FEATURES

Superior Replacement for Other 1．2 V References
Wide Operating Range： $50 \mu \mathrm{~A}$ to 5 mA
Low Power： $60 \mu \mathrm{~W}$ Total P_{D} at $50 \mu \mathrm{~A}$
Low Temperature Coefficient：
$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max， $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$（AD589M）
$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max，$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$（AD589U）
Two－Terminal＂Zener＂Operation
Low Output Impedance： 0.6Ω
No Frequency Compensation Required
Low Cost
MIL－STD－883 Compliant Versions Available

PRODUCT DESCRIPTION

The AD589 is a two－terminal，low cost，temperature compen－ sated bandgap voltage reference which provides a fixed 1.23 V output voltage for input currents between $50 \mu \mathrm{~A}$ and 5.0 mA ．
The high stability of the AD 589 is primarily dependent upon the matching and thermal tracking of the on－chip components． Analog D evices＇precision bipolar processing and thin－film technology combine to provide excellent performance at low cost．

Additionally，the active circuit produces an output impedance ten times lower than typical low－T C Zener diodes．This feature allows operation with no external components required to maintain full accuracy under changing load conditions．
The AD 589 is available in seven versions．The AD 589），K，L and M grades are specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operation，while the S, T ，and U grades are rated for the full $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range．All grades are available in a metal can （H－02A）package．The AD 589）is also available in an 8－pin SOIC package．

FUNCTIONAL BLOCK DIAGRAMS

SOIC（SO－8）

Metal Can（H－02A）

BOTTOM VIEW

PRODUCT HIGHLIGHTS

1．The AD589 is a two－terminal device which delivers a constant reference voltage for a wide range of input current．

2．O utput impedance of 0.6Ω and temperature coefficients as low as $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ insure stable output voltage over a wide range of operating conditions．
3．The AD 589 can be operated as a positive or negative reference．＂Floating＂operation is also possible．
4．The AD 589 will operate with total current as low as $50 \mu \mathrm{~A}$ （ $60 \mu \mathrm{~W}$ total power dissipation），ideal for battery powered instrument applications．
5．The AD 589 is an exact replacement for other 1.2 V ref－ erences，offering superior temperature performance and reduced sensitivity to capacitive loading．
6．The AD 589 is available in versions compliant with M IL－ ST D－883．Refer to the Analog D evices M ilitary Products D atabook or current AD 589／883B data sheet for detailed specifications．

REV．B

[^0]AD589－SPECIFICATMNS（typical＠ $\mathrm{I}_{\mathbb{N}}=500 \mu \mathrm{~A}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted）
勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www． 100 y ．com．tw

NOTES

${ }^{1}$ See the following page for explanation of temperature coefficient measurement method．
${ }^{2}$ Optimum performance is obtained at currents below $500 \mu \mathrm{~A}$ ．For current operation below $200 \mu \mathrm{~A}$ ，stray shunt capacitances should be limited to 20 pF or increased to $1 \mu \mathrm{~F}$ ．If strays can not be avoided，operation at $500 \mu \mathrm{~A}$ and a shunt capacitor of at least 1000 pF are recommended． ${ }^{3} \mathrm{H}=\mathrm{H}$ ermetic M etal Can；SO＝SOIC．
Specifications shown in boldface are tested on all production units at final electrical test．
Specifications subject to change without notice．

ABSOLUTE MAXIMUM RATINGS

Current ．． 10 mA
Reverse Current ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10 mA
Power Dissipation ${ }^{1}$ ．．．．．．．．．．．．．．．．．．．．．．．．．． 125 mW
Storage Temperature ．．．．．．．．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
O perating Junction T emperature Range ．．．．$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead T emperature（Soldering， 10 sec ）．．．．．．．．．．．．．$+300^{\circ} \mathrm{C}$
NOTE
${ }^{1}$ Absolute maximum power dissipation is limited by maximum current through the device． M aximum rating at elevated temperatures must be computed assuming $T_{j} \leq 150^{\circ} \mathrm{C}$ ，and $\theta_{\mathrm{JA}}=400=\mathrm{C} / \mathrm{W}$ ．

AD589 CHIP DIMENSIONS AND PAD LAYOUT

THE AD589 IS AVAILABLE IN CHIP FORM WITH FULLY TESTED AND GUARANTEED SPECIFICATIONS．CONSULT FACTORY FOR AND GUARANTEED SPECIFICATIONS
AVAILABLE GRADES AND PRICING．

VOLTAGE VARIATION VS．TEMPERATURE

Some confusion exists in the area of defining and specifying reference voltage error over temperature．H istorically，references have been characterized using a maximum deviation per degree Centigrade；i．e．， $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．H owever，because of nonlinearities in temperature characteristics，which originated in standard Zener references（such as＂S＂type characteristics）most manufacturers have begun to use a maximum limit error band approach to specify devices．This technique involves measure－ ment of the output at 3，5 or more different temperatures to guarantee that the output voltage will fall within the given error band．The temperature characteristics of the AD 589 consis－ tently follows the curve shown in Figure 1．Three－point measurement guarantees the error band over the specified temperature range．T he temperature coefficients specified on the previous page represent the slopes of the diagonals of the error band from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ and $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}$ ．

Figure 1．Typical AD589 Temperature Characteristics

Figure 2．Noise Spectral Density

DYNAMIC PERFORMANCE

M any low power instrument manufacturers are becoming increasingly concerned with the turn－on characteristics of the components being used in their systems．Fast turn－on compo－ nents often enable the end user to keep power off when not needed，and yet respond quickly when the power is turned on for operation．Figure 3 displays the turn－on characteristics of the AD 589．T his characteristic is generated from cold－start opera－ tion and represents the true turn－on waveform after an extended period with the supplies off．T he figure shows both the coarse and fine transient characteristics of the device；the total settling time to within ± 1 millivolt is about 25μ s，and there is no long thermal tail appearing after that point．

Figure 3．Output Settling Characteristics

Figure 4．Schematic Diagram

AD589

APPLICATION INFORMATION

The AD 589 functions as a two－terminal shunt－type regulator．It provides a constant 1.23 V output for a wide range of input current from $50 \mu \mathrm{~A}$ to 5 mA ．Figure 5 shows the simplest configuration for an output voltage of 1.2 V or less．Note that no frequency compensation is required．If additional filtering is desired for ultralow noise applications，minimum recommended capacitance is 1000 pF ．

Figure 5．Basic Configuration for 1.2 V or Less
The AD 589 can also be used as a building block to generate other values of reference voltage．Figure 6 shows a circuit which produces a buffered 10 V output．T otal supply current for this circuit is approximately 2 mA ．

Figure 6．Single Supply Buffered 10 V Reference The low power operation of the AD 589 makes it ideal for use in battery operated portable equipment．It is especially useful as a reference for CM OS analog－to－digital converters．Figure 7 shows the AD 589 used in conjunction with two popular integrating type CM OS A／D converters．

a．With 7109 12－Bit Binary A／D

b．With 7107 Panel Meter A / D
Figure 7．AD589 Used as Reference for CMOS A／D Converters
The AD 589 also is useful as a reference for CM OS multiplying DACs such as the AD 7533．These DACs require a negative reference voltage in order to provide a positive output range． F igure 8 shows the AD 589 used to supply an equivalent -1.0 V reference to an AD 7533.

Figure 8．AD589 as Reference for 10－Bit CMOS DAC

OUTLINE DIMENSIONS AND PIN DESIGNATIONS

Dimensions shown in inches and（mm）．

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable．However，no responsibility is assumed by Analog Devices for its use，nor for any infringements of patents or other rights of third parties which may result from its use．No license is granted by implication or otherwise under any patent or patent rights of Analog Devices．

