# **ANALOG DEVICES**

# LC<sup>2</sup>MOS Precision Quad SPST Switches

# ADG411/ADG412/ADG413

### FEATURES

44 V Supply Maximum Ratings  $\pm 15$  V Analog Signal Range Low On Resistance (<35  $\Omega$ ) Ultralow Power Dissipation (35  $\mu$ W) Fast Switching Times  $t_{ON}$  <175 ns  $t_{OFF}$  <145 ns TTL/CMOS Compatible Plug-In Replacement for DG411/DG412/DG413

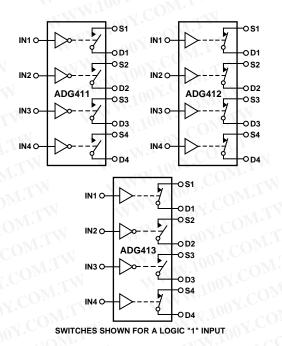
#### **APPLICATIONS**

Audio and Video Switching Automatic Test Equipment Precision Data Acquisition Battery Powered Systems Sample Hold Systems Communication Systems

### **GENERAL DESCRIPTION**

The ADG411, ADG412 and ADG413 are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced  $LC^2MOS$  process which provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed coupled with high signal bandwidth also make the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.


The ADG411, ADG412 and ADG413 contain four independent SPST switches. The ADG411 and ADG412 differ only in that the digital control logic is inverted. The ADG411 switches are turned on with a logic low on the appropriate control input, while a logic high is required for the ADG412. The ADG413 has two switches with digital control logic similar to that of the ADG411 while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when ON and each has an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

## REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

# FUNCTIONAL BLOCK DIAGRAMS



## **PRODUCT HIGHLIGHTS**

- Extended Signal Range The ADG411, ADG412 and ADG413 are fabricated on an enhanced LC<sup>2</sup>MOS, giving an increased signal range which extends fully to the supply rails.
- 2. Ultralow Power Dissipation
- 3. Low R<sub>ON</sub>
- 4. Break-Before-Make Switching This prevents channel shorting when the switches are configured as a multiplexer.
- 5. Single Supply Operation For applications where the analog signal is unipolar, the ADG411, ADG412 and ADG413 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V.

# ADG411/ADG412/ADG413-SPECIFICATIONS<sup>1</sup>

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

**Dual Supply**  $(V_{DD} = +15 V \pm 10\%, V_{SS} = -15 V \pm 10\%, V_L = +5 V \pm 10\%, GND = 0 V, unless otherwise noted)$ 

| Parameter                                                                                                                                                                                                                    | В Veı<br>+25°С                                                               | rsion<br>-40°C to<br>+85°C               | T Vers<br>+25°C                                                              | sion<br>-55°C to<br>+125°C         | Units                                                    | Test Conditions/Comments                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANALOG SWITCH<br>Analog Signal Range<br>R <sub>ON</sub>                                                                                                                                                                      | 25<br>35                                                                     | V <sub>DD</sub> to V <sub>SS</sub><br>45 | 25<br>35                                                                     | V <sub>DD</sub> to V <sub>SS</sub> | V<br>Ω typ<br>Ω max                                      | $V_D = \pm 8.5 \text{ V}, \text{ I}_S = -10 \text{ mA};$<br>$V_{DD} = +13.5 \text{ V}, \text{ V}_{SS} = -13.5 \text{ V}$                                                                                                                                                |
| LEAKAGE CURRENTS<br>Source OFF Leakage I <sub>S</sub> (OFF)<br>Drain OFF Leakage I <sub>D</sub> (OFF)<br>Channel ON Leakage I <sub>D</sub> , I <sub>S</sub> (ON)                                                             | $\pm 0.1$<br>$\pm 0.25$<br>$\pm 0.1$<br>$\pm 0.25$<br>$\pm 0.1$<br>$\pm 0.4$ | ±5<br>±5<br>±10                          | $\pm 0.1$<br>$\pm 0.25$<br>$\pm 0.1$<br>$\pm 0.25$<br>$\pm 0.1$<br>$\pm 0.4$ | ±20<br>±20<br>±40                  | nA typ<br>nA max<br>nA typ<br>nA max<br>nA typ<br>nA max | $\begin{array}{l} V_{DD}=+16.5 \ V, \ V_{SS}=-16.5 \ V \\ V_D=\pm 15.5 \ V, \ V_S=\mp 15.5 \ V; \\ Test \ Circuit \ 2 \\ V_D=\pm 15.5 \ V, \ V_S=\mp 15.5 \ V; \\ Test \ Circuit \ 2 \\ V_D=V_S=\pm 15.5 \ V; \\ Test \ Circuit \ 3 \end{array}$                        |
| $\begin{array}{c} \textbf{DIGITAL INPUTS} \\ \textbf{Input High Voltage, } V_{\text{INH}} \\ \textbf{Input Low Voltage, } V_{\text{INL}} \\ \textbf{Input Current} \\ I_{\text{INL}} \text{ or } I_{\text{INH}} \end{array}$ | 0.005                                                                        | 2.4<br>0.8<br>±0.5                       | 0.005                                                                        | 2.4<br>0.8<br>±0.5                 | V min<br>V max<br>μA typ<br>μA max                       | $V_{IN} = V_{INL}$ or $V_{INH}$                                                                                                                                                                                                                                         |
| $\label{eq:starses} \hline $ $ DYNAMIC CHARACTERISTICS^2$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $                                                                                                                              | 110<br>100<br>25                                                             | 175<br>145                               | 110<br>100<br>25                                                             | 175<br>145                         | ns typ<br>ns max<br>ns typ<br>ns max<br>ns typ           | $ \begin{array}{l} R_L = 300 \ \Omega, \ C_L = 35 \ pF; \\ V_S = \pm 10 \ V; \ Test \ Circuit \ 4 \\ R_L = 300 \ \Omega, \ C_L = 35 \ pF; \\ V_S = \pm 10 \ V; \ Test \ Circuit \ 4 \\ R_L = 300 \ \Omega, \ C_L = 35 \ pF; \\ V_{S1} = V_{S2} = +10 \ V; \end{array} $ |
| Charge Injection                                                                                                                                                                                                             | 5                                                                            | A.TW                                     | 5                                                                            | W.100Y.C                           | pC typ                                                   | Test Circuit 5<br>$V_S = 0 V, R_S = 0 \Omega, C_L = 10 nF;$<br>Test Circuit 6<br>$P_S = 50 \Omega, C_L = 5 rE f_S = 1 MHz;$                                                                                                                                             |
| OFF Isolation<br>Channel-to-Channel Crosstalk<br>$C_{s}$ (OFF)<br>$C_{D}$ (OFF)<br>$C_{D}$ , $C_{S}$ (ON)                                                                                                                    | 68<br>85<br>9<br>9<br>35                                                     | OM.TW<br>COM.TW<br>COM.TV                | 68<br>85<br>9<br>9<br>35                                                     | MMM'10<br>MMM'100<br>MMM'1002      | dB typ<br>dB typ<br>pF typ<br>pF typ<br>pF typ           | $ \begin{array}{l} R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz; \\ Test \ Circuit \ 7 \\ R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz; \\ Test \ Circuit \ 8 \\ f = 1 \ MHz \end{array} $                         |
| POWER REQUIREMENTS<br>I <sub>DD</sub><br>I <sub>SS</sub><br>I <sub>L</sub>                                                                                                                                                   | 0.0001<br>1<br>0.0001<br>1<br>0.0001                                         | 5                                        | 0.0001<br>1<br>0.0001<br>1<br>0.0001<br>1                                    | 5<br>5<br>5                        | μA typ<br>μA max<br>μA typ<br>μA max<br>μA typ<br>μA max | $V_{DD}$ = +16.5 V, $V_{SS}$ = -16.5 V<br>Digital Inputs = 0 V or 5 V                                                                                                                                                                                                   |

NOTES

<sup>1</sup>Temperature ranges are as follows: B Versions: -40 °C to +85 °C; T Versions: -55 °C to +125 °C.

<sup>2</sup>Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

# ADG411/ADG412/ADG413

WWW.100 Single Supply ( $V_{DD}$  = +12 V ± 10%,  $V_{SS}$  = 0 V,  $V_L$  = +5 V ± 10%, GND = 0 V, unless otherwise noted)

| Parameter                                                                                                                                                                                                                                                                                                 | B Vei<br>+25°C                                                               | rsion<br>-40°C to<br>+85°C    | T Vers<br>+25°C                                                              | sion<br>-55°C to<br>+125°C    | Units                                                                                                      | Test Conditions/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANALOG SIGNAL RANGE<br>R <sub>on</sub>                                                                                                                                                                                                                                                                    | 40<br>80                                                                     | 0 V to V <sub>DD</sub><br>100 | 40<br>80                                                                     | 0 V to V <sub>DD</sub><br>100 | V<br>Ω typ<br>Ω max                                                                                        | $\label{eq:VD} \begin{array}{l} 0 < V_{\rm D} = 8.5 \ V, \ I_{\rm S} = -10 \ m{\rm A}; \\ V_{\rm DD} = +10.8 \ V \end{array}$                                                                                                                                                                                                                                                                                                                                                              |
| LEAKAGE CURRENTS<br>Source OFF Leakage I <sub>S</sub> (OFF)<br>Drain OFF Leakage I <sub>D</sub> (OFF)<br>Channel ON Leakage I <sub>D</sub> , I <sub>S</sub> (ON)                                                                                                                                          | $\pm 0.1$<br>$\pm 0.25$<br>$\pm 0.1$<br>$\pm 0.25$<br>$\pm 0.1$<br>$\pm 0.4$ | ±5<br>±5<br>±10               | $\pm 0.1$<br>$\pm 0.25$<br>$\pm 0.1$<br>$\pm 0.25$<br>$\pm 0.1$<br>$\pm 0.4$ | ±20<br>±20<br>±40             | nA typ<br>nA max<br>nA typ<br>nA max<br>nA typ<br>nA max                                                   | $\begin{split} V_{DD} &= +13.2 \ V \\ V_D &= 12.2/1 \ V, \ V_S = 1/12.2 \ V; \\ Test Circuit 2 \\ V_D &= 12.2/1 \ V, \ V_S = 1/12.2 \ V; \\ Test Circuit 2 \\ V_D &= V_S = +12.2 \ V/+1 \ V; \\ Test Circuit 3 \end{split}$                                                                                                                                                                                                                                                                |
| $\begin{array}{l} \text{DIGITAL INPUTS} \\ \text{Input High Voltage, } V_{\text{INH}} \\ \text{Input Low Voltage, } V_{\text{INL}} \\ \text{Input Current} \\ I_{\text{INL}} \text{ or } I_{\text{INH}} \end{array}$                                                                                      | 0.005                                                                        | 2.4<br>0.8<br>±0.5            | 0.005                                                                        | 2.4<br>0.8<br>±0.5            | V min<br>V max<br>μA typ<br>μA max                                                                         | $V_{\rm IN} = V_{\rm INL}$ or $V_{\rm INH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DYNAMIC CHARACTERISTICS <sup>2</sup><br>t <sub>ON</sub><br>t <sub>OFF</sub><br>Break-Before-Make Time Delay, t <sub>D</sub><br>(ADG413 Only)<br>Charge Injection<br>OFF Isolation<br>Channel-to-Channel Crosstalk<br>C <sub>S</sub> (OFF)<br>C <sub>D</sub> (OFF)<br>C <sub>D</sub> , C <sub>S</sub> (ON) | 175<br>95<br>25<br>25<br>68<br>85<br>9<br>9<br>35                            | 250                           | 175<br>95<br>25<br>25<br>68<br>85<br>9<br>9<br>35                            | 250<br>125                    | ns typ<br>ns max<br>ns typ<br>ns max<br>ns typ<br>pC typ<br>dB typ<br>dB typ<br>pF typ<br>pF typ<br>pF typ | $ \begin{array}{l} R_L = 300 \ \Omega, \ C_L = 35 \ pF; \\ V_S = +8 \ V; \ Test \ Circuit \ 4 \\ R_L = 300 \ \Omega, \ C_L = 35 \ pF; \\ V_S = +8 \ V; \ Test \ Circuit \ 4 \\ R_L = 300 \ \Omega, \ C_L = 35 \ pF; \\ V_{S1} = V_{S2} = +10 \ V; \\ Test \ Circuit \ 5 \\ V_S = 0 \ V, \ R_S = 0 \ \Omega, \ C_L = 10 \ nF; \\ Test \ Circuit \ 6 \\ R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz \\ Test \ Circuit \ 8 \\ f = 1 \ MHz \\ f = 1 \ MHz \\ f = 1 \ MHz \\ \end{array} $ |
| POWER REQUIREMENTS IDD IL NOTES Temperature ranges are as follows: B Versions:                                                                                                                                                                                                                            | 0.0001<br>1<br>0.0001<br>1                                                   | 5<br>5                        | 0.0001<br>1<br>0.0001<br>1                                                   | 5                             | μA typ<br>μA max<br>μA typ<br>μA max                                                                       | $V_{DD}$ = +13.2 V<br>Digital Inputs = 0 V or 5 V<br>$V_L$ = +5.25 V                                                                                                                                                                                                                                                                                                                                                                                                                       |

## Truth Table (ADG411/ADG412)

#### **Truth Table (ADG413)**

| cations subject to | change without notic | e.               |        |                  |             |
|--------------------|----------------------|------------------|--------|------------------|-------------|
| Tru                | th Table (ADG4       | 11/ADG412)       |        | Truth Table (ADG | 413)        |
| ADG411 In          | ADG412 In            | Switch Condition | Logic  | Switch 1, 4      | Switch 2, 3 |
| 0<br>1             | 1<br>0               | ON<br>OFF        | 0<br>1 | OFF<br>ON        | ON<br>OFF   |

## ABSOLUTE MAXIMUM RATINGS<sup>1</sup>

 $(T_{\Lambda} = +25^{\circ}C \text{ unless otherwise noted})$ 

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

# TERMINOLOGY

| $(1_A = +25^{\circ}C \text{ unless otherwise noted})$                 |
|-----------------------------------------------------------------------|
| $V_{DD}$ to $V_{SS}$ +44 V                                            |
| $V_{DD}$ to GND0.3 V to +25 V                                         |
| $V_{\rm SS}$ to GND+0.3 V to -25 V                                    |
| $V_L$ to GND                                                          |
| Analog, Digital Inputs <sup>2</sup> $V_{SS}$ –2 V to $V_{DD}$ +2 V or |
| 30 mA, Whichever Occurs First                                         |
| Continuous Current, S or D                                            |
| Peak Current, S or D 100 mA                                           |
| (Pulsed at 1 ms, 10% Duty Cycle max)                                  |
| Operating Temperature Range                                           |
| Industrial (B Version)40°C to +85°C                                   |
| Extended (T Version) $\dots -55^{\circ}$ C to $+125^{\circ}$ C        |
| Storage Temperature Range $\dots -65^{\circ}$ C to $+150^{\circ}$ C   |
| Junction Temperature                                                  |
| Cerdip Package, Power Dissipation                                     |
| $\theta_{JA}$ Thermal Impedance                                       |
| Lead Temperature, Soldering (10 sec)                                  |
| Plastic Package, Power Dissipation                                    |
| $\theta_{JA}$ Thermal Impedance                                       |
| Lead Temperature, Soldering (10 sec)                                  |
| SOIC Package, Power Dissipation                                       |
| $\theta_{JA}$ Thermal Impedance                                       |
| TSSOP Package, Power Dissipation                                      |
| $\theta_{JA}$ Thermal Impedance                                       |
| $\theta_{\rm JC}$ Thermal Impedance                                   |
| Lead Temperature, Soldering                                           |
| Lead Temperature, Soldering<br>Vapor Phase (60 sec)+215°C             |
| Infrared (15 sec)                                                     |
|                                                                       |
| NOTES                                                                 |

<sup>1</sup>Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

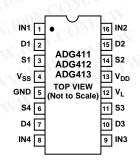
<sup>2</sup>Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

## **ORDERING GUIDE**

| Model <sup>l</sup> | Temperature Range | Package Option <sup>2</sup> |
|--------------------|-------------------|-----------------------------|
| ADG411BN           | -40°C to +85°C    | N-16                        |
| ADG411BR           | -40°C to +85°C    | R-16A                       |
| ADG411TQ           | -55°C to +125°C   | Q-16                        |
| ADG411BRU          | -40°C to +85°C    | RU-16                       |
| ADG412BN           | -40°C to +85°C    | N-16                        |
| ADG412BR           | -40°C to +85°C    | R-16A                       |
| ADG412TQ           | –55°C to +125°C   | Q-16                        |
| ADG413BN           | -40°C to +85°C    | N-16                        |
| ADG413BR           | -40°C to +85°C    | R-16A                       |
|                    |                   |                             |

NOTES

<sup>1</sup>To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers.


<sup>2</sup>N = Plastic DIP; R = 0.15" Small Outline IC (SOIC); RU= Thin Shrink Small Outline (TSSOP); Q = Cerdip.

### CAUTION -

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG411/ADG412/ADG413 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

| V <sub>DD</sub>                      | Most positive power supply potential.                                                                                             |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| / <sub>ss</sub>                      | Most negative power supply potential in dual                                                                                      |
|                                      | supplies. In single supply applications, it may                                                                                   |
|                                      | be connected to GND.                                                                                                              |
| VL                                   | Logic power supply (+5 V).                                                                                                        |
| GND                                  | Ground (0 V) reference.                                                                                                           |
| S                                    | Source terminal. May be an input or output.                                                                                       |
| D                                    | Drain terminal. May be an input or output.                                                                                        |
| IN N                                 | Logic control input.                                                                                                              |
| R <sub>ON</sub>                      | Ohmic resistance between D and S.                                                                                                 |
| I <sub>s</sub> (OFF)                 | Source leakage current with the switch "OFF."                                                                                     |
| I <sub>D</sub> (OFF)                 | Drain leakage current with the switch "OFF."                                                                                      |
| I <sub>D</sub> , I <sub>S</sub> (ON) | Channel leakage current with the switch "ON."                                                                                     |
| $V_{\rm D}$ (V <sub>S</sub> )        | Analog voltage on terminals D, S.                                                                                                 |
| C <sub>s</sub> (OFF)                 | "OFF" switch source capacitance.                                                                                                  |
| C <sub>D</sub> (OFF)                 | "OFF" switch drain capacitance.                                                                                                   |
| $C_D, C_S$ (ON)                      | "ON" switch capacitance.                                                                                                          |
| ON                                   | Delay between applying the digital control input and the output switching on.                                                     |
| t <sub>OFF</sub>                     | Delay between applying the digital control input and the output switching off.                                                    |
| t <sub>D</sub> .1001.C               | "OFF" time or "ON" time measured between<br>the 90% points of both switches, when switching<br>from one address state to another. |
| Crosstalk                            | A measure of unwanted signal which is coupled<br>through from one channel to another as a result<br>of parasitic capacitance.     |
| Off Isolation                        | A measure of unwanted signal coupling through an "OFF" switch.                                                                    |
| Charge<br>Injection                  | A measure of the glitch impulse transferred<br>from the digital input to the analog output<br>during switching.                   |

### **PIN CONFIGURATION** (DIP/SOIC)







# **Typical Performance Graphs**

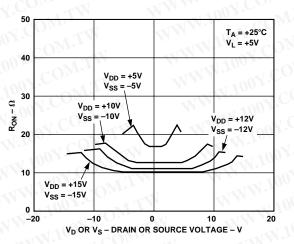



Figure 1. On Resistance as a Function of  $V_D$  ( $V_S$ ) Dual Supplies

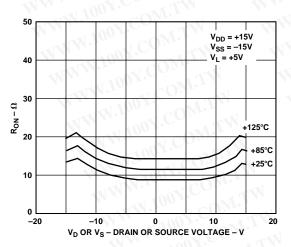



Figure 2. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Different Temperatures

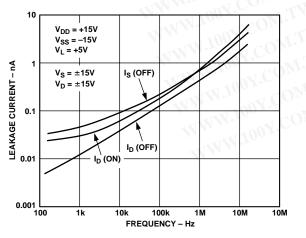



Figure 3. Leakage Currents as a Function of Temperature

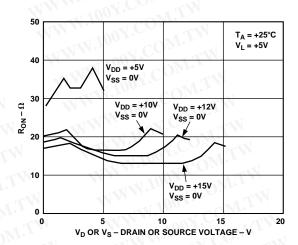



Figure 4. On Resistance as a Function of  $V_{\text{D}}\left(V_{\text{S}}\right)$  Single Supply

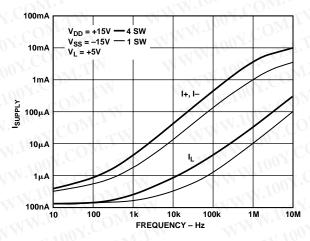



Figure 5. Supply Current vs. Input Switching Frequency

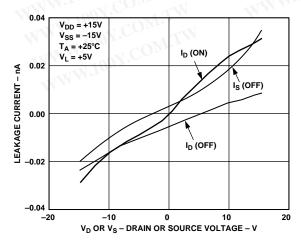
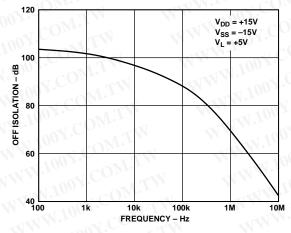
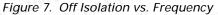





Figure 6. Leakage Currents as a Function of  $V_D$  ( $V_S$ )





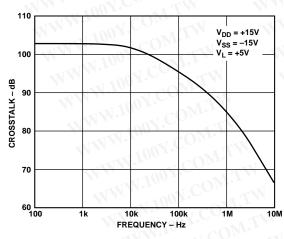
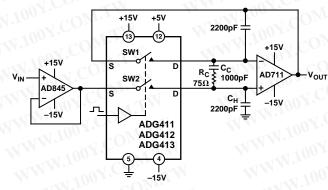
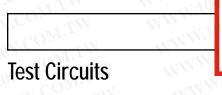


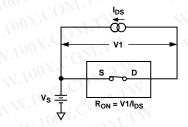

Figure 8. Crosstalk vs. Frequency

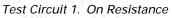


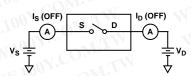

## APPLICATION


Figure 9 illustrates a precise, fast, sample-and-hold circuit. An AD845 is used as the input buffer while the output operational amplifier is an AD711. During the track mode, SW1 is closed and the output  $V_{OUT}$  follows the input signal  $V_{IN}$ . In the hold mode, SW1 is opened and the signal is held by the hold capacitor  $C_{H}$ .

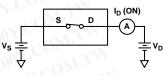
Due to switch and capacitor leakage, the voltage on the hold capacitor will decrease with time. The ADG411/ADG412/ ADG413 minimizes this droop due to its low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically 30  $\mu$ V/µs.


A second switch, SW2, which operates in parallel with SW1, is included in this circuit to reduce pedestal error. Since both switches will be at the same potential, they will have a differential effect on the op amp AD711, which will minimize charge injection effects. Pedestal error is also reduced by the compensation network  $R_C$  and  $C_C$ . This compensation network also reduces the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the ±10 V input range. Both the acquisition and settling times are 850 ns.

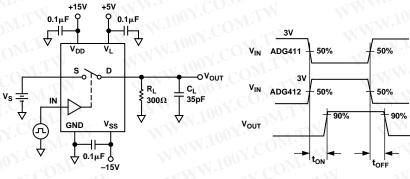




### Figure 9. Fast, Accurate Sample-and-Hold

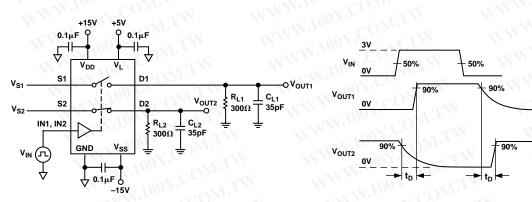




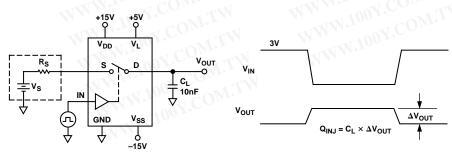




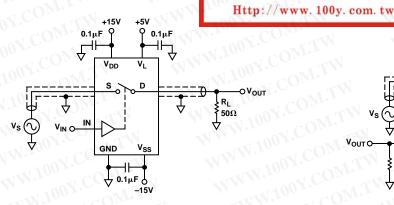


Test Circuit 2. Off Leakage




Test Circuit 3. On Leakage



Test Circuit 4. Switching Times




Test Circuit 5. Break-Before-Make Time Delay



Test Circuit 6. Charge Injection





勝 特

Test Circuit 7. Off Isolation

-15V Test Circuit 8. Channel-to-Channel Crosstalk

Vss

Ч.

+15V

V<sub>DD</sub>

s

D

GND

↓ 0.1μF

0.1μF

H۲

Ł

V<sub>IN1</sub>

Rı

Υ

50Ω

+5V

٧L

0.1μF

╢

Ą

O VIN2

4

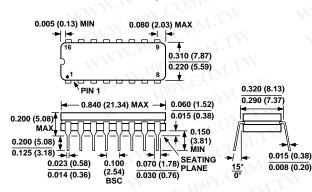
50.0

D NC

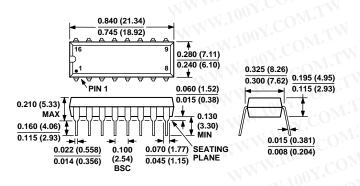
CROSSTALK = 20 × LOG VS/VOUT

CHANNEL TO CHANNEL

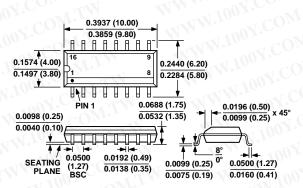
#### MECHANICAL INFORMATION Dimensions are shown in inches and (mm)


V<sub>OUT</sub> C

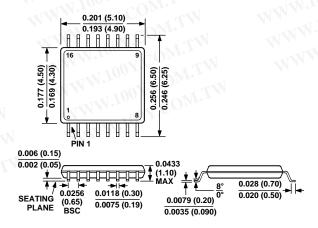
力材料 886-3-5753170


胜特力电子(上海) 86-21-54151736

胜特力电子(深圳) 86-755-83298787


#### **16-Lead Cerdip** (Q-16)




### **16-Lead Plastic DIP (Narrow)** (N-16)



### **16-Lead SOIC** (R-16A)



**16-Lead TSSOP** (RU-16)

