LC ${ }^{2}$ MOS Single +5 V Supply， Low Power，12－Bit Sampling ADC

FEATURES
12－Bit Monolithic A／D Converter
66 kHz Throughput Rate
$12 \mu \mathrm{~s}$ Conversion Time
$3 \mu \mathrm{~s}$ On－Chip Track／Hold Amplifier
Low Power
Power Save Mode： $\mathbf{2} \mathbf{~ m W}$ typ
Normal Operation： 25 mW typ
70 dB SNR
Fast Data Access Time： 57 ns
Small 24－Lead SOIC and 0．3＂DIP Packages
APPLICATIONS
Battery Powered Portable Systems
Digital Signal Processing
Speech Recognition and Synthesis
High Speed Modems
Control and Instrumentation

GENERAL DESCRIPTION

T he AD 7880 is a high speed，low power，12－bit A／D converter which operates from a single +5 V supply．It consists of a $3 \mu \mathrm{~s}$ track／hold amplifier，a $12 \mu \mathrm{~s}$ successive－approximation ADC， versatile interface logic and a multiple－input－range circuit．The part also includes a power save feature．
An internal resistor network allows the part to accept both uni－ polar and bipolar input signals while operating from a single +5 V supply．F ast bus access times and standard control inputs ensure easy interfacing to modern microprocessors and digital signal processors．
The AD 7880 features a total throughput time of 15μ s and can convert full power signals up to 33 kHz with a sampling fre－ quency of 66 kHz ．
In addition to the traditional dc accuracy specifications such as linearity，full－scale and offset errors，the AD 7880 is also fully specified for dynamic performance parameters including har－ monic distortion and signal－to－noise ratio．
The AD 7880 is fabricated in Analog D evices＇Linear Compat－ ible CM OS（LC²M OS）process，a mixed technology process that combines precision bipolar circuits with low power CM OS logic．The part is available in a 24－pin， 0.3 inch－wide，plastic or hermetic dual－in－line package（DIP）as well as a small 24－lead SOIC package．

REV． 0

[^0]FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1．F ast Conversion Time．
$12 \mu \mathrm{~s}$ conversion time and $3 \mu \mathrm{~s}$ acquisition time allow for large input signal bandwidth．This performance is ideally suited for applications in areas such as telecommunications， audio，sonar and radar signal processing．
2．Low Power Consumption． 2 mW power consumption in the power－down mode makes the part ideally suited for portable，hand held，battery pow－ ered applications．
3．M ultiple Input Ranges．
The part features three user－determined input ranges， 0 V to $+5 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V and $\pm 5 \mathrm{~V}$ ．These unipolar and bipolar ranges are achieved with a 5 V only power supply．

> 勝 特 力 材 料 $886-3-5753170$胜特力电子(上海) $86-21-54151736$胜特力电子(深圳) $86-755-83298787$ Http: //www. 100 y. com. tw

AD7880－SPECIFICATIONS $\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, V_{\text {REF }}=V_{D D}, A G N D=D G N D=0 \mathrm{~V}, f_{C L K N}=2.5 \mathrm{MHz}, \mathrm{MODE}=\mathrm{V}_{D D}\right.$ unless otherwise noted．All Specifications $\mathrm{T}_{\text {MI }}$ to $\mathrm{T}_{\text {Max }}$ unless otherwise noted．）

Parameter	B Versions ${ }^{1}$	C Versions ${ }^{1}$	Units	Test Conditions／Comments
DYNAMIC PERFORMANCE ${ }^{2}$ Signal－to－N oise Ratio ${ }^{3}$（SN R） Total H armonic Distortion（THD） Peak H armonic or Spurious N oise Intermodulation Distortion（IM D） Second Order T erms Third Order T erms	$\begin{array}{r} 70 \\ -80 \\ -80 \\ -80 \\ -80 \\ \hline \end{array}$	$\begin{aligned} & 70 \\ & -80 \\ & -80 \\ & -80 \\ & -80 \\ & \hline \end{aligned}$	dB min dB typ dB typ dB typ dB typ	Typically SN R Is 72 dB $\mathrm{V}_{\text {IN }}=1 \mathrm{kHz}$ Sine Wave， $\mathrm{f}_{\text {SAMPLE }}=66 \mathrm{kHz}$ $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{kHz}$ Sine Wave， $\mathrm{f}_{\text {SAM PLE }}=66 \mathrm{kHz}$ $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{f}_{\text {SAMPLE }}=66 \mathrm{kHz}$ $\mathrm{fa}=0.983 \mathrm{kHz}, \mathrm{fb}=1.05 \mathrm{kHz}, \mathrm{f}_{\text {SAMPLE }}=66 \mathrm{kHz}$ $\mathrm{fa}=0.983 \mathrm{kHz}, \mathrm{fb}=1.05 \mathrm{kHz}, \mathrm{f}_{\text {SAMPLE }}=66 \mathrm{kHz}$
DC ACCURACY Resolution Integral N onlinearity Differential N onlinearity Full－Scale Error Bipolar Zero Error U nipolar Offset Error	$\begin{aligned} & 12 \\ & \\ & \pm 1 \\ & \pm 1 \\ & \pm 15 \\ & \pm 10 \\ & \pm 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & \pm 1 \\ & \pm 1 \\ & \pm 5 \\ & \pm 5 \\ & \pm 5 \\ & \hline \end{aligned}$	Bits LSB max LSB max LSB max LSB max LSB max	All DC ACCURACY Specifications Apply for the T hree Analog Input Ranges Guaranteed M onotonic
ANALOG INPUT Input Voltage Ranges Input Resistance	$\begin{aligned} & 0 \text { to } \mathrm{V}_{\text {REF }} \\ & 0 \text { to } 2 \mathrm{~V}_{\text {REF }} \\ & \pm \mathrm{V}_{\text {REF }} \\ & 10 \\ & 5 / 12 \\ & 5 / 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \text { to } V_{\text {REF }} \\ & 0 \text { to } 2 V_{\text {REF }} \\ & \pm V_{\text {REF }} \\ & 10 \\ & 5 / 12 \\ & 5 / 12 \end{aligned}$	Volts Volts Volts $M \Omega$ min $\mathrm{k} \Omega$ min／max $\mathrm{k} \Omega$ min $/$ max	See Figure 5 See Figure 6 See Figure 7 0 to $V_{\text {REF }}$ Range $8 \mathrm{k} \Omega$ typical： 0 to $2 \mathrm{~V}_{\text {REF }}$ Range $8 \mathrm{k} \Omega$ typical：$\pm \mathrm{V}_{\text {REF }}$ Range
REFERENCEINPUT $\mathrm{V}_{\text {REF }}$（F or Specified Performance） $I_{\text {Ref }}$ N ominal Reference Range	$\begin{aligned} & 5 \\ & 1.5 \\ & 2.5 N_{D D} \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 1.5 \\ & 2.5 N_{D D} \\ & \hline \end{aligned}$	V mA max \checkmark min／max	$\pm 5 \%$ ：N ormally $V_{\text {REF }}=V_{D D}$（See Reference Input Section） See Figure 3 for D egradation in Performance D own to 2.5 V
LOGIC INPUTS CONVST，$\overline{\mathrm{RD}}, \overline{\mathrm{CS}}$, CLKIN Input High Voltage， $\mathrm{V}_{\text {INH }}$ Input Low Voltage， $\mathrm{V}_{\text {INL }}$ Input Current， I_{IN} Input Capacitance， $\mathrm{C}_{1 \mathrm{~N}}{ }^{4}$ MODE INPUT Input High Voltage， $\mathrm{V}_{\text {INH }}$ Input Low Voltage， $\mathrm{V}_{\text {INL }}$ Input Current， I_{IN} Input Capacitance， $\mathrm{C}_{\text {IN }}{ }^{4}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 10 \\ & 10 \\ & 4 \\ & 1 \\ & 1 \\ & \pm 125 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 10 \\ & 10 \\ & \\ & 4 \\ & 1 \\ & \pm 125 \\ & 10 \\ & \hline \end{aligned}$	V min \checkmark max $\mu \mathrm{A}$ max pF max V min V max $\mu \mathrm{A}$ max pF max	$V_{I N}=0 V \text { or } V_{D D}$ 勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力 电子（深圳）86－755－83298787 $V_{I N}=0 V \text { or } V_{D D}$ Http：／／www． 100 y ．com．tw
LOGIC OUTPUTS DB11－DB0，$\overline{B U S Y}$ Output High Voltage， $\mathrm{V}_{\text {OH }}$ Output Low Voltage， V_{OL} DB11－DB0 F loating－State Leakage C urrent F loating－State Output C apacitance ${ }^{4}$	$\begin{aligned} & 4.0 \\ & 0.4 \\ & \pm 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 0.4 \\ & \pm 10 \\ & 10 \\ & \hline \end{aligned}$	V min V max $\mu \mathrm{A}$ max pF max	$\begin{aligned} & I_{\text {SOURCE }}=400 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {SINK }}=1.6 \mathrm{~mA} \end{aligned}$
CONVERSION Conversion Time Track／H old Acquisition Time	$\begin{aligned} & 12 \\ & 3 \end{aligned}$	$\begin{aligned} & 12 \\ & 3 \end{aligned}$	$\mu \mathrm{s}$ max $\mu \mathrm{S} \max$	$\mathrm{f}_{\text {CLKIN }}=2.5 \mathrm{M} \mathrm{Hz}$
POWER REQUIREMENTS $V_{D D}$ IDD N ormal Power M ode＠$+25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ Power Save M ode＠$+25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ Power Dissipation N ormal Power M ode＠$+25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$ Power Save M ode＠$+25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	+5 7.5 10 750 1 37.5 50 3.75 5	$\begin{aligned} & +5 \\ & 7.5 \\ & 10 \\ & 750 \\ & 1 \\ & \\ & 37.5 \\ & 50 \\ & 3.75 \\ & 5 \\ & \hline \end{aligned}$	V nom mA max mA max $\mu \mathrm{A}$ max mA max mW max mW max mW max mW max	$\pm 5 \%$ for Specified Performance Typically $4 \mathrm{~mA} ; \mathrm{MODE}=\mathrm{V}_{\mathrm{DD}}$ Typically 5 mA ； $\mathrm{MODE}=\mathrm{V}_{\mathrm{DD}}$ Logic Inputs＠ 0 V or $\mathrm{V}_{\mathrm{DD}} ; \mathrm{MODE}=0 \mathrm{~V}$ Logic Inputs＠ 0 V or $\mathrm{V}_{\mathrm{DD}} ; \mathrm{M} \mathrm{ODE}=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ ：Typically 20 mW ；M ODE $=\mathrm{V}_{\mathrm{DD}}$ $V_{D D}=5 \mathrm{~V}$ ：Typically 25 mW ；M ODE $=\mathrm{V}_{\mathrm{DD}}$ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ ：T ypically 2 mW ；M ODE $=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ ：T ypically 2.5 mW ；M ODE $=0 \mathrm{~V}$

[^1]
TIMING CHARACTERISTICS ${ }^{1}\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, V_{\text {REF }}=V_{D D}, A G N D=D G N D=0 \mathrm{~V}\right)$

Parameter	Limit at $+\mathbf{2 5}^{\circ} \mathrm{C}$ （All Versions）	Limit at TMIN， TMAX $_{\text {m }}$ （All Versions）	Units	Conditions／Comments
t_{1}	50	50	ns min	CONVST Pulse Width
t_{2}	130	130	ns min	$\overline{\text { CONVST }}$ to $\overline{\text { BUSY }}$ F alling Edge
t_{3}	0	0	ns min	$\overline{\text { BUSY }}$ to $\overline{\mathrm{CS}}$ Setup T ime
t_{4}	0	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Setup Time
t_{5}	0	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}} \mathrm{H}$ old T ime
t_{6}	60	75	$n \mathrm{~ns}$ min	$\overline{\mathrm{RD}}$ Pulse Width
$\mathrm{t}_{7}{ }^{2}$	57	70	ns max	D ata A ccess T ime after $\overline{\mathrm{RD}}$
$t_{8}{ }^{3}$	$\begin{aligned} & 5 \\ & 50 \end{aligned}$	$\begin{aligned} & 5 \\ & 50 \end{aligned}$	ns min ns max	Bus R elinquish Time after $\overline{\mathrm{RD}}$

NOTES

${ }^{1}$ T iming specifications in bold print are 100% production tested．All other times are sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance．All input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}(10 \%$ to 90% of 5 V$)$ and timed from a voltage level of 1.6 V ．
${ }^{2} \mathrm{t}_{7}$ is measured with the load circuit of Figure 2 and defined as the time required for an output to cross 0.8 V or 2.4 V ．
${ }^{3} \mathrm{t}_{8}$ is derived from the measured time taken by the data outputs to change by 0.5 V when loaded with the circuit of F igure 2 ．The measured number is then extrapo－ lated back to remove the effects of charging the 50 pF capacitor．This means that the time， t_{8} ，quoted in the timing characteristics is the true bus relinquish time of the part and as such is independent of external bus loading capacitances．

Figure 1．Timing Diagram

Figure 2．Load Circuit for Access and Relinquish Time

Table I．Truth Table

$\overline{\overline{\mathbf{C S}}}$	$\overline{\mathbf{C O N V S T}}$	$\overline{\mathbf{R D}}$	Function
1	1	X	N ot Selected
1	j	1	Start Conversion g
0	1	0	Enable AD C D ata
0	1	1	D ata Bus Three Stated

ABSOLUTE MAXIMUM RATINGS＊

$V_{\text {DD }}$ to AGND	$-0.3 \mathrm{~V} \text { to }+7 \mathrm{~V}$
$V_{D D}$ to DGND	-0.3 V to＋7 V
AGND to DGND ．．．．．．．．．．．．．．．．．．－0．	-0.3 V to $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {INA }}, \mathrm{V}_{\text {INB }}$ to $A G N D$（Figure 5）．．．．．-0.3	-0.3 V to $\mathrm{V}_{\text {D }}+0.3 \mathrm{~V}$
$V_{\text {INA }}$ to AGND（Figure 6）．．．．．．．．．－0．6	0.6 V to $2 \mathrm{~V} D{ }^{\text {d }}+0.6 \mathrm{~V}$
$V_{\text {INA }}$ to $A G N D$（Figure 7）．．．． $\mathrm{V}_{\text {DD }}-0$.	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$V_{\text {REF }}$ to AGND	0.3 V to V_{DD}
Digital Inputs to DGND ．．．．．．．．．．－0．	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Outputs to DGND ．．．．．．．．．．－0．3	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating T emperature R ange	
Industrial（B，C Versions）	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature R ange	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
L ead T emperature（Soldering， 10 secs）	$+300^{\circ} \mathrm{C}$
Power D issipation（Any Package）to $+75^{\circ} \mathrm{C}$	C ．．．．．．． 450 mW
Derates above $+75^{\circ} \mathrm{C}$ by	$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

＊Stresses above those listed under＂Absolute M aximum Ratings＂may cause permanent damage to the device．This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

CAUTION

ESD（electrostatic discharge）sensitive device．Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection． Although the AD 7880 features proprietary ESD protection circuitry，permanent damage may occur on devices subjected to high energy electrostatic discharges．Therefore，proper ESD precautions are recommended to avoid performance degradation or loss of functionality．

PIN FUNCTION DESCRIPTION

Pin No．	Pin Mnemonic	Function
1	$V_{\text {INA }}$	Analog Input．
2	$V_{\text {INB }}$	A nalog Input．
3	AGND	Analog Ground．
4	$\mathrm{V}_{\text {REF }}$	V oltage Reference Input．This is normally tied to $\mathrm{V}_{\text {D }}$ ．
5	$\overline{\mathrm{CS}}$	C hip Select．Active Low Logic input．The device is selected when this input is active．
6	CONVST	Convert Start．A low to high transition on this input puts the track／hold into hold mode and starts con－ version．This input is asynchronous to the CLKIN and is independent of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ ．
7	$\overline{\mathrm{RD}}$	Read．Active Low Logic Input．T his input is used in conjunction with $\overline{\mathrm{CS}}$ low to enable data outputs．
8	$\overline{\text { BUSY }}$	Active L ow L ogic Output．This status line indicates converter status．$\overline{\text { BUSY }}$ is low during conversion．
9	CLKIN	Clock Input．T T L－compatible logic input．U sed as the clock source for the A／D converter．The mark／ space ratio of the clock can vary from 40／60 to 60／40．
10	DGND	Digital Ground．
11．．． 22	DB0－DB11	T hree－State D ata Outputs．These become active when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are brought low．
23	M ODE	M ODE Input．This input is used to put the device into the power save mode（ M ODE $=0 \mathrm{~V}$ ）．During normal operation，the MODE input will be a logic high（ $\mathrm{MODE}=\mathrm{V}_{\mathrm{DD}}$ ）．
24	$V_{\text {D }}$	Power Supply．This is nominally +5 V ．

CIRCUIT INFORMATION

The AD 7880 is a +5 V single supply 12 －bit A／D converter．T he part requires no external components apart from a $2.5 \mathrm{M} \mathrm{Hzex-}$ ternal clock and power supply decoupling capacitors．It contains a 12－bit successive approximation ADC based on a fast－settling voltage－output DAC，a high speed comparator and SAR，as well as the necessary control logic．The charge balancing comparator used in the AD 7880 provides the user with an inherent track－ and－hold function．The ADC is specified to work with sampling rates up to 66 kHz ．

CONVERTER DETAILS

The AD 7880 conversion cycle is initiated on the rising edge of the CONVST pulse，as shown in the timing diagram of Figure 1．The rising edge of the CONVST pulse places the track／hold amplifier into＂H OLD＂mode．The conversion cycle then takes between 26 and 28 clock periods．The maximum specified con－ version time is $12 \mu \mathrm{~s}$ ．T his corresponds to a conversion cycle time of 28 clock periods with a CLKIN frequency of 2.5 M Hz and also includes internal propagation delays．During conver－ sion the $\overline{\text { BUSY }}$ output will remain low，and the output databus drivers will be three－stated．When a conversion is completed， the BUSY output will go to a high level，and the result of the conversion can be read by bringing $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low．
The track／hold amplifier acquires a 12－bit input signal in $3 \mu \mathrm{~s}$ ． The overall throughput time for the AD 7880 is equal to the conversion time plus the track／hold acquisition time．For a 2.5 M Hz input clock the throughput time is $15 \mu \mathrm{~s}$ ．

REFERENCE INPUT

For specified performance，it is recommended that the reference input be tied to V_{DD} ．The part，however，will operate with a ref－ erence down to 2.5 V though with reduced performance specifi－ cations．Figure 3 shows a graph of signal－to－noise ratio（SNR） versus $\mathrm{V}_{\text {REF }}$ ．
$\mathrm{V}_{\text {REF }}$ must not be allowed to go above V_{DD} by more than 100 mV ．

Figure 3．$S N R$ vs．$V_{\text {REF }}$

ANALOG INPUT

The AD 7880 has two analog input pins， $\mathrm{V}_{\text {INA }}$ and $\mathrm{V}_{\text {Inb }}$ ．Figure 4 shows the input circuitry to the ADC sampling comparator． The on－board attenuator network，made up of equal resistors， allows for various input ranges．

Figure 4．AD7880 Input Circuit
The AD 7880 accommodates three separate input ranges， 0 to $\mathrm{V}_{\text {REF }}, 0$ to $2 \mathrm{~V}_{\text {REF }}$ and $\pm \mathrm{V}_{\text {REF }}$ ．The input configurations corre－ sponding to these ranges are shown in Figures 5， 6 and 7.

With $V_{R E F}=V_{D D}$ and using a nominal $V_{D D}$ of +5 V ，the input ranges are 0 V to $5 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V and +5 V ，as shown in Table II．

Table II．Analog Input Ranges

Analog Input Range	$\mathrm{V}_{\text {ReF }}$	Input Connections		Connection Diagram
		$\mathrm{V}_{\text {INA }}$	$\mathrm{V}_{\text {INB }}$	
0 V to +5 V	$V_{\text {D }}$	$V_{\text {IN }}$	$V_{\text {IN }}$	Figure 5
0 V to +10 V	$V_{\text {D }}$	$V_{\text {IN }}$	AGND	Figure 6
$\pm 5 \mathrm{~V}$	$V_{D D}$	$V_{\text {IN }}$	$\mathrm{V}_{\text {REF }}$	Figure 7

Figure 5． 0 to $V_{\text {REF }}$ Unipolar Input Configuration

Figure 6．O to $2 V_{R E F}$ Unipolar Input Configuration

Figure 7．$\pm V_{\text {REF }}$ Bipolar Input Configuration

The AD 7880 has two unipolar input ranges， 0 V to 5 V and 0 V to 10 V ．Figure 5 shows the analog input for the 0 V to 5 V range．The designed code transitions occur midway between successive integer LSB values（i．e．，1／2 LSB，3／2 LSBs， $5 / 2$ LSBs ．．．FS－3／2 LSBs）．The output code is straight binary with $1 \mathrm{LSB}=\mathrm{FS} / 4096=5 \mathrm{~V} / 4096=1.22 \mathrm{mV}$ ．The same applies for the 0 V to 10 V range，as shown in Figure 6，except that the LSB size is bigger．In this case $1 \mathrm{LSB}=\mathrm{FS} / 4096=10 \mathrm{~V} / 4096=$ 2.44 mV ．T he ideal input／output transfer characteristic for both these unipolar ranges is shown in Figure 8.

Figure 8．AD7880 Unipolar Transfer Characteristic
Figure 7 shows the AD 7880 ＇s $\pm 5 \mathrm{~V}$ bipolar analog input con－ figuration．Once again the designed code transitions occur mid－ way between successive integer LSB values．The output code is straight binary with $1 \mathrm{LSB}=\mathrm{FS} / 4096=10 \mathrm{~V} / 4096=2.44 \mathrm{mV}$ ． The ideal bipolar input／output transfer characteristic is shown in Figure 9.

Figure 9．AD7880 Bipolar Transfer Characteristic

CLOCK INPUT

The AD 7880 is specified to operate with a 2.5 M Hz clock con－ nected to the CLKIN input pin．This pin may be driven directly by CM OS or T TL buffers．The mark／space ratio on the clock can vary from 40／60 to 60／40．As the clock frequency is slowed down，it can result in slightly degraded accuracy performance． This is due to leakage effects on the hold capacitor in the inter－ nal track－and－hold amplifier．Figure 10 is a typical plot of accu－ racy versus clock frequency for the $A D C$ ．

Figure 10．Normalized Linearity Error vs．Clock Frequency

TRACK／HOLD AMPLIFIER

The charge balanced comparator used in the AD 7880 for the A／D conversion provides the user with an inherent track／hold function．The track／hold amplifier acquires an input signal to 12 －bit accuracy in less than $3 \mu \mathrm{~s}$ ．The overall throughput time is equal to the conversion time plus the track／hold amplifier acqui－ sition time．For a 2.5 M Hz input clock，the throughput time is $15 \mu \mathrm{~s}$ ．
The operation of the track／hold amplifier is essentially transpar－ ent to the user．The track／hold amplifier goes from its tracking mode to its hold mode at the start of conversion，i．e．，on the ris－ ing edge of CONVST as shown in Figure 1.

OFFSET AND FULL－SCALE ADJUSTMENT

In most Digital Signal Processing（DSP）applications，offset and full－scale errors have little or no effect on system performance． Offset error can always be eliminated in the analog domain by ac coupling．Full－scale error effect is linear and does not cause problems as long as the input signal is within the full dynamic range of the ADC．Some applications will require that the input signal range match the maximum possible dynamic range of the ADC．In such applications，offset and full－scale error will have to be adjusted to zero．
The following sections describe suggested offset and full－scale adjustment techniques which rely on adjusting the inherent off－ set of the op amp driving the input to the ADC as well as tweak－ ing an additional external potentiometer as shown in Figure 11.

滕 特 力 材 料 886－3－5753170
 胜特力电子（上海）86－21－54151736
 胜特力电子（深圳）86－755－83298787
 Http：／／www． 100 y．com．tw

Figure 11．Offset and Full－Scale Adjust Circuit

Unipolar Adjustments

In the case of the 0 V to 5 V unipolar input configuration，unipolar offset error must be adjusted before full－scale error．Adjustment is achieved by trimming the offset of the op amp driving the ana－ log input of the AD 7880．This is done by applying an input voltage of $0.61 \mathrm{mV}(1 / 2 \mathrm{LSB})$ to V_{1} in Figure 11 and adjusting the op amp offset voltage until the ADC output code flickers between 000000000000 and 000000000001 ．F or full－scale adjustment，an input voltage of 4.9982 V （FS－3／2 LSBs）is applied to V_{1} and R 2 is adjusted until the output code flickers between 111111111110 and 111111111111.
The same procedure is required for the 0 V to 10 V input con－ figuration of F igure 6 ．An input voltage of $1.22 \mathrm{mV}(1 / 2 \mathrm{LSB})$ is applied to V_{1} in Figure 11 and the op amp＇s offset voltage is adjusted until the ADC output code flickers between 00000000 0000 and 000000000001 ．For full－scale adjustment，an input voltage of 9.9963 V （ $\mathrm{FS}-3 / 2 \mathrm{LSBs}$ ）is applied to V_{1} and R 2 is adjusted until the output code flickers between 111111111110 and 111111111111.

Bipolar Adjustments

Bipolar zero and full－scale errors for the bipolar input configura－ tion of Figure 7 are adjusted in a similar fashion to the unipolar case．Again，bipolar zero error must be adjusted before full－scale error．Bipolar zero error adjustment is achieved by trimming the offset of the op amp driving the analog input of the AD 7880 while the input voltage is $1 / 2$ LSB below ground．This is done by applying an input voltage of $-1.22 \mathrm{mV}(1 / 2 \mathrm{LSB})$ to V_{1} in Figure 11 and adjusting the op amp offset voltage until the ADC output code flickers between 011111111111 and 1000 00000000 ．For full－scale adjustment，an input voltage of 4.9982 V （ $\mathrm{FS} / 2-3 / 2 \mathrm{LSBs}$ ）is applied to V_{1} and R 2 is adjusted until the output code flickers between 111111111110 and 111111111111.

DYNAMIC SPECIFICATIONS

The AD 7880 is specified and tested for dynamic performance specifications as well as traditional dc specifications such as integral and differential nonlinearity．The ac specifications are required for signal processing applications such as speech recog－ nition，spectrum analysis and high speed modems．These appli－ cations require information on the ADC＇s effect on the spectral content of the input signal．H ence，the parameters for which the AD 7880 is specified include SN R，harmonic distortion，inter－ modulation distortion and peak harmonics．These terms are dis－ cussed in more detail in the following sections．

Signal－to－Noise Ratio（SNR）

SN R is the measured signal－to－noise ratio at the output of the ADC．The signal is the rms magnitude of the fundamental． N oise is the rms sum of all the nonfundamental signals up to half the sampling frequency（FS／2）excluding dc．SNR is depen－ dent upon the number of quantization levels used in the digiti－ zation process；the more levels，the smaller the quantization noise．The theoretical signal to noise ratio for a sine wave input is given by：

$$
\begin{equation*}
S N R=(6.02 N+1.76) d B \tag{1}
\end{equation*}
$$

where N is the number of bits．
Thus for an ideal 12－bit converter， $\mathrm{SN} R=74 \mathrm{~dB}$ ．
The output spectrum from the ADC is evaluated by applying a sine wave signal of very low distortion to the $\mathrm{V}_{\text {IN }}$ input which is sampled at a 66 kHz sampling rate．A F ast F ourier T ransform （FFT）plot is generated from which the SNR data can be ob－ tained．Figure 12 shows a typical 2048 point FFT plot of the AD 7880 with an input signal of 2.5 kHz and a sampling fre－ quency of 61 kHz ．The SNR obtained from this graph is 73 dB ． It should be noted that the harmonics are taken into account when calculating the SNR．

Figure 12．FFT Plot

Effective Number of Bits

The formula given in Equation 1 relates the SNR to the number of bits．Rewriting the formula，as in Equation 2，it is possible to get a measure of performance expressed in effective number of bits（N）．

$$
\begin{equation*}
N=\frac{S N R-1.76}{6.02} \tag{2}
\end{equation*}
$$

The effective number of bits for a device can be calculated directly from its measured SN R．
Figure 13 shows a plot of effective number of bits versus input frequency for an AD 7880 with a sampling frequency of 61 kHz ． The effective number of bits typically remains better than 11.5 for frequencies up to 12 kHz ．

Http：／／www． 100 y．com．tw

Figure 13．Effective Number of Bits vs．Frequency

Total Harmonic Distortion（THD）

THD is the ratio of the rms sum of harmonics to the rms value of the fundamental．For the AD 7880，THD is defined as：

$$
\begin{equation*}
T H D=20 \log \frac{\sqrt{V_{2}{ }^{2}+V_{3}{ }^{2}+V_{4}{ }^{2}+V_{5}{ }^{2}+V_{6}{ }^{2}}}{V_{1}} \tag{3}
\end{equation*}
$$

where V_{1} is the rms amplitude of the fundamental and $\mathrm{V}_{2}, \mathrm{~V}_{3}$ ， V_{4}, V_{5} and V_{6} are the rms amplitudes of the second through the sixth harmonic．TheTHD is also derived from the FFT plot of the ADC output spectrum．

Intermodulation Distortion

With inputs consisting of sine waves at two frequencies，fa and fb ，any active device with nonlinearities will create distortion products at sum and difference frequencies of $\mathrm{mfa} \pm \mathrm{nfb}$ where $\mathrm{m}, \mathrm{n}=0,1,2,3$ ，etc．Intermodulation terms are those for which neither m nor n are equal to zero．For example，the second or－ der terms include（ $\mathrm{fa}+\mathrm{fb}$ ）and（ $\mathrm{fa}-\mathrm{fb}$ ），while the third order terms include（ $2 \mathrm{fa}+\mathrm{fb}$ ），（ $2 \mathrm{fa}-\mathrm{fb}$ ），（ $\mathrm{fa}+2 \mathrm{fb}$ ）and（ $\mathrm{fa}-2 \mathrm{fb}$ ）．

Using the CCIF standard where two input frequencies near the top end of the input bandwidth are used，the second and third order terms are of different significance．The second order terms are usually distanced in frequency from the original sine waves， while the third order terms are usually at a frequency close to the input frequencies．As a result，the second and third order terms are specified separately．The calculation of the inter－ modulation distortion is as per the THD specification where it is the ratio of the rms sum of the individual distortion products to the rms amplitude of the fundamental expressed in dBs．In this case，the input consists of two，equal amplitude，low distortion， sine waves．Figure 14 shows a typical IM D plot for the AD 7880.

Figure 14．IMD Plot

Peak Harmonic or Spurious Noise

Peak harmonic or spurious noise is defined as the ratio of the rms value of the next largest component in the ADC output spectrum（up to $\mathrm{FS} / 2$ and excluding dc）to the rms value of the fundamental．N ormally，the value of this specification will be determined by the largest harmonic in the spectrum，but for parts where the harmonics are buried in the noise floor the peak will be a noise peak．

MICROPROCESSOR INTERFACING

The AD 7880 high speed bus timing allows direct interfacing to real time digital signal processors，DSPs，as well as modern high speed， 16 －bit microprocessors．Suitable microprocessor inter－ faces are shown in Figures 15 through 20.

AD7880－ADSP－2100 Interface

Figure 15 shows an interface between the AD 7880 and the ADSP－2100．Conversion is initiated using a timer to drive the CONVST input asynchronously to the microprocessor．This al－ lows very accurate control of the sampling instant．When con－ version is complete，the AD 7880 BUSY line goes high．An inverter on this BUSY output drives the IRQ line low thus pro－ viding an interrupt to the ADSP－2100 when conversion is com－ pleted．The conversion result is then read from the AD 7880 into the ADSP－2100 with the following instruction：

$$
M R 0=D M(A D C)
$$

where M R 0 is the ADSP－ 2100 M RO Register and ADC is the AD 7880 address．

Figure 15．AD7880－ADSP－2100（ADSP－2101／ADSP－2102） Interface

AD7880－ADSP－2101／ADSP－2102 Interface

The interface outlined in Figure 15 also forms the basis for an interface between the AD 7880 and the ADSP－2101／ADSP－2102． The READ line of the ADSP－2101／ADSP－2102 is labeled RD． In this interface，the $\overline{\mathrm{RD}}$ pulse width of the processor can be programmed using the Data M emory Wait State Control Regis－ ter．The instruction used to read a conversion result is as out－ lined for the ADSP－2100．

AD7880－TMS32010 Interface

An interface between the AD 7880 and the TM S32010 is shown in Figure 16．Once again the conversion is initiated using an ex－ ternal timer and the T M S32010 is interrupted when conversion is completed．The following instruction is used to read the con－ version result from the AD 7880：

IN D，ADC
where D is D ata M emory Address and
ADC is the AD 7880 address．

Figure 16．AD7880－TMS32010 Interface

AD7880－TMS320C 25 Interface

Figure 17 shows an interface between the AD 7880 and the TM S320C 25．As with the two previous interfaces，conversion is initiated with a timer，and the processor is interrupted when the conversion sequence is completed．The TM S320C 25 does not have a separate $\overline{\mathrm{RD}}$ output to drive the AD $7880 \overline{\mathrm{RD}}$ input di－ rectly．This has to be generated from the processor $\overline{\text { STRB }}$ and R / W outputs with the addition of some logic gates．The $\overline{\mathrm{RD}}$ sig－ nal is OR－gated with the MSC signal to provide the one WAIT state required in the read cycle for correct interface timing． C onversion results are read from the AD 7880 using the follow－ ing instruction：

IN D，ADC
where D is D ata M emory Address and
ADC is the AD 7880 address．

Figure 17．AD7880－TMS320C25 Interface
Some applications may require that the conversion be initiated by the microprocessor rather than an external timer．One option is to decode the AD 7880 CONVST from the address bus so that

Http：／／www． 100 y．com．tw
a write operation starts a conversion．D ata is read at the end of the conversion sequence as before．Figure 19 shows an example of initiating conversion using this method．A similar implemen－ tation can be used for DSPs．N ote that for all interfaces，a read operation should not be attempted during conversion．

AD7880－MC68000 Interface

An interface between the AD 7880 and the M C 68000 is shown in Figure 18．As before，conversion is initiated using an external timer．T he AD $7880 \overline{\text { BUSY }}$ line can be used to interrupt the processor or，alternatively，software delays can ensure that con－ version has been completed before a read to the AD 7880 is at－ tempted．Because of the nature of its interrupts，the 68000 requires additional logic（not shown in Figure 18）to allow it to be interrupted correctly．F or further information on 68000 in－ terrupts，consult the 68000 users manual．
The M C $68000 \overline{\mathrm{AS}}$ and R／W outputs are used to generate a separate $\overline{\mathrm{RD}}$ input signal for the AD 7880．$\overline{\mathrm{CS}}$ is used to drive the $68000 \overline{\mathrm{DTACK}}$ input to allow the processor to execute a normal read operation to the AD 7880．T he conversion results are read using the following 68000 instruction：

MOVE．W ADC，DO
where $D 0$ is the 68000 D 0 register
ADC is the AD 7880 address

Figure 18．AD7880－M C68000 Interface

AD7880－8086 Interface

Figure 19 shows an interface between the AD 7880 and the 8086 microprocessor．U nlike the previous interface examples， the microprocessor initiates conversion．This is achieved by gat－ ing the $8086 \overline{\mathrm{WR}}$ signal with a decoded address output（differ－ ent to the AD $7880 \overline{\mathrm{CS}}$ address）．Conversion is initiated and the result is read from the AD 7880 using the following instruction：

MOV AX，ADC
where $A X$ is the 8086 accumulator and
ADC is the AD 7880 address

Figure 19．AD7880－8086 Interface

AD 7880－6809 Interface

T he AD 7880 can also interface quite easily with 8 －bit micro－ processors．The 12－bit parallel data output from the AD 7880 can be read into the microprocessor as an $8+4$ byte structure． Figure 20 shows an interface to the M C 6809 8－bit microproces－ sor．As in previous cases，conversion is initiated using an exter－ nal timer．At the end of conversion，$\overline{\mathrm{BUSY}}$ triggers a one－shot which drives the IRQ interrupt input of the microprocessor．A double read is then performed to two unique addresses．The first read fetches the lower 8 bits（D B0－D B 7）and loads the 74 HC 374 latch with the upper 4 bits（D B8－D B11）．The sec－ ond read fetches these upper 4 bits．

Figure 20．AD7880－6809 Interface

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力 电子（深圳）86－755－83298787
 Http：／／www．100y．com．tw

APPLICATION HINTS

Good printed circuit board（PCB）layout is as important as the circuit design itself in achieving high speed A／D performance． The AD 7880＇s comparator is required to make bit decisions on an LSB size of 1.22 mV ．T o achieve this，the designer must be conscious of noise both in the ADC itself and in the preceding analog circuitry．Switching mode power supplies are not recom－ mended，as the switching spikes will feed through to the com－ parator causing noisy code transitions．Other causes of concern are ground loops and digital feedthrough from microprocessors． These are factors which influence any ADC，and a proper PCB layout which minimizes these effects is essential for best performance．

LAYOUT HINTS

Ensure that the layout for the printed circuit board has the digi－ tal and analog signal lines separated as much as possible．Take care not to run digital tracks alongside analog signal tracks． Guard（screen）the analog input with AGND．
Establish a single point analog ground（star ground）separate from the logic system ground at the AD 7880 AGND pin or as close as possible to the AD 7880．Connect all other grounds and the AD 7880 DGND to this single analog ground point．Do not connect any other digital grounds to this analog ground point．
Low impedance analog and digital power supply common re－ turns are essential to low noise operation of the ADC，so make the foil width for these tracks as wide as possible．The use of ground planes minimizes impedance paths and also guards the analog circuitry from digital noise．The circuit layout of Fig－ ures 26 and 27 have both analog and digital ground planes which are kept separated and only joined together at the AD 7880 AGND pin．

NOISE

K eep the input signal leads to V_{IN} and signal return leads from AGND as short as possible to minimize input noise coupling．In applications where this is not possible，use a shielded cable be－ tween the source and the ADC．Reduce the ground circuit im－ pedance as much as possible since any potential difference in grounds between the signal source and the ADC appears as an error voltage in series with the input signal．

ANALOG INPUT BUFFERING

To achieve specified performance，it is recommended that the analog input（ $\mathrm{V}_{\text {INA }}, \mathrm{V}_{\text {INB }}$ ）be driven from a low impedance source．This necessitates the use of an input buffer amplifier． The choice of op amp will be a function of the particular appli－ cation and the desired analog input range．The data acquisition circuit，described in this data sheet allows for various op amp configurations．Figure 21 shows the analog input buffer circuit．
The options available to drive the supply of the op amp are：

$$
\begin{aligned}
& \text { Single }+5 \mathrm{~V} \text { (derived from PCB } 5 \mathrm{~V} \text { supply) } \\
& \text { D ual Supply (externally supplied to } \mathrm{V}+\text { and } \mathrm{V} \text {-) } \\
& \pm 5 \mathrm{~V}, \pm 12 \mathrm{~V} \text { or } \pm 15 \mathrm{~V}
\end{aligned}
$$

The simplest configuration is the 0 V to 5 V range of Figure 5. A single supply 5 V op amp is recommended for such an imple－ mentation．This will allow for operation of the AD 7880 in the 0 V to 5 V unipolar range without supplying an external supply to $\mathrm{V}+$ and V －． T he 5 V supply is derived from the systems $+5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ supply．

Figure 21．Analog Input Buffering
When it is required to drive the AD 7880 with the 0 V to 10 V input range，an external supply must be connected to $V+$（see Figure 21）．
In bipolar operation，positive and negative supplies must be connected to $\mathrm{V}+$ and V －．
The AD 711 is a general purpose op amp which could be used to drive the analog input of the AD 7880.

POWER－DOWN CONTROL（MODE INPUT）

The AD 7880 is designed for systems which need to have mini－ mum power consumption．This includes such applications as hand held，portable battery powered systems and remote moni－ toring systems．As well as consuming minimum power under normal operating conditions，typically 20 mW ，the AD 7880 can be put into a power－down or sleep mode when not required to convert signals．When in this power－down mode，the AD 7880 consumes approximately 2 mW of power．
The AD 7880 is powered down by bringing the M ODE input pin to a Logic Low in conjunction with keeping the $\overline{\mathrm{RD}}$ input control High．The AD 7880 will remain in the power－down mode until M ODE is brought to a Logic High again．The M ODE input should be driven with CD 4000 or HCM OS logic levels．
It is recommended that one＂dummy＂conversion be imple－ mented before reading conversion data from the AD 7880 after it has been in the power－down mode．T his is required to reset all internal logic and control circuitry．In a remote monitoring system where，say， 10 conversions are required to be taken with a sampling interval of 1 second，an additional 11th conversion must be carried out．Figure 22 gives a plot of power consumption

Figure 22．Power Consumption for Normal Operation and Power－Down Operation vs．Time

AD7880

as a function of time for such operation．The total conversion time for each cycle is $11 \times 15 \mu \mathrm{~s}$（where $15 \mu \mathrm{~s}$ is the time taken for a single conversion）corresponding to 1.65×10^{-4} secs． H ence：

$$
\begin{aligned}
\text { Average Power } & =\text { Power }_{\text {CONVERTING }}+\text { Power }_{\text {POWER-DOWN }} \\
& =\left\{20 \mathrm{~mW} \times\left(1.65 \times 10^{-4}\right) /(10)\right\} \\
& +\{2 \mathrm{~mW} \times(9.9998) /(10)\} \\
& =2.029 \mathrm{~mW}
\end{aligned}
$$

AD7880 DATA ACQUISITION LAYOUT

Figure 24 shows the AD 7880 in a data acquisition circuit．The corresponding printed circuit board（PCB）layout and silkscreen are shown in Figures 25 to 27.
The only additional component required for a full data acquisi－ tion system is an antialiasing filter．There is a component grid provided near the analog input on the PC B which may be used for such a filter or any other input conditioning circuitry．To fa－ cilitate this option there is a shorting link（labeled LK 1 on the PCB）on the analog input track．With LK 1 in place，the analog input connects to the buffer amplifier driving the AD 7880.
With LK 1 removed，a wire link is needed to connect the analog input to the PCB component grid．

INTERFACE CONNECTIONS

T he data acquisition board contains a parallel connection port labeled SKT4．This is a 26 －contact IDC C onnector and pro－ vides for direct microprocessor connection to the board．This connector，the pinout of which is shown in Figure 23，contains all data，control and status signals of the AD 7880 （with the ex－ ception of the CONVST and the CLKIN inputs both of which are provided via SK T 2 and SKT 3 respectively）．It also contains decoded R／W and STRB inputs which are necessary for inter－ facing to many microprocessors including the TM S320C 25 and the M otorola 68000 series．Link LK 7 selects $\overline{R D}$ directly or al－ ternatively，the decoded version．N ote that the AD $7880 \overline{\mathrm{CS}}$ in－ put must be decoded prior to the AD 7880 evaluation board．
SK T 1，SKT 2 and SK T 3 are three sub－miniature connectors （SM C）which provide input connections for the analog input， the CONVST input and the CLK IN input．T hree different in－ put ranges can be accepted by the AD 7880 each of which is configured by selecting shorting plug options A，B or C of LK 4. Position A corresponds to the 0 V to 5 V unipolar configuration of Figure 5 ，position B corresponds to the bipolar $\pm 5 \mathrm{~V}$ configu－ ration of F igure 7 and position C allows for a 0 V to +10 V uni－ polar range as shown in Figure 6.

POWER SUPPLY CONNECTIONS

The PCB requires a single +5 V power supply（labeled V_{DD} ）． G ood decoupling allows this supply to drive the AD $7880 \mathrm{~V}_{\mathrm{DD}}$ which also drives the $\mathrm{V}_{\text {REF }}$ input as well as the op amp power supply．In circumstances where bipolar $\pm 5 \mathrm{~V}$ or a unipolar 0 V to 10 V input ranges are required，provision has been allowed for the connection of separate op amp power supplies（ $\pm 15 \mathrm{~V}$ ， $\pm 12 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，etc．）to $\mathrm{V}+$ and $\mathrm{V}-$ ．LK 2 and LK 3 shorting links allow for the selection of user defined op amp power supplies or the on－board single +5 V supply．

LINK OPTIONS

There are seven link options which must be set before using the board．These are outlined below：

胜特力电子（上海）86－21－54151736
胜特力电子（深圳）86－755－83298787

Http：／／www． 100 y．com．tw

Connects the analog input to a buffer amplifier．The analog input may also be connected to a component grid for signal conditioning．
LK2，LK 3 Allows for various op amp power supplies to be used to drive the input buffer of the AD 7880．Ex－ ternal supplies may be connected to $\mathrm{V}+$ and V －． Alternatively，the AD 7880＇s＋5 V system supply and AGND can be selected to drive a single supply op amp．
LK $4 \quad$ Configures the various analog input ranges， 0 V to $5 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V or $\pm 5 \mathrm{~V}$ ．
LK 5 Selects reference input to $V_{\text {REF }}$ of AD 7880．N or－ mally connected to V_{DD} ．An external reference could also be wired in．
LK $6 \quad$ Selects power－down or sleep mode．The shorting plug is connected to V_{DD} for normal operation．
LK 7 Connects the AD $7880 \overline{\mathrm{RD}}$ input directly to the $\overline{\mathrm{RD}}$ input of SK T 4 or to a decoded STRB and R／W input．This shorting plug setting depends on the microprocessor，e．g．，the T M S320C 25 requires a decoded $\overline{\mathrm{RD}}$ signal．

R \bar{W}	（1）（2）	$\overline{\text { STRB }}$
$\overline{\text { RD }}$	（3）（4）	N／C
$\overline{\text { cs }}$	（5）（6）	N／C
$\overline{\text { BuSY }}$	（7）（8）	Bus
NC	（9）（10）	N／C
DB10	（11）（12）	DB11
DB8	（13）（14）	DB
DB6	（15）（16）	DB7
DB4	（17） 11	DB5
DB2	（19）（20）	DB3
dво	（21）（22）	DB1
＋5V	（23）（24）	＋5V
GND	（25）（26）	D

Figure 23．SKT4，IDC Connector Pinout

COMPONENT LIST

IC 1
Op Amp＊
IC 2 AD 7880 Analog－to－D igital Converter
IC 3
74 H C 00 Quad N AND G ate
C1，C3，C5
C2，C4，C6，C 7
$10 \mu \mathrm{~F}$ Capacitors

R1，R2
LK 1，LK 2，LK 3
$0.1 \mu \mathrm{~F}$ Capacitors
10 k Ω Pull－up Resistors
Shorting Links
LK 4，LK 5，LK 6
LK 7
SKT1，SK T 2，SK T 3 Sub－M iniature C onnectors
Vendor No：Sealectro 50－051－0000（Socket）
Sealectro 50－007－0000（Plug）
SKT4
NOTE
＊See ANALOG INPUT BUFFERING section．

Figure 24．Data Acquisition Circuit Using the AD7880

Figure 25．PCB Silkscreen for Figure 24

Figure 26．PCB Component Side Layout for Figure 24

Figure 27．PCB Solder Side Layout for Figure 24

```
勝 特 力 材 料 886-3-5753170
胜特力电子(上海) 86-21-54151736
胜特力电子(深圳) 86-755-83298787
    Http://www. 100y. com. tw

\section*{OUTLINE DIMENSIONS}

Dimensions shown in inches and（mm）．

\section*{24－Lead Plastic DIP（N－24）}


2．PLASTIC LEADS WILL BE EITHER SOLDER DIPPED OR TIN LEAD PLATED IN ACCORDANCE WITH MIL－M－38510 REQUIREMENTS．

\section*{24－Lead Cerdip（Q－24）}


24－Lead SOIC（R－24）


勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－54151736
胜特力电子（深圳）86－755－83298787
Http：／／www．100y．com．tw```


[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable．However，no responsibility is assumed by Analog Devices for its use，nor for any infringements of patents or other rights of third parties which may result from its use．No license is granted by implication or otherwise under any patent or patent rights of Analog Devices．

[^1]:    NOTES
    ${ }^{1} \mathrm{~T}$ emperature ranges are as follows： $\mathrm{B} / \mathrm{C}$ Versions，$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．
    ${ }^{2} V_{\text {IN }}=0$ to $\mathrm{V}_{\text {REF }}$
    ${ }^{3}$ SN R calculation includes distortion and noise components．
    ${ }^{4}$ Sample tested $@+25^{\circ} \mathrm{C}$ to ensure compliance．
    Specifications subject to change without notice．

