www.ti.com

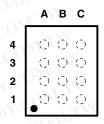
4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR WITH AUTOMATIC DIRECTION SENSING AND ±15-kV ESD PROTECTION

Check for Samples: TXB0104

FEATURES

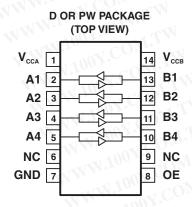
- 1.2 V to 3.6 V on A Port and 1.65 V to 5.5 V on B Port (V_{CCA} ≤ V_{CCB})
- V_{CC} Isolation Feature If Either V_{CC} Input Is at GND, All Outputs Are in the High-Impedance State
- OE Input Circuit Referenced to V_{CCA}
- Low Power Consumption, 5-μA Max I_{CC}
- I_{off} Supports Partial-Power-Down Mode Operation
- A Port

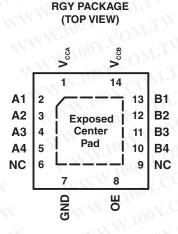
JESD 78, Class II

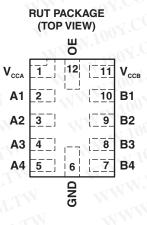

2500-V Human-Body Model (A114-B)

Latch-Up Performance Exceeds 100 mA Per

ESD Protection Exceeds JESD 22


- 1500-V Charged-Device Model (C101)
- B Port
 - ±15-kV Human-Body Model (A114-B)
 - 1500-V Charged-Device Model (C101)


GXU/ZXU PACKAGE (TOP VIEW)



TERMINAL ASSIGNMENTS (GXU/ZXU Package)

I.TV	Α	100 Y. B. O.M.	С
4	A4	GND	B4
3	A3	OE	В3
2	A2	V _{CCA}	B2
1	A1	V_{CCB}	B1

N.C. - No internal connection

For RGY, if the exposed center pad is used it must only be connected to as a secondary ground or left electrically open.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TERMINAL ASSIGNMENTS (YZT Package) 2 1 **GND** D A4 B4 OE C A3 **B**3 В A2 B2 V_{CCA} Α A1 V_{CCB} B1

DESCRIPTION/ORDERING INFORMATION

This 4-bit noninverting translator uses two separate configurable power-supply rails. The A port is designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes. V_{CCA} should not exceed V_{CCB} .

When the output-enable (OE) input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The TXB0104 is designed so that the OE input circuit is supplied by V_{CCA}.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION(1)

TA	PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING (3)
MMM'	NanoFree™ — WCSP (DSBGA) 0.23-mm Large Bump – YZT (Pb-free) 0.625-mm max height	Reel of 3000	TXB0104YZTR	2 K
	UFBGA – GXU	Reel of 2500	TXB0104GXUR	YE04
	UFBGA – ZXU (Pb-Free)	Reel of 2500	TXB0104ZXUR	YE04
	OFW POV	D = 1 = (4000	TXB0104RGYR	VEOU 100 1
	QFN – RGY	Reel of 1000	TXB0104RGYRG4	YE04
40°C to 85°C	uQFN – RUT	Reel of 1000	TXB0104RUTR	2KR
	M.1001.	T b £ . C .	TXB0104D	LANN TON TOOM
	POID TO OX CONTRACTOR	Tube of 50	TXB0104DG4	TVD0404
	SOIC - D	David of 0500	TXB0104DR	TXB0104
	WW.100 COM.1	Reel of 2500	TXB0104DRG4	MMM.T. CC
	TOCOD DW	Dark of 2000	TXB0104PWR	VEOA
	TSSOP – PW	Reel of 2000	TXB0104PWRG4	YE04

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

⁽²⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

⁽³⁾ YZT: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the wafer fab/assembly site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).

www.ti.com

PIN DESCRIPTION

PIN I	NO.	BALI	NO.	Diar.	M.M. COM. T.M.
D, PW, OR RGY	RUT	GXU/ ZXU	YZT	NAME	FUNCTION
1	1	B2	B2	V _{CCA}	A-port supply voltage 1.2 V \leq V _{CCA} \leq 3.6 V and V _{CCA} \leq V _{CCB} .
2	2	A1	A3	A1	Input/output 1. Referenced to V _{CCA} .
3	3	A2	B3	A2	Input/output 2. Referenced to V _{CCA} .
4	4	A3	C3	A3	Input/output 3. Referenced to V _{CCA} .
5	5	A4	D3	A4	Input/output 4. Referenced to V _{CCA} .
6	7.7.7	_	-1.V	NC	No connection. Not internally connected.
7	6	B4	D2	GND	Ground
8 CC	12	В3	C2	OE	3-state output-mode enable. Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA} .
9	7.7	_	1/7/	NC	No connection. Not internally connected.
10	7	C4	D1	B4	Input/output 4. Referenced to V _{CCB} .
11	8	C3	C1	В3	Input/output 3. Referenced to V _{CCB} .
12	9	C2	B1	B2	Input/output 2. Referenced to V _{CCB} .
13	10	C1	A1	B1	Input/output 1. Referenced to V _{CCB} .
14	1100	B1	A2	V _{CCB}	B-port supply voltage 1.65 V ≤ V _{CCB} ≤ 5.5 V.

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

- 1	Milan COM.	Mr.	MIN	MAX	UNIT
V_{CCA}	Supply voltage range	OM:1	-0.5	4.6	1/
V _{CCB}	Supply voltage range	oM.TW	-0.5	6.5	V
v <	Manufacturation of the second	A port	-0.5	4.6	WILL
V _I	Input voltage range	B port	-0.5	6.5	V V
\ /	Voltage range applied to any output in the high-impedance or	A port	-0.5	4.6	Mir
Vo	power-off state	B port	-0.5	6.5	V
\/	Valtage range applied to any output in the high or law state (2)	A port	-0.5	V _{CCA} + 0.5	V
Vo	Voltage range applied to any output in the high or low state (2)	B port	-0.5	V _{CCB} + 0.5	$CO_{\lambda^{1/2}}$
I _{IK}	Input clamp current	V _I < 0		-50	mA
l _{OK}	Output clamp current	V _O < 0	411	-50	mA
lo	Continuous output current	· COM	V W	±50	mA
	Continuous current through V _{CCA} , V _{CCB} , or GND	N.Ing L'COM.		±100	mA
T _{stg}	Storage temperature range	M.1001. OM.1	-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

Copyright © 2006–2010, Texas Instruments Incorporated

THERMAL IMPEDANCE RATINGS

THIN THE OV. COM.	WWW. OOY.CO. TW	Ų	UNIT
W.I. COM.	D package ⁽¹⁾	86	
	GXU/ZXU package ⁽¹⁾	129	
Day of Washington Handley and and O. Co.	PW package ⁽¹⁾	113	00/14/
θ _{JA} Package thermal impedance	RGY package (2)	47	°C/W
	RUT package	TBD	
	YZT package	90	

- (1) The package thermal impedance is calculated in accordance with JESD 51-7.
- The package thermal impedance is calculated in accordance with JESD 51-5. (2)

RECOMMENDED OPERATING CONDITIONS⁽¹⁾ (2)

_ ≤ 1	COM	WW.I	V _{CCA}	V _{CCB}	MIN	MAX	UNIT
V_{CCA}	Supply voltage	100°	COM		1.2	3.6	V
V _{CCB}	Supply voltage	N 1 100	M.T.W	W	1.65	5.5	v
V	High lovel input voltage	Data inputs	1.2 V to 3.6 V	1.65 V to 5.5 V	$V_{CCI} \times 0.65^{(3)}$	V _{cci}	V
V _{IH}	High-level input voltage	OE	1.2 V to 3.6 V	1.65 V to 5.5 V	V _{CCA} × 0.65	5.5	V
wij 1	Laurianis Calvidana	Data inputs	1.2 V to 5.5 V	1.65 V to 5.5 V	W.100	$V_{CCI} \times 0.35^{(3)}$	V
V _{IL}	Low-level input voltage	OE	1.2 V to 3.6 V	1.65 V to 5.5 V	1007.0	V _{CCA} × 0.35	V
MW	Voltage range applied to any	A-port	TONY.CO	TW W	0 100	3.6	
Vo	output in the high-impedance or power-off state	B-port	1.2 V to 3.6 V	1.65 V to 5.5 V	0.	5.5	V
-737	M.Inn. COM.	A-port inputs	1.2 V to 3.6 V	1.65 V to 5.5 V	JWW.	40	ĺ
Δt/Δν	Input transition rise or fall rate	5	13/21/1 2 2 V O	1.65 V to 3.6 V	JAN Jun	40	ns/V
	rise of fail fale	B-port inputs	1.2 V to 3.6 V	4.5 V to 5.5 V	100	30	M
T _A	Operating free-air temperature	eV v	M.M. Cr	TW	-40	85	°C

The A and B sides of an unused data I/O pair must be held in the same state, i.e., both at V_{CCI} or both at GND.

(3) V_{CCI} is the supply voltage associated with the input port. WWW.100Y.COM

Submit Documentation Feedback

100Y.COM.TW

⁽²⁾ V_{CCA} must be less than or equal to V_{CCB} and must not exceed 3.6 V.

www.ti.com

ELECTRICAL CHARACTERISTICS(1) (2)

over recommended operating free-air temperature range (unless otherwise noted)

D	ARAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	T _A = 25°C	–40°C to 85°C	UNI
M	ANAMETER	TEOT GONDITIONS	▼CCA	• CCB	MIN TYP MAX	MIN MAX	0141
V _{OHA}		I _{OH} = -20 μA	1.2 V	W 10	1.1		V
VOHA	TV	IOH = -20 μA	1.4 V to 3.6 V		MY.CO.	$V_{CCA} - 0.4$	V
vc.01		I _{OL} = 20 μA	1.2 V	MWW.	0.9	N	V
V_{OLA}	MIIM	IOL = 20 μA	1.4 V to 3.6 V	Wir	100 . COM'1	0.4	V
V_{OHB}	WIN	$I_{OH} = -20 \mu A$	I.L.	1.65 V to 5.5 V	11007.	V _{CCB} - 0.4	V
V_{OLB}	OM	$I_{OL} = 20 \mu A$	V.COM TW	1.65 V to 5.5 V	. TOON CO.	0.4	V
կ	OE	$V_I = V_{CCI}$ or GND	1.2 V to 3.6 V	1.65 V to 5.5 V	CO±1	±2	μΑ
001.	A port	V_I or $V_O = 0$ to 3.6 V	0 V	0 V to 5.5 V	±1)	±2	
loff	B port	V_{I} or $V_{O} = 0$ to 5.5 V	0 V to 3.6 V	0 V	±1	±2	μА
loz	A or B port	OE = GND	1.2 V to 3.6 V	1.65 V to 5.5 V	. ±1	±2	μΑ
1.100	COM		1.2 V	1.65 V to 5.5 V	0.06	OM	
10		$V_I = V_{CCI}$ or GND,	1.4 V to 3.6 V	1.65 V to 5.5 V	100 2	5	^
ICCA		$I_{O} = 0$	3.6 V	0 V	MM. 1007.	2	μА
			0 V	5.5 V	MAM	_2	
-TXN	100 2	N. J.	1.2 V	1.65 V to 5.5 V	3.4	COM.	
		$V_I = V_{CCI}$ or GND,	1.4 V to 3.6 V	1.65 V to 5.5 V	11,100	5	
ICCB		I _O = 0	3.6 V	0 V	11/1/10	-2	μА
		OVI	0 V	5.5 V	MMM.	.C. 2	
M.	17XV.100 1.	$V_I = V_{CCI}$ or GND,	1.2 V	1.65 V to 5.5 V	3.5	COM	σV Δ
I _{CCA} +	ICCB	$I_0 = 0$	1.4 V to 3.6 V	1.65 V to 5.5 V	N. T.	10	μА
11	WWW	$V_I = V_{CCI}$ or GND,	1.2 V	1.65 V to 5.5 V	0.05	1100Y.	LM
I _{CCZA}		I _O = 0, OE = GND	1.4 V to 3.6 V	1.65 V to 5.5 V	MM	5	μА
	TANW.IO	$V_I = V_{CCI}$ or GND,	1.2 V	1.65 V to 5.5 V	3.3	M. COL	- 111
I _{CCZB}		I _O = 0, OE = GND	1.4 V to 3.6 V	1.65 V to 5.5 V	CVV VV	C 5	μА
Ci	OE	Mor. CON'LA	1.2 V to 3.6 V	1.65 V to 5.5 V	3	4	pF
_	A port	100Y.	4.0.1/10.0.1/	1051/1557/	5	6	MO
C_{io}	B port	COM.	1.2 V to 3.6 V	1.65 V to 5.5 V	. 11	14	○ pF

Copyright © 2006-2010, Texas Instruments Incorporated

 V_{CCI} is the supply voltage associated with the input port.

V_{CCO} is the supply voltage associated with the output port. (2)

TIMING REQUIREMENTS

 $T_A = 25^{\circ}C, V_{CCA} = 1.2 \text{ V}$

	TW WWW.100Y.COM.TW	V _{CCB} = 1.8 V TYP	V _{CCB} = 2.5 V TYP	V _{CCB} = 3.3 V TYP	V _{CCB} = 5 V TYP	UNIT
027	Data rate	20	20	20	20	Mbps
t _w	Pulse duration Data inputs	50	50	50	50	ns

1007			V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3	3.3 V 3 V	V _{CCB} :	= 5 V 5 V	UNIT
003			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
100	Data rate	WWW. COX.C	OF	40	WW	40	ON.C.	40		40	Mbps
t _w	Pulse duration	Data inputs	25	T	25	MM^{-1}	25	Ohr	25		ns

TIMING REQUIREMENTS

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (unless otherwise noted)

NW			V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		V _{CCB} = ± 0.5	= 5 V 5 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	Ī
-TXN	Data rate	WWW.	A COD	60	V	60	MM	60	$Co_{h_{x}}$	60	Mbps
t _w	Pulse duration	Data inputs	17	MI	17		17	Inc	17	10 1	ns

TIMING REQUIREMENTS

			V _{CCB} = 2 ± 0.2		V _{CCB} = ± 0.3		V _{CCB} = ± 0.5	5 V V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	TV
	Data rate	M.I.	COL	100		100	W.Inc.	100	Mbps
t _w	Pulse duration	Data inputs	10	TILLE	10	111	10	¥	ns

		$V_{CCB} = 3$ ± 0.3	3.3 V V	V _{CCB} = ± 0.5	5 V V	UNIT
		MIN	MAX	MIN	MAX	ov C
Data rate	WITH	M.100 1.	100	NA .	100	Mbps
Pulse duration	Data inputs	10		10		ns

Product Folder Link(s): TXB0104

100Y.COM.TW

W.100Y.COM.TW

www.ti.com

SWITCHING CHARACTERISTICS

 $T_A = 25^{\circ}C, V_{CCA} = 1.2 \text{ V}$

PARAMETER	FROM	то	V _{CCB} = 1.8 V	V _{CCB} = 2.5 V	V _{CCB} = 3.3 V	$V_{CCB} = 5 V$	UNIT
PARAMETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	UNIT
WILL	A	В	6.9	5.7	5.3	5.5	
t _{pd}	В	V.COA	7.4	6.4	6	5.8	ns
COM	OF WWW.I	A	1	1	ON 1	1	
^t en	t _{en} OE	В	1	1.100	COM	1	μS
Y.CO. TW	OF.	A T	18	15	14	14	
t _{dis}	OE	В	20	17	16	16	ns
t _{rA} , t _{fA}	A-port rise a	nd fall times	4.2	4.2	4.2	4.2	ns
t _{rB} , t _{fB}	B-port rise a	nd fall times	2.1	1.5	1.2	1.1	ns
t _{SK(O)}	Channel-to-c	hannel skew	0.4	0.5	0.5	1.4	ns
Max data rate		MAN . TO CO	20	20	20	20	Mbps

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (unless otherwise noted)

PARAMETER	FROM	TO	V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		V _{CCB} :		UNIT
1, 100 x.	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
1007	OOY AW	В 10	1.4	12.9	1.2	10.1	1.1	10	0.8	9.9	
t _{pd}	COMB	Α	0.9	14.2	0.7	12	0.4	11.7	0.3	13.7	ns
IN TOO	COM	Α	av C	0 1	- N	1	WWW	1	V.CO	.1	N.
t _{en}	OE	В	100 -	1	T	1	-731	1	-1 C(1	μS
WWW	07.00	Α	5.9	31	5.7	25.9	5.6	23	5.7	22.4	LA
t _{dis}	OE	В	5.4	30.3	4.9	22.8	4.8	20	4.9	19.5	ns
t _{rA} , t _{fA}	A-port rise a	and fall times	1.4	5.1	1.4	5.1	1.4	5.1	1.4	5.1	ns
t _{rB} , t _{fB}	B-port rise a	and fall times	0.9	4.5	0.6	3.2	0.5	2.8	0.4	2.7	ns
t _{SK(O)}	Channel-to-	channel skew	110	0.5	AM.T	0.5		0.5	N 100	0.5	ns
Max data rate	N. P. COMP.	TV V	40	ON.C	40	TW	40	WW	40	M.C.	Mbps

PARAMETER	FROM	TO	V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		V _{CCB} = 0.5		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	~1 C
	A 100%	В	1.6	11	1.4	7.7	1.3	6.8	1.2	6.5	0 2.
t _{pd}	В	COMA	1.5	12	1.3	8.4	11	7.6	0.9	7.1	ns
	OE	CONA		1		1.C9		1		1	. 00
t _{en}	W OE 100	В		1	N.100	1	M.	1		1	μS
	OE	A	5.9	31	5.1	21.3	5	19.3	5	17.4	1.100
t _{dis}	OE.	СВ	5.4	30.3	4.4	20.8	4.2	17.9	4.3	16.3	ns
$t_{rA},\ t_{fA}$	A-port rise a	nd fall times	1	4.2	1.1	4.1	1.1	4.1	1.1	4.1	ns
t_{rB},t_{fB}	B-port rise a	nd fall times	0.9	3.8	0.6	3.2	0.5	2.8	0.4	2.7	ns
t _{SK(O)}	Channel-to-c	hannel skew	IN	0.5	111	0.5		0.5		0.5	ns
Max data rate	WWW	N. P. COM	60		60	. 00	60		60	V	Mbps

Product Folder Link(s): TXB0104

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted)

PARAMETER	FROM	TO	V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		V _{CCB} = ± 0.5		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	
OM.	Α	CON B	1.1	6.3	CO	5.2	0.9	4.7	
t pd	В	A	1.2	6.6	1.1	5.1	0.9	4.4	ns
COSTI	100	A	4/1/	1	001.	1.1	N.	1	_
CO ten	OE	V.CO B	W	1	on Y.C.	1	W	1	μS
COM	OE WW.	COA	5.1	21.3	4.6	15.2	4.6	13.2	20
^t dis	OE .	В	4.4	20.8	3.8	16	3.9	13.9	ns
t _{rA} , t _{fA}	A-port rise a	and fall times	0.8	3	0.8	3	0.8	3	ns
t _{rB} , t _{fB}	B-port rise a	and fall times	0.7	2.6	0.5	2.8	0.4	2.7	ns
t _{SK(O)}	Channel-to-o	channel skew	-08]	0.5	M.In.	0.5	W.	0.5	ns
Max data rate	In M.	211001. CONT.	100		100	0 7.	100	- T	Mbps

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted)

N
W
ns
1.4
μS
ns
ns
ns
ns
Mbps
5

Submit Documentation Feedback

Copyright © 2006–2010, Texas Instruments Incorporated

100Y.COM.TW

www.ti.com

OPERATING CHARACTERISTICS

COM.TW

		COM	< X	MM	av C	V _{CCA}	V			
		on. COMIT	1.2 V	1.2 V	1.5 V	1.8 V	2.5 V	2.5 V	3.3 V	
	CV	OTTOT CONDITIONS	V _{CCB}							
PARAMETER		TEST CONDITIONS	5 V	1.8 V	1.8 V	1.8 V	2.5 V	5 V	3.3 V to 5 V	
· · · ()	OW.1	M.Inn. COM.	TYP	TYP	TYP	TYP	TYP	TYP	TYP	
<u> </u>	A-port input, B-port output	C = 0 f = 10 MHz	7.8	10	9	8	8	8	(
C _{pdA}	B-port input, A-port output	$C_L = 0, f = 10 \text{ MHz},$ $t_r = t_f = 1 \text{ ns},$	12	11	11	11	11	11	1	
CON	A-port input, B-port output	OE = V _{CCA}	38.1	28	28	28	29	29	29	
C_{pdB}	B-port input, A-port output	(outputs enabled)	25.4	19	18	18	19	21	22	
100	A-port input, B-port output	$C_1 = 0, f = 10 \text{ MHz},$	0.01	0.01	0.01	0.01	0.01	0.01	0.0	
C_{pdA}	B-port input, A-port output	$t_r = t_f = 1 \text{ ns},$	0.01	0.01	0.01	0.01	0.01	0.01	0.0	
6.70	A-port input, B-port output	OE = GND	0.01	0.01	0.01	0.01	0.01	0.01	0.03	
C _{pdB}	B-port input, A-port output	(outputs disabled)	0.01	0.01	0.01	0.01	0.01	0.01	0.04	

Submit Documentation Feedback

100Y.COM.TW

PRINCIPLES OF OPERATION

Applications

The TXB0104 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another.

Architecture

The TXB0104 architecture (see Figure 1) does not require a direction-control signal to control the direction of data flow from A to B or from B to A. In a dc state, the output drivers of the TXB0104 can maintain a high or low, but are designed to be weak, so that they can be overdriven by an external driver when data on the bus starts flowing the opposite direction.

The output one shots detect rising or falling edges on the A or B ports. During a rising edge, the one shot turns on the PMOS transistors (T1, T3) for a short duration, which speeds up the low-to-high transition. Similarly, during a falling edge, the one shot turns on the NMOS transistors (T2, T4) for a short duration, which speeds up the high-to-low transition. The typical output impedance during output transition is 70 Ω at V_{CCO} = 1.2 V to 1.8 V, 50 Ω at V_{CCO} = 1.8 V to 3.3 V, and 40 Ω at V_{CCO} = 3.3 V to 5 V.

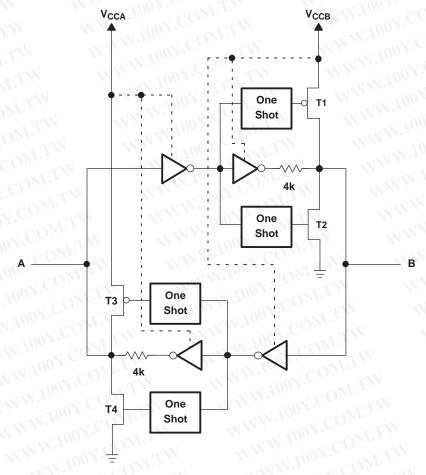
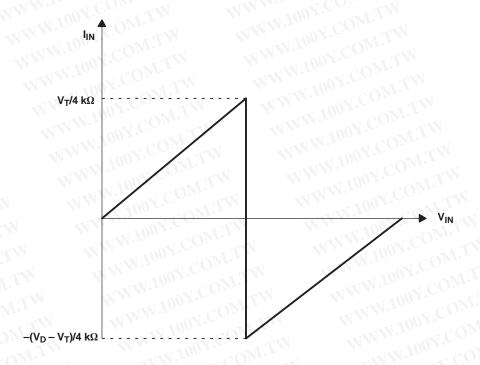



Figure 1. Architecture of TXB0104 I/O Cell

Input Driver Requirements

Typical I_{IN} vs V_{IN} characteristics of the TXB0104 are shown in Figure 2. For proper operation, the device driving the data I/Os of the TXB0104 must have drive strength of at least ± 2 mA.

- A. V_T is the input threshold voltage of the TXB0104 (typically $V_{CCI}/2$).
- B. V_D is the supply voltage of the external driver.

Figure 2. Typical I_{IN} vs V_{IN} Curve

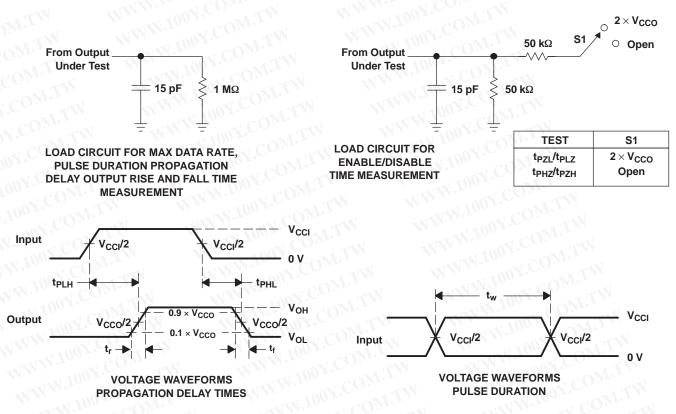
Power Up

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} \ge V_{CCB}$ does not damage the device, so any power supply can be ramped up first. The TXB0104 has circuitry that disables all output ports when either V_{CC} is switched off ($V_{CCA/B} = 0 \text{ V}$).

Enable and Disable

The TXB0104 has an OE input that is used to disable the device by setting OE = low, which places all I/Os in the high-impedance (Hi-Z) state. The disable time (t_{dis}) indicates the delay between when OE goes low and when the outputs acutally get disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

Pullup or Pulldown Resistors on I/O Lines


The TXB0104 is designed to drive capacitive loads of up to 70 pF. The output drivers of the TXB0104 have low dc drive strength. If pullup or pulldown resistors are connected externally to the data I/Os, their values must be kept higher than 50 k Ω to ensure that they do not contend with the output drivers of the TXB0104.

For the same reason, the TXB0104 should not be used in applications such as I²C or 1-Wire where an open-drain driver is connected on the bidirectional data I/O. For these applications, use a device from the TI TXS01xx series of level translators.

Copyright © 2006–2010, Texas Instruments Incorporated

PARAMETER MEASUREMENT INFORMATION

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $dv/dt \geq$ 1 V/ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd}.
- E. V_{CCI} is the V_{CC} associated with the input port.
- F. V_{CCO} is the V_{CC} associated with the output port.
- G. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuits and Voltage Waveforms

17-Sep-2010

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp (3)	Samples (Requires Login)
TXB0104D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
TXB0104DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
TXB0104DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Samples
TXB0104DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Sample
TXB0104GXUR	ACTIVE	BGA MICROSTAR JUNIOR	GXU	12	2500	TBD	SNPB	Level-1-240C-UNLIM	Contact TI Distributor or Sales Office
TXB0104PWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Sample
TXB0104PWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Sample
TXB0104RGYR	ACTIVE	VQFN	RGY	14	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	Request Free Sample
TXB0104RGYRG4	ACTIVE	VQFN	RGY	14	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	Request Free Sample
TXB0104RUTR	ACTIVE	UQFN	RUT	12	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Sample
TXB0104YZTR	ACTIVE	DSBGA	YZT	12	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	Request Free Sample
TXB0104ZXUR	ACTIVE	BGA MICROSTAR JUNIOR	ZXU	12	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	Request Free Sample

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

17-Sep-2010

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

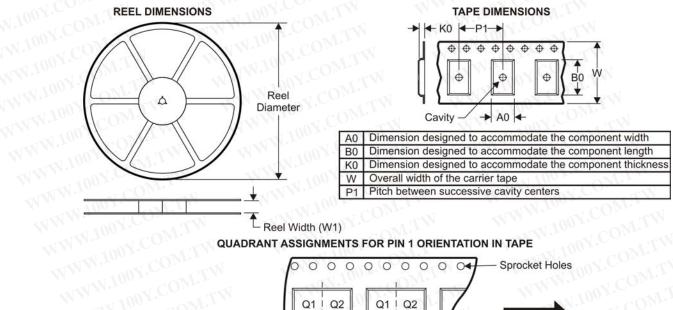
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

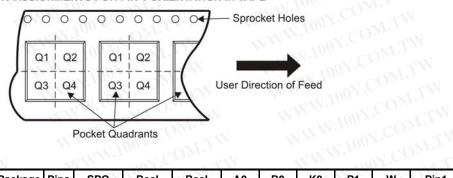
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TXB0104:

Automotive: TXB0104-Q1

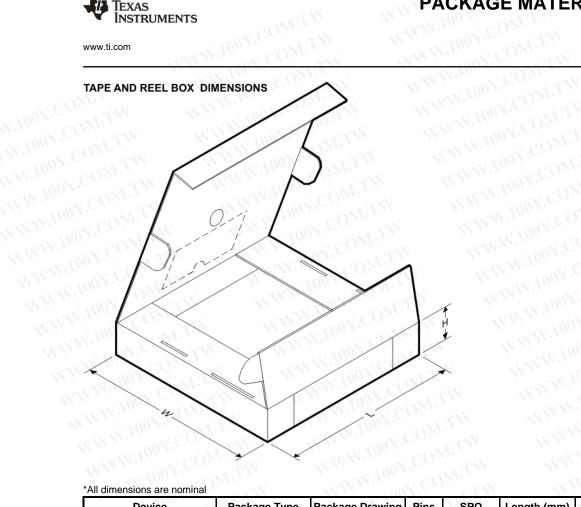

NOTE: Qualified Version Definitions:


Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

W.100Y.COM.TW www.ti.com 10-Sep-2010

TAPE AND REEL INFORMATION



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	(mm)	Pin1 Quadrant
TXB0104DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TXB0104GXUR	BGA MI CROSTA R JUNI OR	GXU	12	2500	330.0	8.4	2.3	2.8	1.0	4.0	8.0	Q2
TXB0104PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
XB0104RGYR	VQFN	RGY	14	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1
TXB0104RUTR	UQFN	RUT	12	3000	180.0	8.4	1.95	2.3	0.75	4.0	8.0	Q1
TXB0104YZTR	DSBGA	YZT	12	3000	180.0	8.4	1.49	1.99	0.75	4.0	8.0	Q2
TXB0104ZXUR	BGA MI CROSTA R JUNI OR	ZXU	12	2500 N	330.0	8.4	2.3	2.8	1.0	4.0	8.0	Q2

100Y.COM.TW

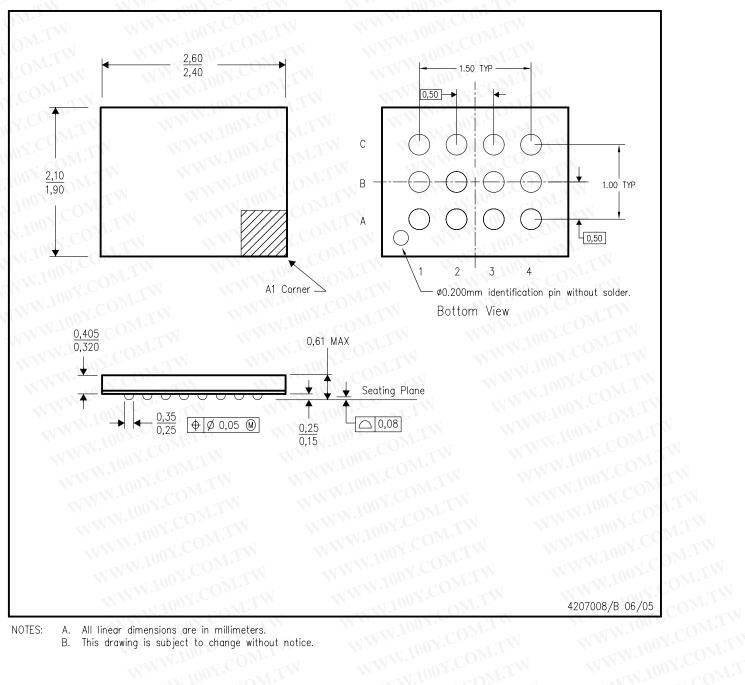
EWW.100Y.COM. .COM.TW www ti com 10-Sep-2010

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TXB0104DR	SOIC	D	14	2500	346.0	346.0	33.0
TXB0104GXUR	BGA MICROSTAR JUNIOR	GXU	12	2500	340.5	338.1	20.6
TXB0104PWR	TSSOP	PW	14	2000	346.0	346.0	29.0
TXB0104RGYR	VQFN	RGY	14	3000	346.0	346.0	29.0
TXB0104RUTR	UQFN	RUT	12	3000	202.0	201.0	28.0
TXB0104YZTR	DSBGA	YZT	12	3000	190.5	212.7	31.8
TXB0104ZXUR	BGA MICROSTAR JUNIOR	ZXU	12	2500	340.5	338.1	20.6

WWW.100Y.COM.TW

WWW.100 Y.C.


WWW.100Y.COM.TW

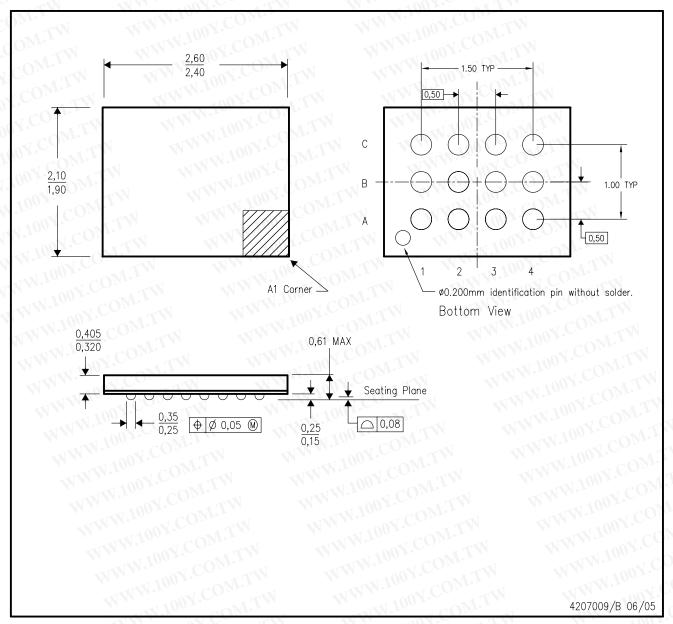
T100Y.COM.TW

GXU (S-PBGA-N12)

W.100Y.COM.TW

PLASTIC BALL GRID ARRAY

NOTES: All linear dimensions are in millimeters.

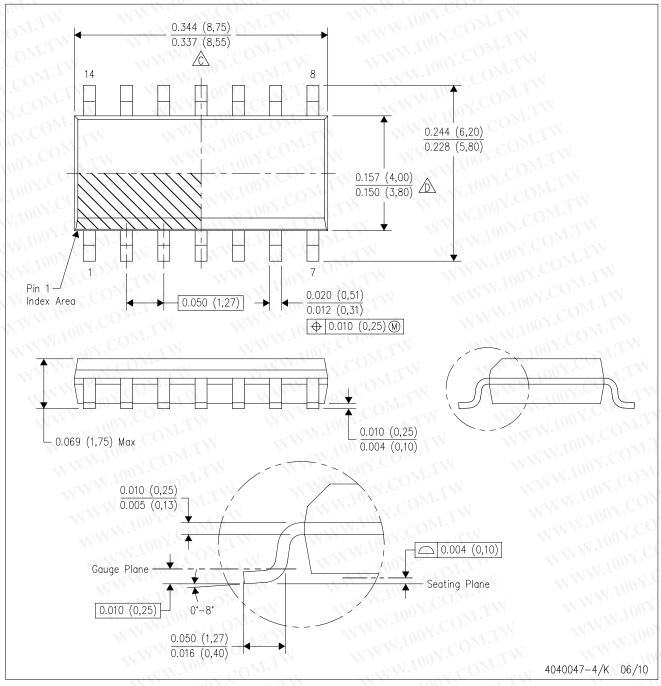

> This drawing is subject to change without notice. WWW.toox.com

WWW.100X.

ZXU (S-PBGA-N12)

PLASTIC BALL GRID ARRAY

NOTES:

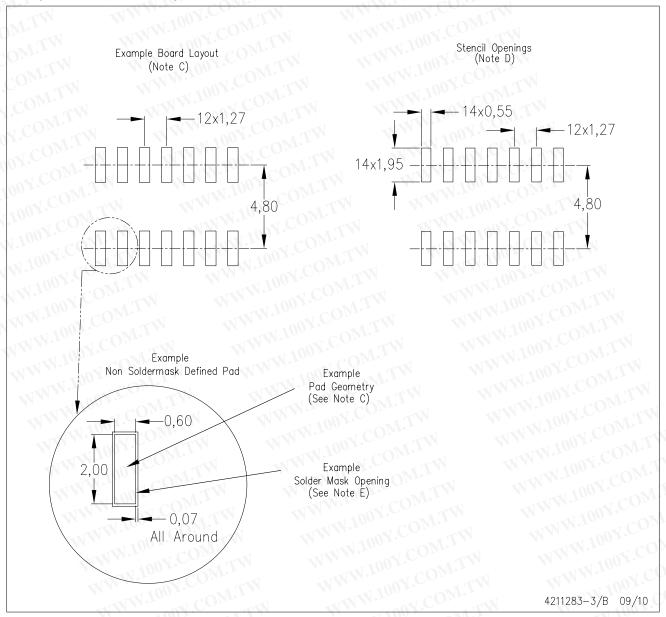

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. This package is a lead-free solder ball design.

WWW.100Y

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

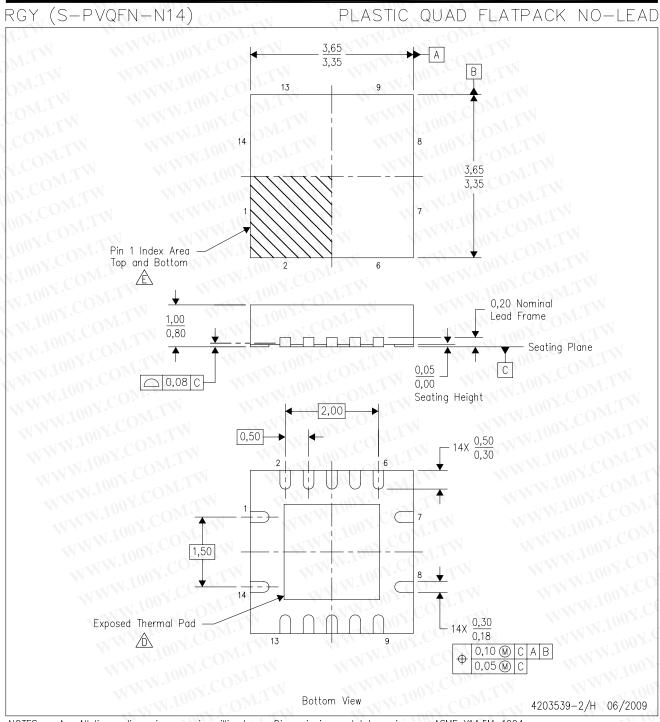
NOTES:


- All linear dimensions are in inches (millimeters).
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end. WWW.100Y.COM
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AB.

WWW.100Y.C

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE


NOTES:

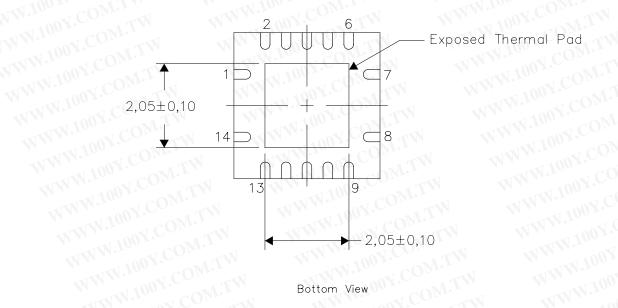
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.

WWW.100Y.C

E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- F. Package complies to JEDEC MO-241 variation BA.


WWW.100Y

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

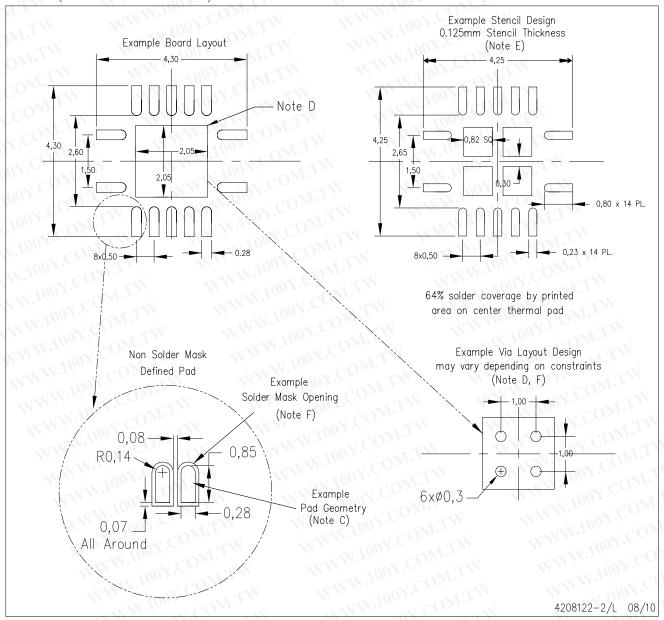
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES: All linear dimensions are in millimeters

WWW.100Y.CO

M. 100X.COM

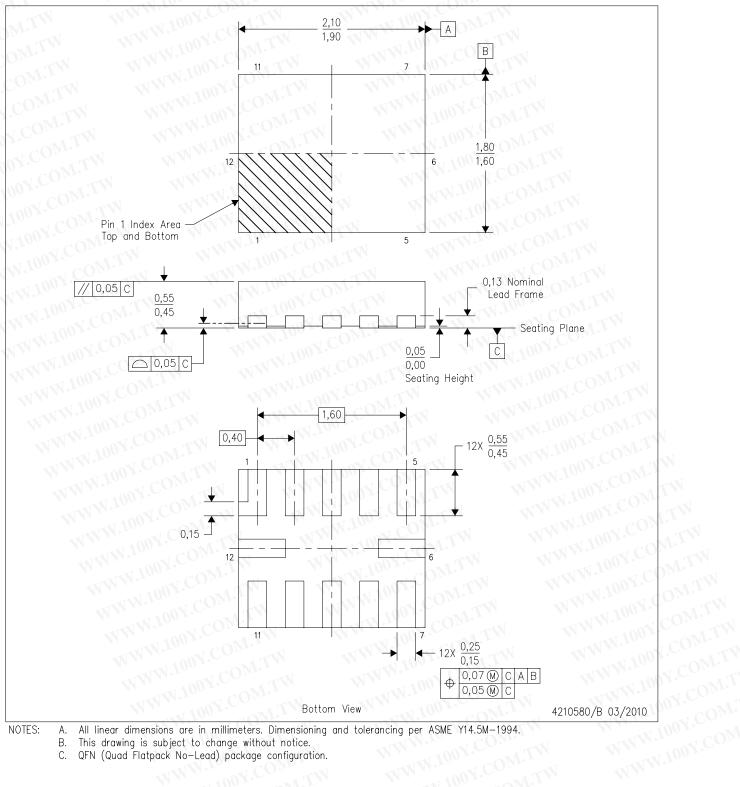

WWW.100Y.COM.T Exposed Thermal Pad Dimensions

WW 100Y.COM.T

WWW.100Y.CO

(S-PVQFN-N14)

FLATPACK NO-LEAD PLASTIC QUAD


NOTES:

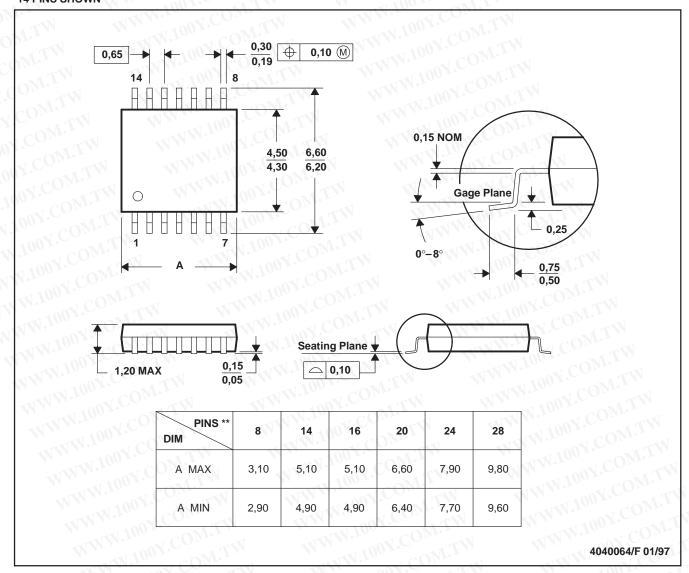
- All linear dimensions are in millimeters. Α.
- This drawing is subject to change without notice.
- Publication IPC-7351 is recommended for alternate designs.
- This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. WWW.100Y.C
- Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

RUT (R-PUQFN-N12)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- В. This drawing is subject to change without notice.
- QFN (Quad Flatpack No-Lead) package configuration.



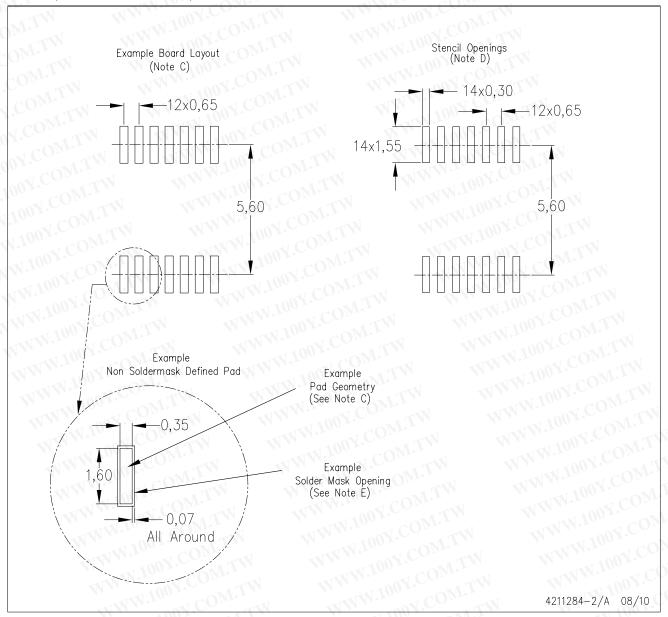
WWW.100Y

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

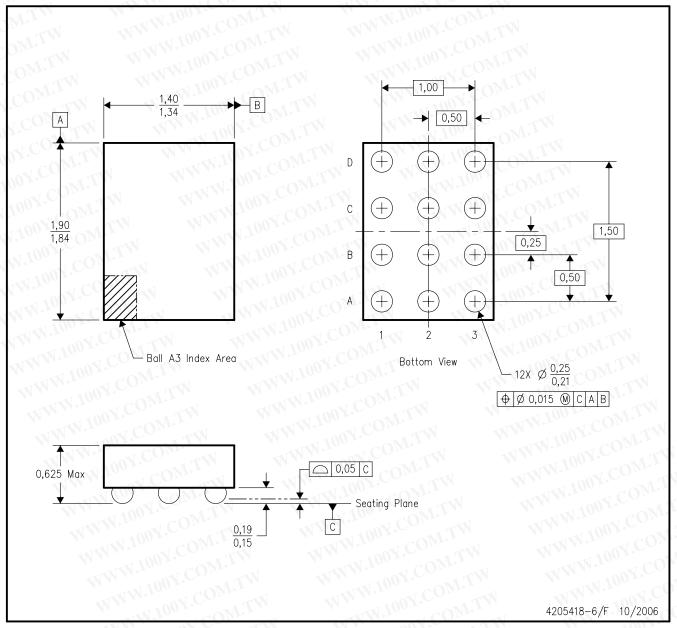
D. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.


WWW.100Y.

E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

YZT (R-XBGA-N12)

(CUSTOM) DIE-SIZE BALL GRID ARRAY

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. NanoFree™ package configuration.
 - D. This is a lead—free solder ball design.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.C

NanoFree is a trademark of Texas Instruments.

