q & MSME 100 W Absolute encoder & 68 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MSME (Low inertia)} \\
\hline Part No. & Title & Page \\
\hline MSME012S1R & MSME 100 W Absolute encoder & 68 \\
\hline MSME012S1S & MSME 100 W Absolute encoder & 68 \\
\hline MSME012S1T & MSME 100 W Absolute encoder & 68 \\
\hline MSME012S1U & MSME 100 W Absolute encoder & 68 \\
\hline MSME012S1V & MSME 100 W Absolute encoder & 68 \\
\hline MSME021G1A & MSME 200 W Incremental encode & 69 \\
\hline MSME021G1B & MSME 200 W Incremental encoder & 69 \\
\hline MSMEO21G1C & MSME 200 W Incremental encoder & 69 \\
\hline MSME021G1D & MSME 200 W Incremental encoder & 69 \\
\hline MSME021G1N & MSME 200 W Incremental encoder & 69 \\
\hline MSME021G1P & MSME 200 W Incremental encoder & 69 \\
\hline MSME021G1Q & MSME 200 W Incremental encoder & 69 \\
\hline MSME021G1R & MSME 200 W Incremental encoder & 69 \\
\hline MSME021G1S & MSME 200 W Incremental encoder & 69 \\
\hline MSME021G1T & MSME 200 W Incremental encoder & 69 \\
\hline MSME021G1U & MSME 200 W Incremental encoder & 69 \\
\hline MSME021G1V & MSME 200 W Incremental encoder & 69 \\
\hline MSME021S1A & MSME 200 W Absolute encoder & 69 \\
\hline MSME021S1B & MSME 200 W Absolute encoder & 69 \\
\hline MSME021S1C & MSME 200 W Absolute encoder & 69 \\
\hline MSME021S1D & MSME 200 W Absolute encoder & 69 \\
\hline MSMEO21S1N & MSME 200 W Absolute encoder & 69 \\
\hline MSME021S1P & MSME 200 W Absolute encoder & 69 \\
\hline MSME021S1Q & MSME 200 W Absolute encoder & 69 \\
\hline MSME021S1R & MSME 200 W Absolute encoder & 69 \\
\hline MSME021S1S & MSME 200 W Absolute encoder & 69 \\
\hline MSME021S1T & MSME 200 W Absolute encoder & 69 \\
\hline MSME021S1U & MSME 200 W Absolute encoder & 69 \\
\hline MSME021S1V & MSME 200 W Absolute encoder & 69 \\
\hline MSME022G1A & MSME 200 W Incremental encoder & 70 \\
\hline MSME022G1B & MSME 200 W Incremental encoder & 70 \\
\hline MSME022G1C & MSME 200 W Incremental encoder & 70 \\
\hline MSME022G1D & MSME 200 W Incremental encoder & 70 \\
\hline MSME022G1N & MSME 200 W Incremental encoder & 70 \\
\hline MSME022G1P & MSME 200 W Incremental encoder & 70 \\
\hline MSME022G1Q & MSME 200 W Incremental encoder & 70 \\
\hline MSME022G1R & MSME 200 W Incremental encoder & 70 \\
\hline MSME022G1S & MSME 200 W Incremental encoder & 70 \\
\hline MSME022G1T & MSME 200 W Incremental encoder & 70 \\
\hline MSME022G1U & MSME 200 W Incremental encoder & 70 \\
\hline MSME022G1V & MSME 200 W Incremental encoder & 70 \\
\hline MSME022S1A & MSME 200 W Absolute encoder & 70 \\
\hline MSME022S1B & MSME 200 W Absolute encoder & 70 \\
\hline MSMEO22S1C & MSME 200 W Absolute encoder & 70 \\
\hline MSME022S1D & MSME 200 W Absolute encoder & 70 \\
\hline MSME022S1N & MSME 200 W Absolute encoder & 70 \\
\hline MSME022S1P & MSME 200 W Absolute encoder & 70 \\
\hline MSME022S1Q & MSME 200 W Absolute encoder & 70 \\
\hline MSME022S1R & MSME 200 W Absolute encoder & 70 \\
\hline MSME022S1S & MSME 200 W Absolute encoder & 70 \\
\hline MSME022S1T & MSME 200 W Absolute encoder & 70 \\
\hline MSME022S1U & MSME 200 W Absolute encoder & 70 \\
\hline MSME022S1V & MSME 200 W Absolute encoder & 70 \\
\hline MSME041G1A & MSME 400 W Incremental encoder & 71 \\
\hline MSME041G1B & MSME 400 W Incremental encoder & 71 \\
\hline MSME041G1C & MSME 400 W Incremental encoder & 71 \\
\hline MSME041G1D & MSME 400 W Incremental encoder & 71 \\
\hline MSME041G1N & MSME 400 W Incremental encoder & 71 \\
\hline MSME041G1P & MSME 400 W Incremental encoder & 71 \\
\hline MSME041G1Q & MSME 400 W Incremental encoder & 71 \\
\hline MSME041G1R & MSME 400 W Incremental encoder & 71 \\
\hline MSME041G1S & MSME 400 W Incremental encoder & 71 \\
\hline MSME041G1T & MSME 400 W Incremental encoder & 71 \\
\hline MSME041G1U & MSME 400 W Incremental encoder & 71 \\
\hline MSME041G1V & MSME 400 W Incremental encoder & 71 \\
\hline MSME041STA & MSME 400 W Absolute encoder & 71 \\
\hline MSME041S1B & MSME 400 W Absolute encoder & 71 \\
\hline MSME041S1C & MSME 400 W Absolute encoder & 71 \\
\hline MSME041S1D & MSME 400 W Absolute encoder & 71 \\
\hline MSME041S1N & MSME 400 W Absolute encoder & 71 \\
\hline MSME041S1P & MSME 400 W Absolute encoder & 71 \\
\hline MSME041S1Q & MSME 400 W Absolute encoder & 71 \\
\hline
\end{tabular}

Index
(Alphabetical Order)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{MSME (Low inertia)} & \multicolumn{3}{|l|}{MSME (Low inertia)} \\
\hline Part No. & Title & Page & Part No. & Title & Page \\
\hline MSME041S1R & MSME 400 W Absolute encoder & 71 & MSME102G1H & MSME 1.0 kW Incremental encoder & 74 \\
\hline MSME041S1S & MSME 400 W Absolute encoder & 71 & MSME102GCC & MSME 1.0 kW Incremental encoder & 74 \\
\hline MSME041S1T & MSME 400 W Absolute encoder & 71 & MSME102GCCM & MSME 1.0 kW Incremental encoder & 158 \\
\hline MSME041S1U & MSME 400 W Absolute encoder & 71 & MSME102GCD & MSME 1.0 kW Incremental encoder & 74 \\
\hline MSME041SiV & MSME 400 W Absolute encoder & 71 & MSME102GCDM & MSME 1.0 kW Incremental encoder & 158 \\
\hline MSME042G1A & MSME 400 W Incremental encoder & 72 & MSME102GCG & MSME 1.0 kW Incremental encoder & 74 \\
\hline MSME042G1B & MSME 400 W Incremental encoder & 72 & MSME102GCGM & MSME 1.0 kW Incremental encod & 158 \\
\hline MSME042G1C & MSME 400 W Incremental encoder & 72 & MSME102GCH & MSME 1.0 kW Incremental encode & 74 \\
\hline MSME042G1D & MSME 400 W Incremental encoder & 72 & MSME102GCHM & MSME 1.0 kW Incremental encoder & 158 \\
\hline MSME042G1N & MSME 400 W Incremental encoder & 72 & MSME102S1C & MSME 1.0 kW Absolute encoder & 74 \\
\hline MSME042G1P & MSME 400 W Incremental encoder & 72 & MSME102S1D & MSME 1.0 kW Absolute encoder & 74 \\
\hline MSME042G1Q & MSME 400 W Incremental encoder & 72 & MSME102S1G & MSME 1.0 kW Absolute encoder & 74 \\
\hline MSME042G1R & MSME 400 W Incremental encoder & 72 & MSME102S1H & MSME 1.0 kW Absolute encoder & 74 \\
\hline MSME042G1S & MSME 400 W Incremental encoder & 72 & MSME102SCC & MSME 1.0 kW Absolute encoder & 74 \\
\hline MSME042G1T & MSME 400 W Incremental encoder & 72 & MSME102SCCM & MSME 1.0 kW Absolute encoder & 158 \\
\hline MSME042G1U & MSME 400 W Incremental encoder & 72 & MSME102SCD & MSME 1.0 kW Absolute encoder & 74 \\
\hline MSME042GiV & MSME 400 W Incremental encoder & 72 & MSME102SCDM & MSME 1.0 kW Absolute encoder & 158 \\
\hline MSME042S1A & MSME 400 W Absolute encoder & 72 & MSME102SCG & MSME 1.0 kW Absolute encoder & 74 \\
\hline MSME042S1B & MSME 400 W Absolute encoder & 72 & MSME102SCGM & MSME 1.0 kW Absolute encoder & 158 \\
\hline MSME042S1C & MSME 400 W Absolute encoder & 72 & MSME102SCH & MSME 1.0 kW Absolute encoder & 74 \\
\hline MSME042S1D & MSME 400 W Absolute encoder & 72 & MSME102SCHM & MSME 1.0 kW Absolute encoder & 158 \\
\hline MSME042S1N & MSME 400 W Absolute encoder & 72 & MSME104G1C & MSME 1.0 kW Incremental encoder & 105 \\
\hline MSME042S1P & MSME 400 W Absolute encoder & 72 & MSME104G1D & MSME 1.0 kW Incremental encoder & 105 \\
\hline MSME042S1Q & MSME 400 W Absolute encoder & 72 & MSME104G1G & MSME 1.0 kW Incremental encoder & 105 \\
\hline MSME042S1R & MSME 400 W Absolute encoder & 72 & MSME104G1H & MSME 1.0 kW Incremental encoder & 105 \\
\hline MSME042S1S & MSME 400 W Absolute encoder & 72 & MSME104GCC & MSME 1.0 kW Incremental encoder & 105 \\
\hline MSME042S1T & MSME 400 W Absolute encoder & 72 & MSME104GCD & MSME 1.0 kW Incremental encoder & 105 \\
\hline MSME042SIU & MSME 400 W Absolute encoder & 72 & MSME104GCG & MSME 1.0 kW Incremental encoder & 105 \\
\hline MSME042S1V & MSME 400 W Absolute encoder & 72 & MSME104GCH & MSME 1.0 kW Incremental encoder & 105 \\
\hline MSME082G1A & MSME 750 W Incremental encoder & 73 & MSME104S1C & MSME 1.0 kW Absolute encoder & 105 \\
\hline MSME082G1B & MSME 750 W Incremental encoder & 73 & MSME104S1D & MSME 1.0 kW Absolute encoder & 105 \\
\hline MSME082G1C & MSME 750 W Incremental encoder & 73 & MSME104S1G & MSME 1.0 kW Absolute encoder & 105 \\
\hline MSME082G1D & MSME 750 W Incremental encoder & 73 & MSME104S1H & MSME 1.0 kW Absolute encoder & 105 \\
\hline MSME082G1N & MSME 750 W Incremental encoder & 73 & MSME104SCC & MSME 1.0 kW Absolute encoder & \\
\hline MSME082G1P & MSME 750 W Incremental encoder & 73 & MSME104SCD & MSME 1.0 kW Absolute encoder & 105 \\
\hline MSME082G1Q & MSME 750 W Incremental encoder & 73 & MSME104SCG & MSME 1.0 kW Absolute encoder & 105 \\
\hline MSME082G1R & MSME 750 W Incremental encoder & 73 & MSME104SCH & MSME 1.0 kW Absolute encoder & 105 \\
\hline MSME082G1S & MSME 750 W Incremental encoder & 73 & MSME152G1C & MSME 1.5 KW Incremental encoder & \\
\hline MSME082G1T & MSME 750 W Incremental encoder & 73 & MSME152G1D & MSME 1.5 kW Incremental encoder & \\
\hline MSME082G1U & MSME 750 W Incremental encoder & 73 & MSME152G1G & MSME 1.5 KW Incremental encoder & 75 \\
\hline MSME082GiV & MSME 750 W Incremental encoder & 73 & MSME152G1H & MSME 1.5 kW Incremental encoder & \\
\hline MSME082S1A & MSME 750 W Absolute encoder & 73 & MSME152GCC & MSME 1.5 KW Incremental encoder & 75 \\
\hline MSME082S1B & MSME 750 W Absolute encoder & 73 & MSME152GCCM & MSME 1.5 KW Incremental encoder & \\
\hline MSME082S1C & MSME 750 W Absolute encoder & 73 & MSME152GCD & MSME 1.5 kW Incremental encoder & 75 \\
\hline MSME082S1D & MSME 750 W Absolute encoder & 73 & MSME152GCDM & MSME 1.5 kW Incremental encoder & 159 \\
\hline MSME082S1N & MSME 750 W Absolute encoder & 73 & MSME152GCG & MSME 1.5 KW Incremental encoder & 75 \\
\hline MSME082S1P & MSME 750 W Absolute encoder & 73 & MSME152GCGM & MSME 1.5 kW Incremental encoder & 159 \\
\hline MSME082S1Q & MSME 750 W Absolute encoder & 73 & MSME152GCH & MSME 1.5 kW Incremental encoder & 75 \\
\hline MSME082S1R & MSME 750 W Absolute encoder & 73 & MSME152GCHM & MSME 1.5 kW Incremental encoder & 159 \\
\hline MSME082S1S & MSME 750 W Absolute encoder & 73 & MSME152S1C & MSME 1.5 kW Absolute encoder & 75 \\
\hline MSME082SIT & MSME 750 W Absolute encoder & 73 & MSME152S1D & MSME 1.5 kW Absolute encoder & \\
\hline MSME082S1U & MSME 750 W Absolute encoder & 73 & MSME152S1G & MSME 1.5 kW Absolute encoder & 75 \\
\hline MSME082S1V & MSME 750 W Absolute encoder & 73 & MSME152S1H & MSME 1.5 kW Absolute encoder & 75 \\
\hline MSME084G1C & MSME 750 W Incremental encoder & 104 & MSME152SCC & MSME 1.5 kW Absolute encoder & 75 \\
\hline MSME084G1D & MSME 750 W Incremental encoder & 104 & MSME152SCCM & MSME 1.5 kW Absolute encoder & 159 \\
\hline MSME084G1G & MSME 750 W Incremental encoder & 104 & MSME152SCD & MSME 1.5 kW Absolute encoder & 75 \\
\hline MSME084G1H & MSME 750 W Incremental encoder & 104 & MSME152SCDM & MSME 1.5 kW Absolute encoder & 159 \\
\hline MSME084GCC & MSME 750 W Incremental encoder & 104 & MSME152SCG & MSME 1.5 kW Absolute encoder & 75 \\
\hline MSME084GCD & MSME 750 W Incremental encoder & 104 & MSME152SCGM & MSME 1.5 kW Absolute encoder & 159 \\
\hline MSME084GCG & MSME 750 W Incremental encoder & 104 & MSME152SCH & MSME 1.5 kW Absolute encoder & 75 \\
\hline MSME084GCH & MSME 750 W Incremental encoder & 104 & MSME152SCHM & MSME 1.5 kW Absolute encoder & 159 \\
\hline MSME084S1C & MSME 750 W Absolute encoder & 104 & MSME154G1C & MSME 1.5 KW Incremental encoder & 106 \\
\hline MSME084S1D & MSME 750 W Absolute encoder & 104 & MSME154G1D & MSME 1.5 kW Incremental encoder & 106 \\
\hline MSME084S1G & MSME 750 W Absolute encoder & 104 & MSME154G1G & MSME 1.5 kW Incremental encoder & 106 \\
\hline MSME084S1H & MSME 750 W Absolute encoder & 104 & MSME154G1H & MSME 1.5 kW Incremental encoder & 106 \\
\hline MSME084SCC & MSME 750 W Absolute encoder & 104 & MSME154GCC & MSME 1.5 KW Incremental encoder & 106 \\
\hline MSME084SCD & MSME 750 W Absolute encoder & 104 & MSME154GCD & MSME 1.5 KW Incremental encoder & 106 \\
\hline MSME084SCG & MSME 750 W Absolute encoder & 104 & MSME154GCG & MSME 1.5 kW Incremental encoder & 106 \\
\hline MSME084SCH & MSME 750 W Absolute encoder & 104 & MSME154GCH & MSME 1.5 kW Incremental encoder & 106 \\
\hline MSME102G1C & MSME 1.0 kW Incremental encoder & 74 & MSME154S1C & MSME 1.5 kW Absolute encoder & 106 \\
\hline MSME102G1D & MSME 1.0 kW Incremental encoder & 74 & MSME154S1D & MSME 1.5 kW Absolute encoder & 106 \\
\hline MSME102G1G & MSME 1.0 kW Incremental encoder & 74 & MSME154S1G & MSME 1.5 kW Absolute encoder & 106 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MSME (Low inertia)} \\
\hline Part No. & Title & Page \\
\hline MSME154S1H & MSME 1.5 kW Absolute encoder & 106 \\
\hline MSME154SCC & MSME 1.5 kW Absolute encoder & 106 \\
\hline MSME154SCD & MSME 1.5 kW Absolute encoder & 106 \\
\hline MSME154SCG & MSME 1.5 kW Absolute encoder & 106 \\
\hline MSME154SCH & MSME 1.5 kW Absolute encoder & 106 \\
\hline MSME202G1C & MSME 2.0 kW Incremental encoder & 76 \\
\hline MSME202G1D & MSME 2.0 kW Incremental encoder & 76 \\
\hline MSME202G1G & MSME 2.0 kW Incremental encoder & 76 \\
\hline MSME202G1H & MSME 2.0 kW Incremental encoder & 76 \\
\hline MSME202GCC & MSME 2.0 kW Incremental encoder & 76 \\
\hline MSME202GCCM & MSME 2.0 kW Incremental encoder & 160 \\
\hline MSME202GCD & MSME 2.0 kW Incremental encoder & 76 \\
\hline MSME202GCDM & MSME 2.0 kW Incremental encoder & 160 \\
\hline MSME202GCG & MSME 2.0 kW Incremental encoder & \\
\hline MSME202GCGM & MSME 2.0 kW Incremental encoder & 160 \\
\hline MSME202GCH & MSME 2.0 kW Incremental encoder & 76 \\
\hline MSME202GCHM & MSME 2.0 kW Incremental encoder & 160 \\
\hline MSME202S1C & MSME 2.0 kW Absolute encoder & 76 \\
\hline MSME202S1D & MSME 2.0 kW Absolute encoder & 76 \\
\hline MSME202S1G & MSME 2.0 kW Absolute encoder & 76 \\
\hline MSME202S1H & MSME 2.0 kW Absolute encoder & 76 \\
\hline MSME202SCC & MSME 2.0 kW Absolute encoder & 76 \\
\hline MSME202SCCM & MSME 2.0 kW Absolute encoder & 160 \\
\hline MSME202SCD & MSME 2.0 kW Absolute encoder & 76 \\
\hline MSME202SCDM & MSME 2.0 kW Absolute encoder & 160 \\
\hline MSME202SCG & MSME 2.0 kW Absolute encoder & 76 \\
\hline MSME202SCGM & MSME 2.0 kW Absolute encoder & 160 \\
\hline MSME202SCH & MSME 2.0 kW Absolute encoder & 76 \\
\hline MSME202SCHM & MSME 2.0 kW Absolute encoder & 160 \\
\hline MSME204G1C & MSME 2.0 kW Incremental encoder & 107 \\
\hline MSME204G1D & MSME 2.0 kW Incremental encoder & 107 \\
\hline MSME204G19 & MSME 2.0 kW Incremental encoder & 107 \\
\hline MSME204G1H & MSME 2.0 kW Incremental encoder & 107 \\
\hline MSME204GCC & MSME 2.0 kW Incremental encoder & 107 \\
\hline MSME204GCD & MSME 2.0 kW Incremental encoder & 107 \\
\hline MSME204GCG & MSME 2.0 kW Incremental encoder & 107 \\
\hline MSME204GCH & MSME 2.0 kW Incremental encoder & 107 \\
\hline MSME204S1C & MSME 2.0 kW Absolute encoder & 107 \\
\hline MSME204S1D & MSME 2.0 kW Absolute encoder & 107 \\
\hline MSME204S1G & MSME 2.0 kW Absolute encoder & 107 \\
\hline MSME204S1H & MSME 2.0 kW Absolute encoder & 107 \\
\hline MSME204SCC & MSME 2.0 kW Absolute encoder & 107 \\
\hline MSME204SCD & MSME 2.0 kW Absolute encoder & 107 \\
\hline MSME204SCG & MSME 2.0 kW Absolute encoder & 107 \\
\hline MSME204SCH & MSME 2.0 kW Absolute encoder & 107 \\
\hline MSME302G1C & MSME 3.0 kW Incremental encoder & 77 \\
\hline MSME302G1D & MSME 3.0 kW Incremental encoder & 77 \\
\hline MSME302G19 & MSME 3.0 kW Incremental encoder & 77 \\
\hline MSME302G1H & MSME 3.0 kW Incremental encoder & 77 \\
\hline MSME302GCC & MSME 3.0 kW Incremental encoder & 77 \\
\hline MSME302GCCM & MSME 3.0 kW Incremental encoder & 161 \\
\hline MSME302GCD & MSME 3.0 kW Incremental encoder & 77 \\
\hline MSME302GCDM & MSME 3.0 kW Incremental encoder & 161 \\
\hline MSME302GCG & MSME 3.0 kW Incremental encoder & 77 \\
\hline MSME302GCGM & MSME 3.0 kW Incremental encoder & 161 \\
\hline MSME302GCH & MSME 3.0 kW Incremental encoder & 77 \\
\hline MSME302GCHM & MSME 3.0 kW Incremental encoder & 161 \\
\hline MSME302S1C & MSME 3.0 kW Absolute encoder & 77 \\
\hline MSME302S1D & MSME 3.0 kW Absolute encoder & 77 \\
\hline MSME302S1G & MSME 3.0 kW Absolute encoder & 77 \\
\hline MSME302S1H & MSME 3.0 kW Absolute encoder & 77 \\
\hline MSME302SCC & MSME 3.0 kW Absolute encoder & 77 \\
\hline MSME302SCCM & MSME 3.0 kW Absolute encoder & 161 \\
\hline MSME302SCD & MSME 3.0 kW Absolute encoder & 77 \\
\hline MSME302SCDM & MSME 3.0 kW Absolute encoder & 161 \\
\hline MSME302SCG & MSME 3.0 kW Absolute encoder & 77 \\
\hline MSME302SCGM & MSME 3.0 kW Absolute encoder & 161 \\
\hline MSME302SCH & MSME 3.0 kW Absolute encoder & 77 \\
\hline MSME302SCHM & MSME 3.0 kW Absolute encoder & 161 \\
\hline MSME304G1C & MSME 3.0 kW Incremental encoder & 108 \\
\hline MSME304G1D & MSME 3.0 kW Incremental encoder & 108 \\
\hline MSME304G1G & MSME 3.0 kW Incremental encoder & 108 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{MSME (Low inertia)} \\
\hline Part No. & Title \\
\hline MSME304G1H & MSME 3.0 kW Incremental encoder \\
\hline MSME304GCC & MSME 3.0 kW Incremental encoder \\
\hline MSME304GCD & MSME 3.0 kW Incremental encoder \\
\hline MSME304GCG & MSME 3.0 kW Incremental encoder \\
\hline MSME304GCH & MSME 3.0 kW Incremental encoder \\
\hline MSME304S1C & MSME 3.0 kW Absolute encoder \\
\hline MSME304S1D & MSME 3.0 kW Absolute encoder \\
\hline MSME304S1G & MSME 3.0 kW Absolute encoder \\
\hline MSME304S1H & MSME 3.0 kW Absolute encoder \\
\hline MSME304SCC & MSME 3.0 kW Absolute encoder \\
\hline MSME304SCD & MSME 3.0 kW Absolute encoder \\
\hline MSME304SCG & MSME 3.0 kW Absolute encoder \\
\hline MSME304SCH & MSME 3.0 kW Absolute encoder \\
\hline MSME402G1C & MSME 4.0 kW Incremental encoder \\
\hline MSME402G1D & MSME 4.0 kW Incremental encoder \\
\hline MSME402G1G & MSME 4.0 kW Incremental encoder \\
\hline MSME402G1H & MSME 4.0 kW Incremental encoder \\
\hline MSME402GCC & MSME 4.0 kW Incremental encoder \\
\hline MSME402GCCM & MSME 4.0 kW Incremental encoder \\
\hline MSME402GCD & MSME 4.0 kW Incremental encoder \\
\hline MSME402GCDM & MSME 4.0 kW Incremental encoder \\
\hline MSME402GCG & MSME 4.0 kW Incremental encoder \\
\hline MSME402GCGM & MSME 4.0 kW Incremental encoder \\
\hline MSME402GCH & MSME 4.0 kW Incremental encoder \\
\hline MSME402GCHM & MSME 4.0 kW Incremental encoder \\
\hline MSME402S1C & MSME 4.0 kW Absolute encoder \\
\hline MSME402S1D & MSME 4.0 kW Absolute encoder \\
\hline MSME402S1G & MSME 4.0 kW Absolute encoder \\
\hline MSME402S1H & MSME 4.0 kW Absolute encoder \\
\hline MSME402SCC & MSME 4.0 kW Absolute encoder \\
\hline MSME402SCCM & MSME 4.0 kW Absolute encoder \\
\hline MSME402SCD & MSME 4.0 kW Absolute encoder \\
\hline MSME402SCDM & MSME 4.0 kW Absolute encoder \\
\hline MSME402SCG & MSME 4.0 kW Absolute encoder \\
\hline MSME402SCGM & MSME 4.0 kW Absolute encoder \\
\hline MSME402SCH & MSME 4.0 kW Absolute encoder \\
\hline MSME402SCHM & MSME 4.0 kW Absolute encoder \\
\hline MSME404G1C & MSME 4.0 kW Incremental encoder \\
\hline MSME404G1D & MSME 4.0 kW Incremental encoder \\
\hline MSME404G1G & MSME 4.0 kW Incremental encoder \\
\hline MSME404G1H & MSME 4.0 KW Incremental encoder \\
\hline MSME404GCC & MSME 4.0 kW Incremental encoder \\
\hline MSME404GCD & MSME 4.0 kW Incremental encoder \\
\hline MSME404GCG & MSME 4.0 kW Incremental encoder \\
\hline MSME404GCH & MSME 4.0 kW Incremental encoder \\
\hline MSME404S1C & MSME 4.0 kW Absolute encoder \\
\hline MSME404S1D & MSME 4.0 kW Absolute encoder \\
\hline MSME404S1G & MSME 4.0 kW Absolute encoder \\
\hline MSME404S1H & MSME 4.0 kW Absolute encoder \\
\hline MSME404SCC & MSME 4.0 kW Absolute encoder \\
\hline MSME404SCD & MSME 4.0 kW Absolute encoder \\
\hline MSME404SCG & MSME 4.0 kW Absolute encoder \\
\hline MSME404SCH & MSME 4.0 kW Absolute encoder \\
\hline MSME502G1C & MSME 5.0 kW Incremental encoder \\
\hline MSME502G1D & MSME 5.0 kW Incremental encoder \\
\hline MSME502G1G & MSME 5.0 kW Incremental encoder \\
\hline MSME502G1H & MSME 5.0 kW Incremental encoder \\
\hline MSME502GCC & MSME 5.0 kW Incremental encoder \\
\hline MSME502GCCM & MSME 5.0 kW Incremental encoder \\
\hline MSME502GCD & MSME 5.0 kW Incremental encoder \\
\hline MSME502GCDM & MSME 5.0 kW Incremental encoder \\
\hline MSME502GCG & MSME 5.0 kW Incremental encoder \\
\hline MSME502GCGM & MSME 5.0 kW Incremental encoder \\
\hline MSME502GCH & MSME 5.0 kW Incremental encoder \\
\hline MSME502GCHM & MSME 5.0 kW Incremental encoder \\
\hline MSME502S1C & MSME 5.0 kW Absolute encoder \\
\hline MSME502S1D & MSME 5.0 kW Absolute encoder \\
\hline MSME502S1G & MSME 5.0 kW Absolute encoder \\
\hline MSME502S1H & MSME 5.0 kW Absolute encoder \\
\hline MSME502SCC & MSME 5.0 kW Absolute encoder \\
\hline MSME502SCCM & MSME 5.0 kW Absolute encoder \\
\hline
\end{tabular}

Index
(Alphabetical Order)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MSME (Low inertia)} \\
\hline Part No. & Title & e \\
\hline MSME502SCDM & MSME 5.0 kW Absolute encoder & 163 \\
\hline MSME502SCG & MSME 5.0 kW Absolute encoder & 79 \\
\hline MSME502SCGM & WE 5.0 kW Absolute encoder & 163 \\
\hline MSME502SCH & MSME 5.0 kW Absolute encoder & 79 \\
\hline MSME502SCHM & MSME 5.0 kW Absolute encoder & 163 \\
\hline MSME504G1C & MSME 5.0 kW Incremental encoder & 110 \\
\hline MSME504G1D & MSME 5.0 kW Incremental encoder & 110 \\
\hline MSME504G1G & MSME 5.0 kW Incremental encoder & 110 \\
\hline MSME504G1H & MSME 5.0 kW Incremental encoder & 110 \\
\hline MSME504GCC & MSME 5.0 kW Incremental encoder & 110 \\
\hline MSME504GCD & MSME 5.0 kW Incremental encoder & 110 \\
\hline MSME504GCG & MSME 5.0 kW Incremental encoder & 110 \\
\hline MSME504GCH & MSME 5.0 kW Incremental encoder & 110 \\
\hline MSME504S1C & MSME 5.0 kW Absolute encoder & 110 \\
\hline MSME504S1D & MSME 5.0 kW Absolute encoder & 110 \\
\hline MSME504S1G & MSME 5.0 kW Absolute encoder & 110 \\
\hline MSME504S1H & MSME 5.0 kW Absolute encoder & 110 \\
\hline MSME504SCC & MSME 5.0 kW Absolute encoder & 110 \\
\hline MSME504SCD & MSME 5.0 kW Absolute encoder & 110 \\
\hline MSME504SCG & MSME 5.0 kW Absolute encoder & 110 \\
\hline MSME504SCH & MSME 5.0 kW Absolute encoder & 110 \\
\hline MSME5AZG1A & MSME 50 W Incremental encoder & 65 \\
\hline MSME5AZG1B & MSME 50 W Incremental encoder & \\
\hline MSME5AZG1C & MSME 50 W Incremental encoder & 6 \\
\hline MSME5AZG1D & MSME 50 W Incremental encoder & \\
\hline MSME5AZG1N & MSME 50 W Incremental encoder & , \\
\hline MSME5AZG1P & MSME 50 W Incremental encoder & \\
\hline MSME5AZG1Q & MSME 50 W Incremental encoder & 65,66 \\
\hline MSME5AZG1R & MSME 50 W Incremental encoder & \\
\hline MSME5AZG1S & MSME 50 W Incremental encoder & \\
\hline MSME5AZG1T & MSME 50 W Incremental encoder & 65,66 \\
\hline MSME5AZG1U & MSME 50 W Incremental encoder & 65, \\
\hline MSmE5AZG1V & MSME 50 W Incremental encoder & 65,66 \\
\hline MSME5AZS1A & MSME 50 W Absolut encoder & \\
\hline MSME5AZS1B & MSME 50 W Absolute encoder & 65,66 \\
\hline MSME5AZS1C & MSME 50 W Absolute encoder & 65,66 \\
\hline MSME5AZS1D & MSME 50 W Absolute encoder & 6 \\
\hline MSME5AZSIN & MSME 50 W Absolute encoder & 65,66 \\
\hline MSME5AZSIP & MSME 50 W Absolut encoder & \\
\hline MSME5AZS1Q & MSME 50 W Absolute encoder & 6 \\
\hline MSME5AZS1R & MSME 50 W Absolute encoder & 65,66 \\
\hline MSME5AZS1S & MSME 50 W Absolute encoder & 6 \\
\hline MSME5AZSIT & MSME 50 W Absolute encoder & 65,66 \\
\hline MSME5AZSIU & MSME 50 W Absolut encoder & \\
\hline MSmE5AZSiV & MSME 50 W Absolute encoder & 65,6 \\
\hline \multicolumn{3}{|l|}{MSME with Gear Reducer (Low inertia)} \\
\hline Part No. & Title & Page \\
\hline MSME011G31N & MSME with reduction gear 100 W Incremental encoder & 141,147 \\
\hline MSME011G32N & MSME with reduction gear 100 W Incremental encoder & \\
\hline MSME011G33N & MSME with reduction gear 100 W Incremental encoder & 141 \\
\hline MSME011G34N & MSME with reduction gear 100 W Incremental encoder & \\
\hline MSME011G41N & MSME with reduction gear 100 W Incremental encoder & 141,147 \\
\hline MSME011G42N & MSME with reduction gear 100 W Incremental encoder & 141,147 \\
\hline MSME011G43N & MSME with reduction gear 100 W Incremental encoder & 141,147 \\
\hline MSME011G44N & MSME with reduction gear 100 W Incremental encoder & 141,147 \\
\hline MSME011S31N & MSME with reduction gear 100 W Absolute encoder & 141,147 \\
\hline MSME011S32N & MSME with reduction gear 100 W Absolute encoder & 141,147 \\
\hline MSME011S33N & MSME with reduction gear 100 W Absolute encoder & 141,14 \\
\hline MSME011S34N & MSME with reduction gear 100 W Absolute encoder & 141,147 \\
\hline MSME011S41N & MSME with reduction gear 100 W Absolute encoder & 141,147 \\
\hline MSME011S42N & MSME with reduction gear 100 W Absolute encoder & 141,147 \\
\hline MSME011S43N & MSME with reduction gear 100 W Absolute encoder & 141,147 \\
\hline MSME011S44N & MSME with reduction gear 100 W Absolute encoder & 141,147 \\
\hline MSME012G31N & MSME with reduction gear 100 W Incremental encoder & 141,147 \\
\hline MSME012G32N & MSME with reduction gear 100 W Incremental encoder & 141,147 \\
\hline MSME012G33N & MSME with reduction gear 100 W Incremental encoder & 141,147 \\
\hline MSME012G34N & MSME with reduction gear 100 W Incremental encoder & 141,147 \\
\hline MSME012G41N & MSME with reduction gear 100 W Incremental encoder & 141,147 \\
\hline MSME012G42N & MSME with reduction gear 100 W Incremental encoder & 141,147 \\
\hline MSME012G43N & MSME with reduction gear 100 W Incremental encoder & 141, \\
\hline MSME012G44N & MSME with reduction gear 100 W Incremental enco & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MSME with Gear Reducer (Low inertia)} \\
\hline Part No. & Title & \\
\hline MSME012S31N & year 100 W & \\
\hline MSME012S32N & USME with reduction gear 100 W Absolute enco & \\
\hline MSME012S33N & MSME with reduction gear 100 W Absolute encoder & \\
\hline SME012S3 & MSME with reduction gear 100 W Absolute encode & \\
\hline MSME012S41N & MSME with reduction gear 100 W Absolute encoder & \\
\hline MSME012S42N & MSME with reduction gear 100 W Absolute encoder & \\
\hline MSME012S43 & MSME with reduction gear 100 W Absolute encode & \\
\hline MSME012S44N & MSME with reduction gear 100 W Absolute encoder & \\
\hline MSME021G31N & MSME with reduction gear 200 W Incremental e & \\
\hline MSME021G32N & ction gear 200 W Incremen & \\
\hline MsME & MSME with reduction gear 200 W Incrementa & \\
\hline MSME021G34 & MSME with reduction gear 200 W I ncremental en & \\
\hline MSME021G4 & MSME with reduction gear 200 W Incremental enco & \\
\hline MS & MSME with reduction gear 200 W Incremental en & \\
\hline MSME021G43N & with reduction & \\
\hline MSME02 & MSME with reduction gear 200 W Incremental en & \\
\hline MSME02 & MSME with reduction gear 200 W Absolute encoder & \\
\hline MSME021S32N & MSME with reduction gear 200 W Absolute encoder & \\
\hline MSME021S33N & MSME with reduction gear 200 W Absolute encoder & \\
\hline E021S34N & MSME with reduction gear 200 W Absolute encoder & \\
\hline MSME021S41N & USME with reduction gear 200 W Absolute encoder & \\
\hline MSME021S42N & MSME with reducioon gear 200 W Absolute encoder & \\
\hline MS & MSME with reduction gear 200 W Absolute encoder & \\
\hline MSME021S44N & MSME with reduction gear 200 W Absolut e encoder & \\
\hline MSME022G31N & MSME with reducioon gear 200 W Incremental encood & \\
\hline MSM & MSME with reduction gear 200 W Incremental e & \\
\hline MSM & MSME with reduction gear 200 W Incremental en & \\
\hline MS & MSME with reduction gear 200 W I ncremental en & \\
\hline MSME022G41N & MSME with reduction gear 200 W Incremental enc & \\
\hline ME022 & MSME with reduction gear 200 W Incremental en & \\
\hline MSME022G43N & MSME with reduction gear 200 W I ncremental en & \\
\hline MS & MSME with reduction gear 200 W Incremental enco & \\
\hline MSME022S31N & MSME with reduction gear 200 W Absolute encoder & \\
\hline MSME022S32N & MSME with reduction gear 200 W Absolute encoder & \\
\hline MSME022S33N & MSME with reduction gear 200 W Absolute encoder & \\
\hline MSME022S3 & MSME with reduction gear 200 W Absolute enco & \\
\hline MSMEO2 & MSME with reduction gear 200 W Absolute enca & \\
\hline MSME022S42N & MSME with reduction gear 200 W Absolute enc & \\
\hline MSME022S43N & MSME with reduction gear 200 W Absolute encoder & \\
\hline MSME022S44N & MSME with reduction gear 200 W Absolute encoder & \\
\hline MSME041G31N & MSME with reduction gear 400 W Incremental e & \\
\hline MSME04 & MSME with reduction gear 400 W Incremental enco & \\
\hline MSME04 & MSME with reduction gear 400 W Incremental & \\
\hline MSME041G34N & MSME with reduction gear 400 W Incremental encoder & \\
\hline MSME041G41N & MSME with reduction gear 400 W Incremental encoder & \\
\hline MSME041G42N & MSME with reduction gear 400 W Incremental en & \\
\hline MSM & MSME with recuction gear 400 W Incremental enc & \\
\hline MS & MSME with reduction gear 400 W Incremental enco & \\
\hline MSME04 & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSME041S32N & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSME041 & MSME with reduction gear 400 W Absolut e encoder & \\
\hline MSME041S34N & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSME & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSME & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSME041S43N & MSME with reduction gear 400 W Absolut e encoder & \\
\hline MSME041S44N & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSME042G3 & MSME with reduction gear 400 W Incremental enco & \\
\hline MSME042G3 & MSME with reduction gear 400 W Incremental enco & \\
\hline MSME042 & MSME with reduction gear 400 W Incremental encoder & \\
\hline MSME042 & MSME with reduction gear 400 W Incremental encood & \\
\hline MSME042G41N & MSME with reduction gear 400 W Incremental encoder & \\
\hline MSME042G42N & MSME with reduction gear 400 W Incremental enco & \\
\hline MSME042G43N & MSME with reducion gear 400 W Incremental encoud & \\
\hline MSME042G & MSME with reduction gear 400 W Incremental encoder & \\
\hline MSME042S31N & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSME042S32N & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSME042S33 & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSME042S34N & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSME042S41N & MSME with reduction gear 400 W Absolute encoder & \\
\hline MS & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSM & MSME with reduction gear 400 W Absolute encoder & \\
\hline MSME042S44N & MSME with reduction gear 400 W Absolute encoder & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & tia) & \\
\hline Part No. & Title & Pag \\
\hline SME082G31 & MSME with reduction gear 750 W Incremental encoder & \\
\hline MSME082G32N & MSME with reduction gear 750 W Incremental encoder & \\
\hline MSME082G33N & MSME with reduction gear 750 W Incremental encoder & \\
\hline MSME082G34N & MSME with reduction gear 750 W Incremental encoder & \\
\hline MSME082G41N & MSME with reduction gear 750 W Incremental encoder & \\
\hline SME082G42 & MSME with reduction gear 750 W Incremental enco & \\
\hline MSME082G43N & MSME with reduction gear 750 W Increme & \\
\hline MSME082G44N & MSME with reduction gear 750 W I cremental encode & \\
\hline MSME082S31N & MSME with reducioo gear 750 W Absolute encoder & \\
\hline MSME082S3 & MSME with reduction gear 750 W Absolute encoder & \\
\hline MSME082S33 & MSME with reduction gear 750 W Absolute encoder & \\
\hline MSME082S34N & MSME with reduction gear 750 W Absolute encoder & \\
\hline MSME082S41 & MSME with reduction gear 750 W Absolute encoder & \\
\hline MSME082S & MSME with reduction gear 750 W Absolut encoder & \\
\hline MSME082S43N & MSME with reduction gear 750 W Absolute encoder & \\
\hline MSME082S44N & MSME with reduction gear 750 W Absolute encoder & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MUMA (Low inertia)} \\
\hline Part No. & Title & Page \\
\hline MUMA0012P1S & MUMA 100 W Incremental encoder & 229,231 \\
\hline MUMA012P1T & MUMA 100 W Incremental encoder & 229 \\
\hline MUMA021P1S & MUMA 200 W Incremental encoder & \\
\hline MUMA021P1T & MUMA 200 W Incremental encoder & 227 \\
\hline MUMA022P1S & MUMA 200 W Incremental encoder & \\
\hline MUMA022F & remental enc & \\
\hline MUMA042P1S & MUMA 400 W Incremental encod & 229,231 \\
\hline MUMA042P1T & MUMA 400 W Incremental encoder & \\
\hline MUMA5AZP1S & MUMA 50 W Incremental encoder & 22, 2292,21 \\
\hline MUMA5AZP1T & MUMA 50 W Incremental encoder & 27, 2, 29, 231 \\
\hline \multicolumn{3}{|l|}{MUMA with Gear Reducer (Low inerria)} \\
\hline Part No. & Title & \\
\hline MUMA011P31N & MUMA with reduction gear 100 W Increme & \\
\hline MUMA011P3 & MUMA with reduction gear 100 W Incremental e & \\
\hline MUMA011P34N & MUMA with reduction gear 100 W Incremental enco & \\
\hline MUMA011P41N & MUMA with reduction gear 100 W Incremental e encoder & \\
\hline MUMA011P4 & MUMA with reduction gear 100 W Incremental encood & \\
\hline MUMA011P44N & MUMA with reduction gear 100 W Incremental encood & \\
\hline MUMA012P31N & MUMA with reduction gear 100 W Incremental encood & \\
\hline MUMA012P32N & MUMA with reduction gear 100 W Incremental enco & \\
\hline MUMA012P34N & MUMA with reduction gear 100 W Incremental e encoder & \\
\hline MUMA012P41N & MUMA with reduction gear 100 W Incremental encood & \\
\hline MUMA012P42N & MUMA with reduction gear 100 W Incremental enco & \\
\hline MUMA012P44N & MUMA with reduction gear 100 W Incremental encoder & \\
\hline MUMA021P3 & MUMA with reduction gear 200 W Incremental encoder & \\
\hline MUMA021P32N & MUMA with reduction gear 200 W Incremental e encoder & \\
\hline MUMA021P34N & MUMA with reduction gear 200 W Incremental e encoder & \\
\hline MUMA021P41N & MUMA with reduction gear 200 W Incremental encod & \\
\hline MUMA021P42N & MUMA with reduction gear 200 W Incremental encoder & \\
\hline MUMA021P44N & MUMA with reduction gear 200 W Incremental encod & \\
\hline MUMA022P31N & MUMA with reduction gear 200 W Incremental e encoder & 232,235 \\
\hline MUMA022P32N & MUMA with reduction gear 200 W Incremental e encoder & \\
\hline MUMA022P34N & MUMA with reduction gear 200 W Incremental e enoder & 232,235 \\
\hline MUMA022P41N & MUMA with reduction gear 200 W Incremental encoda & 232 \\
\hline MUMA022P42N & MUMA with reduction gear 200 W Incremental e encoder & \\
\hline MUMA022P4 & MUMA with reduction gear 200 W Incremental encoder & 232,235 \\
\hline MUMA042P31N & MUMA with reduction gear 400 W Incremental encoder & 232,235 \\
\hline MUMA042P32N & MUMA with reduction gear 400 W Incremental e encoder & \\
\hline MUMA042P34N & MUMA with reduction gear 400 W Incremental encoda & 232 \\
\hline MUMA042P41N & MUMA with reduction gear 400 W Incremental encoder & 232,2 \\
\hline MUMA042P42N & MUMA with reduction gear 400 W Incremental encoder & 32, \\
\hline MUMA042P4 & MUMA with reduction gear 400 W Incremental encoder & 232,235 \\
\hline
\end{tabular}
\(\qquad\) [Panasonic Sales Office of Motors]
(February.01.2016)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Country} & \multirow[t]{2}{*}{Company Name [Category]} & \multirow[b]{2}{*}{City} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Address}} & TEL \\
\hline & & & & & FAX \\
\hline \multirow[b]{2}{*}{U.S.A} & \multirow[t]{2}{*}{\begin{tabular}{l}
Panasonic Industrial Devices Sales Company of America \\
[Sales office]
\end{tabular}} & \multirow[b]{2}{*}{New Jersey} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Two Riverfront Plaza, 7th Floor Newark, NJ 07102-5490 U.S.A}} & +1-800-228-2350 \\
\hline & & & & & - \\
\hline \multirow[t]{2}{*}{Brazil} & \multirow[t]{2}{*}{Panasonic do Brazil [Sales office]} & \multirow[t]{2}{*}{Sao Paulo} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Avenida do Cafe, 277 Torre A-8 Andar Jabaquara \\
ZIP Code: 04311-900 Sao Paulo SP Brazil
\end{tabular}}} & +55-11-3889-4022 \\
\hline & & & & & +55-11-3889-4103 \\
\hline \multirow{15}{*}{Germany} & \multirow[b]{4}{*}{\begin{tabular}{l}
Panasonic Industrial Devices Sales Europe GmbH \\
[Sales office] \\
[European Headquarter]
\end{tabular}} & \multirow{4}{*}{Munich} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Hans-Pinsel-Strasse 2 • D 85540 Haar Germany}} & +49-89-46-159-0 \\
\hline & & & & & +49-89-46-159-212 \\
\hline & & & e-mail & http:/leu.industrial.panasonic.com/ab & ut-us/contact-us \\
\hline & & & Web site & http://eu.industrial.panasonic.com/p compressors-pumps & ducts/motors- \\
\hline & \multirow{3}{*}{ghv Vertriebs-GmbH [Distributors]} & \multirow{3}{*}{Munich} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Am Schammacher Feld 47 D-85567 Grafing b. Munich}} & +49(0)-80-92/81-89-0 \\
\hline & & & & & +49(0)-80-92/81-89-99 \\
\hline & & & e-mail & http://www.ghv.de/kontakt.htm| & \\
\hline & \multirow{4}{*}{\begin{tabular}{l}
Panasonic Electric Works Europe AG [Sales office] \\
[European Headquarter]
\end{tabular}} & \multirow{4}{*}{Holzkirchen} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Deutschland}} & +49 (0) 8024 648-0 \\
\hline & & & & & +49 (0) 8024 648-111 \\
\hline & & & e-mail & \multicolumn{2}{|l|}{https://www.panasonic-electric-works.com/eu/93.htm} \\
\hline & & & Web site & \multicolumn{2}{|l|}{https://www.panasonic-electric-works.com/eu/index.htm} \\
\hline & \multirow{4}{*}{Panasonic Electric Works Europe AG [Subsidiary]} & \multirow{4}{*}{Holzkirchen} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Deutschland}} & +49 (0) 8024 648-0 \\
\hline & & & & & +49 (0) \(8024648-111\) \\
\hline & & & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { e-mail } \\
\hline \text { Web site } \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{https://www.panasonic-electric-works.com/eu/93.htm}} \\
\hline & & & & & \\
\hline \multirow{4}{*}{France} & \multirow{4}{*}{\begin{tabular}{l}
Panasonic Electric Works Sales Western Europe B.V. \\
[Sales office]
\end{tabular}} & \multirow{4}{*}{Verrières-Le-Buisson} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{10, rue des petits ruisseaux, 91370 Verrières-Le-Buisson, France}} & +33(0)160135757 \\
\hline & & & & & +31(0)160135758 \\
\hline & & & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { e-mail } \\
\hline \text { Web site }
\end{array}
\]} & \multicolumn{2}{|l|}{https://www.panasonic-electric-works.com/eu/93.htm} \\
\hline & & & & \multicolumn{2}{|l|}{https://www.panasonic-electric-works.com/eu/index.htm} \\
\hline \multirow{8}{*}{Italy} & \multirow{4}{*}{Panasonic Electric Works Italia srl [Subsidiary]} & \multirow{4}{*}{Verona} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Via del Commercio 3-5 (Z.I.Ferlina), 37012 Bussolengo (VR), Italy}} & +39-045-6752711 \\
\hline & & & & & +39-045-6700444 \\
\hline & & & e-mail & \multicolumn{2}{|l|}{https://www.panasonic-electric-works.com/eu/93.htm} \\
\hline & & & Webs site h & \multicolumn{2}{|l|}{https://www.panasonic-electric-works.com/eu/322.htm} \\
\hline & \multirow{4}{*}{\begin{tabular}{l}
Lenze Italia S.r.I. \\
[Distributors]
\end{tabular}} & \multirow{4}{*}{Milano} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Viale Monza 33820128 Milano}} & +39-02-270-98-1 \\
\hline & & & & & +39-02-270-98-290 \\
\hline & & & \multirow[t]{2}{*}{e-mail} & \multicolumn{2}{|l|}{mail @Lenzeltalia.it} \\
\hline & & & & \multicolumn{2}{|l|}{http//www.lenze.com/it-it/azienda/enze-in-italia/} \\
\hline \multirow{8}{*}{\[
\begin{aligned}
& \text { United } \\
& \text { Kingdom }
\end{aligned}
\]} & \multirow{4}{*}{Panasonic Electric Works UK Ltd. [Sales office]} & \multirow{4}{*}{Milton Keynes} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sunrise Parkway, Linford Wood Milton Keynes, MK14 6LF United Kingdom}} & +44(0)1908231599 \\
\hline & & & & & +44(0)1908231555 \\
\hline & & & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline e-mail \\
\hline Web site \\
\\
\end{tabular}} & \multicolumn{2}{|l|}{https://www.panasonic-electric-works.com/eu/93.htm} \\
\hline & & & & \multicolumn{2}{|l|}{https://www.panasonic-electric-works.com/eulindex.htm} \\
\hline & \multirow{4}{*}{Lenze Limited [Distributors]} & \multirow{4}{*}{Bedford} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Priory Business Park, Bedford, MK44 3WH.}} & +44-1234-7532-00 \\
\hline & & & & & \multirow[t]{2}{*}{+44-1234-7532-20} \\
\hline & & & \multicolumn{2}{|l|}{e-mail \(u\) uk.sales@lenze.com} & \\
\hline & & & & \multicolumn{2}{|l|}{http://www.lenze.com/en-gb/about-lenze/lenze-in-united-kingdom/} \\
\hline \multirow{4}{*}{Austria} & \multirow{4}{*}{Panasonic Electric Works Austria GmbH [Sales office]} & \multirow{4}{*}{Biedermannsdorf} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Josef Madersperger Strasse 2, 2362 Biedermannsdorf (Vienna), Austria}} & +43(0)2236-26846 \\
\hline & & & & & +43(0)2236-46133 \\
\hline & & & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { e-mail } \\
\hline \text { Web site } \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{https://www.panasonic-electric-works.com/eu/93.htm} \\
\hline & & & & \multicolumn{2}{|l|}{https://www.panasonic-electric-works.com/eulindex.htm} \\
\hline \multirow{4}{*}{Polska} & \multirow{4}{*}{\begin{tabular}{l}
Panasonic Electric Works Polska sp. z.o.o. \\
[Sales office]
\end{tabular}} & \multirow{4}{*}{Warszawa} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{ul. Woroska 9a, 02-583 Warszawa}} & +48(0)22338-11-33 \\
\hline & & & & & +48(0)22213-95-01 \\
\hline & & & \multicolumn{3}{|l|}{e-mail \({ }^{\text {https://www.panasonic-electric-works.com/eu/93.htm }}\)} \\
\hline & & & Web site & \multicolumn{2}{|l|}{https://www.panasonic-electric-works.com/eu/index.htm} \\
\hline \multirow{4}{*}{Nederland} & \multirow{4}{*}{\begin{tabular}{l}
Panasonic Electric Works Sales Western Europe B.V. \\
[Sales office]
\end{tabular}} & \multirow{4}{*}{PJ Best} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{De Rijn 4 (Postbus 211), 5684 PJ Best, Nederland}} & +31(0)499372727 \\
\hline & & & & & +31(0)499372185 \\
\hline & & & \multirow[t]{2}{*}{e-mail} & \multicolumn{2}{|l|}{} \\
\hline & & & & \multicolumn{2}{|l|}{htpp://www.panasonic-electric-works.com/eu/93.htm} \\
\hline
\end{tabular}

Sales Office
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Country} & \multirow[t]{2}{*}{Company Name ［Category］} & \multirow[b]{2}{*}{City} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Address}} & TEL \\
\hline & & & & & FAX \\
\hline \multirow{4}{*}{Czech Republic} & \multirow{4}{*}{Panasonic Electric Works Czech s．r．o． ［Sales office］} & \multirow{4}{*}{Brno} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Veveři 3163／111， 61600 Brno，Czech}} & ＋420（0）541217001 \\
\hline & & & & & ＋420（0）541217101 \\
\hline & & & e－mail & \multicolumn{2}{|l|}{https：／／www．panasonic－electric－works．com／eu／93．htm} \\
\hline & & & Web site & \multicolumn{2}{|l|}{https：／www．panasonic－electric－works．com／eulindex．htm} \\
\hline \multirow{4}{*}{Spain} & \multirow{4}{*}{Panasonic Electric Works Espana S．A． ［Subsidiary］} & \multirow{4}{*}{Madrid} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Barajas Park，San Severo 20， 28042 Madrid， Spain}} & ＋34－91－329－3875 \\
\hline & & & & & ＋34－91－329－2976 \\
\hline & & & e－mail & \multicolumn{2}{|l|}{https：／／www．panasonic－electric－works．com／eu／93．htm} \\
\hline & & & Web site & \multicolumn{2}{|l|}{https：／／www．panasonic－electric－works．com／eu／322．htm} \\
\hline \multirow{4}{*}{Romania} & \multirow{4}{*}{C．I．T．Automatizari SRL ［Distributors］} & \multirow{4}{*}{Bucuresti} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{sos．Bucuresti，nr．63，Ciorogirla，Ifov，RO－ 077055，ROMANIA}} & ＋40－21－255－0543 \\
\hline & & & & & ＋40－21－255－0544 \\
\hline & & & e－mail & \multicolumn{2}{|l|}{office＠citautomatizari．ro} \\
\hline & & & Web site & \multicolumn{2}{|l|}{http：／／www．citautomatizari．ro} \\
\hline \multirow{4}{*}{Hungary} & \multirow{4}{*}{Panasonic Electric Works Hungary ［Sales office］} & \multirow{4}{*}{Budapest} & \multicolumn{2}{|l|}{\multirow{2}{*}{Neumann J．u．1．， 1117 Budapest，Hungary}} & ＋36（0）19998926 \\
\hline & & & & & ＋36（0）19998927 \\
\hline & & & e－mail & \multicolumn{2}{|l|}{https：／／www．panasonic－electric－works．com／eu／93．htm} \\
\hline & & & Web site & \multicolumn{2}{|l|}{https：／／www．panasonic－electric－works．com／eulindex．htm} \\
\hline \multirow{4}{*}{Switzerland} & \multirow{4}{*}{Panasonic Electric Works Schweiz AG ［Sales office］} & \multirow{4}{*}{Rotkreuz} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Grundstrasse 8， 6343 Rotkreuz， Schwitzerland}} & ＋33（0）417997050 \\
\hline & & & & & ＋31（0）417997055 \\
\hline & & & e－mail & \multicolumn{2}{|l|}{https：／／www．panasonic－electric－works．com／eu／93．htm} \\
\hline & & & Web site & \multicolumn{2}{|l|}{https：／／www．panasonic－electric－works．com／eulindex．htm} \\
\hline \multirow{3}{*}{Russia} & \multirow{3}{*}{Electroprivod Ltd．
［Distributors］} & \multirow{3}{*}{St．Petersburg} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Office 417，litera 43，Polustrovskiy avenue， Saint－Petersburg，Russia}} & ＋7－812－703－09－81 \\
\hline & & & & & ＋7－812－493－27－26 \\
\hline & & & \multicolumn{3}{|l|}{Web site http：／／www．electroprivod．ru} \\
\hline \multirow{8}{*}{Turkey} & \multirow{4}{*}{bOSTEK TEKNOLOJI GELISTIRME VE ROBOT SIST．SAN．TIC．A．S ［Distributors）} & \multirow{4}{*}{Izmir} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{10042 SOK．NO：10 A．O．S．B CIGLI－IZMIR， TURKEY}} & ＋90 2324338515 \\
\hline & & & & & ＋90 2324338881 \\
\hline & & & \begin{tabular}{l|l}
e－mail & sales＠bostek．com．tr
\end{tabular} & \multicolumn{2}{|l|}{sales＠bostek．com．tr} \\
\hline & & & \multicolumn{2}{|l|}{Web site http：／／www．bostek．com．tr／} & \\
\hline & \multirow{4}{*}{Savior Kontrol Otomasyon ［Distributors］} & \multirow{4}{*}{Istanbul} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Des Sanayi Sitesi 104 Sokak A07 Blok No：02 Yukarı Dudullu Ümraniye ìstanbul Turkey}} & ＋90－216－466－3683 \\
\hline & & & & & ＋90－216－466－3685 \\
\hline & & & \begin{tabular}{l|l}
e－mail & info＠savior．com．tr
\end{tabular} & \multicolumn{2}{|l|}{info＠savior．com．tr} \\
\hline & & & \multicolumn{3}{|l|}{Web site http：／／www．savior．com．tr／} \\
\hline \multirow{6}{*}{China} & \multirow[t]{2}{*}{Panasonic Industrial Devices Sales （Hong Kong）Co．，Ltd．（PIDSHK） ［Sales office］} & \multirow[b]{2}{*}{Hong kong} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Top Floor，South Wing，ChinaChem Gloden Plaza， 77 Mody Road，S．T．S．East，Kowloon， HongKong}} & ＋852－2529－7322 \\
\hline & & & & & ＋852－2598－9743 \\
\hline & \multirow[t]{2}{*}{Panasonic Industrial Devices Sales （China）Co．，Ltd．（PIDSCN） ［Sales office］} & \multirow[b]{2}{*}{Shanghai} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Floor 6，China Insurance Building， 166 East Road LuJiaZui PuDong New District， Shanghai，China}} & ＋86－21－3855－2442 \\
\hline & & & & & ＋86－21－3855－2375 \\
\hline & \multirow[t]{2}{*}{Panasonic Industrial Devices Sales （China）Co．，Ltd．（PIDSCN） ［Sales office］} & \multirow[b]{2}{*}{Shenzhen} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{8／F，Tower Three，Kerry Plaza，1－1 Zhongxinsi Road，Futian District，Shenzhen，China}} & ＋86－755－8255－8791 \\
\hline & & & & & － \\
\hline \multirow{12}{*}{India} & \multirow[b]{3}{*}{Industrial Division， Panasonic India Pvt Ltd． ［Sales office］} & \multirow{3}{*}{Gurgaon， Haryana} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{12th Floor，Ambience Commercial， Behind Ambience Mall， Gurgaon－122002，Haryana，India}} & ＋91－124－6670400 \\
\hline & & & & & ＋91－124－6670338 \\
\hline & & & Web site & \multicolumn{2}{|l|}{http：／／industrial．panasonic．com／sa／products／motors－ compressors／fa－motors} \\
\hline & \multirow{3}{*}{Lubi Electronics ［Distributors］} & \multirow{3}{*}{Gandhinaga， Gujarat} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sardar Patel Ring Road，Near Bright School， Nana Chiloda， \\
Dist．：Gandhinagar－382330，Gujarat，India
\end{tabular}}} & ＋91－79－39845300 \\
\hline & & & & & ＋91－79－39845599 \\
\hline & & & Web site & http：／／www．lubielectronics．com & \\
\hline & \multirow{3}{*}{\begin{tabular}{l}
Luna Bearings \\
［Distributors］
\end{tabular}} & \multirow{3}{*}{\(\underset{\text { Mumbai，}}{\substack{\text { Maharashtra }}}\) Maharashtra} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{59，Bibijan Street，2nd Floor，Moiz Manzil， Mumbai－400003，Maharashtra，India}} & ＋91－22－23455052 \\
\hline & & & & & ＋91－22－23427773 \\
\hline & & & Web site & http：／www．lunabearings．com & \\
\hline & \multirow{3}{*}{Vashi Electricals Pvt．Ltd． ［Distributors］} & \multirow{3}{*}{\(\underset{\text { Mumbai，}}{\substack{\text { Maharashtra }}}\) Maharashtra} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{A／6，Plot No．74，Shree Ganesh Complex， Behind Gupta Compound，Dapole Road， Mankoli Naka， Bhiwandi－421305，Maharashtra，India}} & ＋91－2522－661600 \\
\hline & & & & & ＋91－2522－661620 \\
\hline & & & \multicolumn{2}{|l|}{Web site \(\mathrm{http} / / / \mathrm{www.vashielectricals.com}\)} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Country}} & \multirow[t]{2}{*}{Company Name ［Category］} & \multirow[b]{2}{*}{City} & \multirow[b]{2}{*}{Address} & TEL \\
\hline & & & & & FAX \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Korea}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Panasonic Industrial Devices Sales Korea Co．，Ltd．（PIDSKR） \\
［Sales office］
\end{tabular}} & \multirow[b]{2}{*}{Seoul} & \multirow[t]{2}{*}{6F DONG－IL Tower 38，Teheran－ro 114－gil， Gangnam－gu，Seoul，135－851，Korea} & ＋82－2－795－9600 \\
\hline & & & & & ＋82－2－2052－1053 \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Taiwan}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Panasonic Industrial Devices Sales Taiwan Co．，Ltd． \\
［Sales office］
\end{tabular}} & \multirow[b]{2}{*}{Taipei} & \multirow[t]{2}{*}{12F，No．9，SongGao Rd．，Taipei 110，Taiwan， R．O．C．} & ＋886－2－2757－1900 \\
\hline & & & & & ＋886－2－2757－1977 \\
\hline \multirow{26}{*}{} & & \multirow[t]{2}{*}{\begin{tabular}{l}
Panasonic Industrial Devices Sales Asia Pte．Ltd． \\
［Sales office］
\end{tabular}} & \multirow{2}{*}{Singapore} & \multirow{2}{*}{No． 3 Bedok South Road Singapore 469269} & ＋65－6390－3718 \\
\hline & & & & & ＋65－9435－6844 \\
\hline & \multirow{3}{*}{Singapore} & \multirow{3}{*}{Intermech Machinery Pte．Ltd． ［Distributors］} & \multirow{3}{*}{Singapore} & \multirow[t]{2}{*}{2 Woodlands Sector 1 \＃03－25，Woodlands Spectrum 1 Singapore 738068} & ＋65－6751－5088 \\
\hline & & & & & ＋65－6759－2122 \\
\hline & & & & Web site http：／／www．intermech．com．sg & \\
\hline & \multirow{6}{*}{Malaysia} & \multirow{3}{*}{Panamech Machinery Sdn Bhd ［Distributors］} & \multirow{3}{*}{Kuala} & \multirow[t]{2}{*}{No．14，Lorong Sanggul 1C，Bandar Puteri， 41200 Klang，Selangor Darul Ehsan} & ＋60－3－5161－7876 \\
\hline & & & & & ＋60－3－5161－7136 \\
\hline & & & & Web site \({ }^{\text {http：／／panamech．com．my／}}\) & \\
\hline & & \multirow{3}{*}{Panamech（PG）Sdn Bhd ［Distributors］} & \multirow{3}{*}{Penang} & \multirow[t]{2}{*}{Sri Relau Komplex，Unit 1－3－11，Persiaran Bukit Jambul 1， 11900 Penang} & ＋60－4－643－8266 \\
\hline & & & & & ＋60－4－645－1639 \\
\hline & & & & Web site http：／／panamech．com．my／ & \\
\hline & \multirow{6}{*}{Thailan} & \multirow{3}{*}{Premier Automation Center Co．，Ltd． ［Distributors］} & \multirow{3}{*}{Bangkok} & \multirow[t]{2}{*}{73 Soi Ladkrabang 30 Ladkrabang Ladkrabang Bangkok 10520} & ＋66－2181－2299 \\
\hline & & & & & ＋66－2181－2288 \\
\hline & & & & Web site http：／www．premier－ac．co．th & \\
\hline & & \multirow[b]{3}{*}{Plenty Island（Thai）Co．，Ltd．
［Distributors］} & \multirow{3}{*}{Bangkok} & \multirow[t]{2}{*}{3 Soi Charoenrat 10，Charoenrat Road．， Bangkhlo，Bangkhorlaem，Bangkok 10120} & ＋66－2291－9933 \\
\hline & & & & & ＋66－2291－2065 \\
\hline & & & & Web site \({ }^{\text {htipp／／www．plenty．co．th }}\) & \\
\hline & \multirow{6}{*}{Indonesia} & \multirow{3}{*}{PT．Handal Yesindo Sejahtera ［Distributors］} & \multirow{3}{*}{Surabaya} & \multirow[b]{2}{*}{JI．Raya Kutisari 8A，Surabaya，Indonesia} & ＋62－31－843－8844 \\
\hline & & & & & ＋62－31－841－4333 \\
\hline & & & & Web site \({ }^{\text {http：／／www．handalyesindo．com }}\) & \\
\hline & & \multirow{3}{*}{PT．Riasarana Electrindo ［Distributors］} & \multirow{3}{*}{Jakarta} & \multirow[t]{2}{*}{JI．Prof．Dr．Latumenten Grogol Permai blok D No．8－15 Jakarta 11460，Indonesia} & ＋62－21－564－9178 \\
\hline & & & & & ＋62－21－566－7405 \\
\hline & & & & Web site \({ }^{\text {http：／／www．risacorps．com }}\) & \\
\hline & \multirow{3}{*}{Philippines} & \multirow{3}{*}{Movaflex Designs Unlimited，Inc． ［Distributors］} & \multirow{3}{*}{Manila} & \multirow[t]{2}{*}{136 Calbayog Street，Mandaluyong City， Metro Manila，Philippines．} & ＋63－2－881－3636 \\
\hline & & & & & ＋63－2－998－3881 \\
\hline & & & & Web site http：／／www．movaflex．com／ & \\
\hline
\end{tabular}

勝特力電材超市一龍山店 886－3－5773766
勝特力電材超市一光復店 886－3－5729570
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
http：／／www．100y．com．tw```

[^0]: Please downioad from our web site and use after install to the PC

[^1]: Dimensions are subject to change without notice Contact us or a dealer for the latest information

[^2]: (a) Encoder connector
 (b) Motor/Brake connector

[^3]: Dotted line represents the torque at 10% less supply voltage.

