

LC²MOS Quad SPST Switches

ADG441/ADG442/ADG444

FEATURES

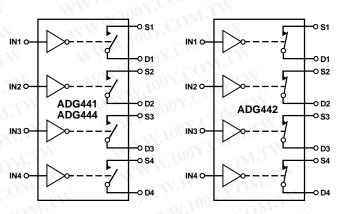
44 V Supply Maximum Ratings V_{SS} to V_{DD} Analog Signal Range Low On Resistance (< 70 Ω) Low ΔR_{ON} (9 Ω max) Low R_{ON} Match (3 Ω max) Low Power Dissipation **Fast Switching Times** t_{ON} < 110 ns $t_{OFF} < 60 \text{ ns}$ Low Leakage Currents (3 nA max) Low Charge Injection (6 pC max) **Break-Before-Make Switching Action Latch-Up Proof** Plug-In Upgrade for DG201A/ADG201A, DG202A/ADG202A, DG211/ADG211A Plug in Replacement for DG441/DG442/DG444

APPLICATIONS Audio and Video Switching

Automatic Test Equipment Precision Data Acquisition Battery Powered Systems Sample Hold Systems Communication Systems

GENERAL DESCRIPTION

The ADG441, ADG442 and ADG444 are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC²MOS process that provides low power dissipation yet gives high switching speed and low on resistance.


The on resistance profile is very flat over the full analog input range ensuring good linearity and low distortion when switching audio signals. High switching speed also makes the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.

The ADG441, ADG442 and ADG444 contain four independent SPST switches. Each switch of the ADG441 and ADG444 turns on when a logic low is applied to the appropriate control input. The ADG442 switches are turned on with a logic high on the appropriate control input. The ADG441 and ADG444 switches differ in that the ADG444 requires a 5 V logic power supply which is applied to the $V_{\rm L}$ pin. The ADG441 and ADG442 do not have a $V_{\rm L}$ pin, the logic power supply being generated internally by an on-chip voltage generator.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

Each switch conducts equally well in both directions when ON and has an input signal range that extends to the power supplies. In the OFF condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

Extended Signal Range
 The ADG441/ADG442/ADG444 are fabricated on an enhanced LC²MOS, trench-isolated process, giving an in

creased signal range that extends to the supply rails.

- 2. Low Power Dissipation
- 3. Low Ron
- 4. Trench Isolation Guards Against Latch Up
 A dielectric trench separates the P and N channel transistors
 thereby preventing latch up even under severe overvoltage
 conditions.
- Break-Before-Make Switching
 This prevents channel shorting when the switches are configured as a multiplexer.
- 6. Single Supply Operation
 For applications where the analog signal is unipolar, the ADG441/ADG442/ADG444 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply.

WWW.100Y.COM.T ADG441/ADG442/ADG444—SPECIFICATIONS1

Dual Supply (V_{DD} = +15 V \pm 10%, V_{SS} = -15 V \pm 10%, V_L = +5 V \pm 10% (ADG444), GND = 0 V, unless otherwise noted)

Parameter	B Version +25°C	-40°C to +85°C	+25°C	rsion -55°C to +125°C	Units	Test Conditions/Comments
ANALOG SWITCH	123 G	165 C	123 G	1123 G	Cints	Test Conditions/Comments
Analog Signal Range	, MIN.IO	$ m V_{SS}$ to $ m V_{DD}$		V_{SS} to V_{DD}	v	COM
	40	V _{SS} to V _{DD}	40	V _{SS} to V _{DD}	ν Ω typ	$V_D = \pm 8.5 \text{ V}, I_S = -10 \text{ mA}$
R_{ON}	70	85	70	85	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
$\Delta R_{ m ON}$	70	4	70	4	Ω typ	$V_{DD} = +13.3 \text{ V}, V_{SS} = -13.3 $ $-8.5 \text{ V} \le V_D \le +8.5 \text{ V}$
ΔNON		9		9	Ω max	-0.5 V \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)
R _{ON} Match		1 100 3		1	Ω typ	$V_D = 0 \text{ V}, I_S = -10 \text{ mA}$
NON Materi	MMN	3		3	Ω max	V _D = 0 V, I _S = -10 IIII
LEAKAGE CURRENTS	Win	M. J. C	01/1	N ·	MAN	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01	100 L	±0.01		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \pm 15.5 \text{ V}$
	±0.5	±3	±0.5	±20	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01	×13N.100	±0.01		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V}$
	±0.5	±3	±0.5	±20	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.08	-1W.100	±0.08	1	nA typ	$V_S = V_D = \pm 15.5 \text{ V};$
WW 100Y.Co	±0.5	±3	±0.5	±40	nA max	Test Circuit 3
DIGITAL INPUTS		MMM.		W	- WW	TOOY.CO TITY
Input High Voltage, V _{INH}	1	2.4		2.4	V min	M. To. S. COM.
Input Low Voltage, V _{INL}	TW	0.8		0.8	V max	100Y.
Input Current	. 1	· W.		O_{Mr}		MAN. TO COMP.
I _{INL} or I _{INH}	WT	± 0.00001		± 0.00001	μA typ	$V_{IN} = V_{INL}$ or V_{INH}
CO	Mr. z	±0.5	.10-	±0.5	μA max	MAN.
DYNAMIC CHARACTERISTICS ²	W.TW		$N.100_{1.1}$	COMIT		COM.
t_{ON}	85	WW	85	. T	ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF};$
	110	170	110	170	ns max	$V_S = \pm 10 \text{ V}$; Test Circuit 4
t _{OFF}	45		45	1.0	ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$;
	60	80	60	80	ns max	$V_S = \pm 10 \text{ V}$; Test Circuit 4
topen	30		30	07.0	ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$;
Charge Injection	l)N	ī	1	<1 COM	pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nl}$
	6	1	6	001.	pC max	V_{DD} = +15 V, V_{SS} = -15 V; Test Circuit 5
OFF Isolation	60	N -	60	· OUX.Co.	dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$;
OTT Isolation	M	-7	00	100	ив тур	f = 1 MHz; Test Circuit 6
Channel-to-Channel Crosstalk	100		100	- 100 Y.	dB typ	$R_L = 50 \Omega, C_L = 5 pF;$
	COM	-1		V.10	0/42-21	f = 1 MHz; Test Circuit 7
C_{S} (OFF)	4	TW	4	-1100 X.	pF typ	f = 1 MHz
C _D (OFF)	4 - (0)		4	W. T	pF typ	f = 1 MHz
$C_D, C_S (ON)$	16	$\Lambda : T^{N}$	16	W 100 r.	pF typ	f = 1 MHz
POWER REQUIREMENTS	. JODA CO.	TW	W	1007	.0-217	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I_{DD}	1.100 =1 CC	Mr.		M.T.		Digital Inputs = 0 V or 5 V
ADG441/ADG442	1007.	80		80	μA max	11
ADG444	0.001	Olar.	0.001	MW.	μA typ	TW WWW
	1,100%	2.5	1	2.5	μA max	
I_{SS}	0.0001	CONTRACTOR	0.0001	MAN AL	μA typ	TW WWW
Au .	1 100 1.	2.5	1	2.5	μA max	M. T
I _L (ADG444 Only)	0.001	Com	0.001	WWW	μA typ	$V_{\rm L} = +5.5 \text{ V}$
	1 100	2.5	1	2.5	μA max	Mr.
NOTES	11/11/11/11	Y. TIT	1	1111	1100 Y.	W.I.A.
Temperature ranges are as follows: B Version	ns: -40°C to +85°C	; T Versions: -55	°C to +125°C	2		
Guaranteed by design, not subject to produc						

NOTES

-2-REV. 0

 $^{^1\!}T\!emperature$ ranges are as follows: B Versions: $-40\,^{\circ}\text{C}$ to +85°C; T Versions: -55°C to +125°C. WWW.100Y.COM.

²Guaranteed by design, not subject to production test. WWW.100Y.COM.TW

Specifications subject to change without notice.

ADG441/ADG442/ADG444

Single Supply (V_{DD} = +12 V \pm 10%, V_{SS} = 0 V, V_L = +5 V \pm 10% (ADG444), GND = 0 V, unless otherwise noted)

	B V	ersion -40°C to	T Ve	rsion -55°C to	OOX.Co.	WIN
Parameter	+25°C	+85°C	+25°C	+125°C	Units	Test Conditions/Comments
ANALOG SWITCH	-TN 100	COMIT	. +	Wix	Inc.	DAT.
Analog Signal Range		0 to V _{DD}		0 to V _{DD}	v	TIN
R_{ON}	70		70	DD	Ω typ	$V_D = +3 \text{ V}, +8 \text{ V}, I_S = -10 \text{ mA};$
ON COS	110	130	110	130	Ω max	$V_{DD} = +10.8 \text{ V}$
$\Delta R_{ m ON}$	L.W.	4 (0)		4	Ωtyp	$+3 \text{ V} \leq \text{V}_{\text{D}} \leq +8 \text{ V}$
TY CO	MM	9		9	Ω max	
R _{ON} Match	W.	1 -1 COM	- 1	1	Ωtyp	$V_D = 6 \text{ V}, I_S = -10 \text{ mA}$
TON THE STATE OF T	MAL	3	V.I.M	3	Ω max	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
LEAKAGE CURRENT	WWW	OUT CO.	WT	N.	100	$V_{DD} = +13.2 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		±0.01		nA typ	$V_D = 12.2 \text{ V/1 V}, V_S = 1 \text{ V/12.2 V}$
	±0.5	±3	±0.5	±20	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		±0.01		nA typ	$V_D = 12.2 \text{ V/1 V}, V_S = 1 \text{ V/12.2 V}$
MM CONTRACTOR	±0.5	±3	±0.5	±20	nA max	Test Circuit 2
Channel ON Leakage ID, IS (ON)	±0.08		±0.08		nA typ	$V_S = V_D = 12.2 \text{ V/1 V};$
100	±0.5	±3	±0.5	±40	nA max	Test Circuit 3
DIGITAL INPUTS		1711		TW	All As .	1100X.
Input High Voltage, V _{INH}	1	2.4		2.4	V min	N. T. COM
Input Low Voltage, V _{INL}		0.8	1.0	0.8	V max	100 J. OM. TW
Input Current	-1		-7 CO		-111	M. COL
I _{INL} or I _{INH}		± 0.00001	01.	± 0.00001	μA typ	$V_{IN} = V_{INI}$ or V_{INH}
	-XXI	±0.5	OV.CC	±0.5	μA max	N VY CON TW
DYNAMIC CHARACTERISTICS ²	T.	TIW.	Mo -	OM		MAIN TO COM.
t _{ON}	105		105		ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF};$
	150	220	150	220	ns max	$V_S = +8 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	40		40		ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF};$
	60	100	60	100	ns max	$V_S = +8 \text{ V}$; Test Circuit 4
t _{OPEN}	50		50		ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF};$
Charge Injection	2		2		pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
	6		6		pC max	$V_{DD} = +12 \text{ V}, V_{SS} = 0 \text{ V};$
OFF Isolation	60		60		dB typ	Test Circuit 5 $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
O11 Isolation	COM		00		db typ	Test Circuit 6
Channel-to-Channel Crosstalk	100		100		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$ Test Circuit 7
C _S (OFF)	7		7		pF typ	f = 1 MHz
$C_{\rm D}$ (OFF)	10		10		pF typ	f = 1 MHz
C_D , C_S (ON)	16		16	1.700	pF typ	f = 1 MHz
POWER REQUIREMENTS	001.	M.T.V	-1	W.100 1.	COMIT	$V_{\rm DD} = +13.2 \text{ V}$
I_{DD}	CO,		WW		U T	Digital Inputs = 0 V or 5 V
ADG441/ADG442	100	80	"	80	μA max	TWW.10
ADG444	0.001		0.001		μA typ	M MA TOOX
	111	2.5	1	2.5	μA max	TINN.10
I _L (ADG444 Only)	0.001		0.001		μA typ	$V_{L} = +5.5 \text{ V}$
	1	2.5	1	2.5	μA max	TWW.

NOTES

Specifications subject to change without notice.

Table I. Truth Table

ADG441/ADG444 IN	ADG442 IN	Switch Condition
0	1	ON
1	0	OFF

ORDERING GUIDE

Model ¹	Temperature Range	Package Option ²
ADG441BN	-40°C to +85°C	N-16
ADG441BR	-40°C to +85°C	R-16A
ADG441TQ	-55°C to +125°C	Q-16
ADG442BN	-40°C to +85°C	N-16
ADG442BR	-40°C to +85°C	R-16A
ADG444BN	-40°C to +85°C	N-16
ADG444BR	-40°C to +85°C	R-16A

Notes

REV. 0 -3-

¹Temperature ranges are as follows: B Versions: -40°C to +85°C; T Versions: -55°C to +125°C.

²Guaranteed by design, not subject to production test.

¹To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers

²N = Plastic DIP, R = 0.15" Small Outline IC (SOIC), Q = Cerdip.

TERMINOLOGY

ADG441/ADG442/ADG444

ABSOLUTE MAXIMUM RATINGS¹

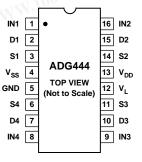
$(T_A = +25^{\circ}C \text{ unless otherwise noted})$		M. CO.
$ m V_{DD}$ to $ m V_{SS}$ +44 V	$V_{ m DD}$	Most Positive Power Supply Potential.
V_{DD} to GND0.3 V to +25 V	V_{SS}	Most Negative Power Supply Potential in dual
V_{SS} to GND +0.3 V to –25 V	-XX	supplies. In single supply applications, it may be
V_L to GND		connected to ground.
Analog, Digital Inputs ² $V_{SS} - 2 V$ to $V_{DD} + 2 V$	$V_{\rm L}$	Logic Power Supply (+5 V).
or 30 mA, Whichever Occurs First	GND	Ground (0 V) Reference.
Continuous Current, S or D	S	Source Terminal. May be an input or output.
Peak Current, S or D	D	Drain Terminal. May be an input or output.
(Pulsed at 1 ms, 10% Duty Cycle Max)	/Are.	
Operating Temperature Range	IN	Logic Control Input.
Industrial (B Version)	R _{ON}	Ohmic resistance between D and S.
Extended (T Version)	R _{ON} Match	Difference between the R_{ON} of any two channels.
Storage Temperature Range65°C to +150°C Junction Temperature+150°C	I _S (OFF)	Source leakage current with the switch "OFF."
Cerdip Package, Power Dissipation	I _D (OFF)	Drain leakage current with the switch "OFF."
θ_{IA} , Thermal Impedance	$I_D, I_S(ON)$	Channel leakage current with the switch "ON."
Lead Temperature, Soldering (10 sec) +300°C	$V_{D}(V_{S})$	Analog voltage on terminals D, S.
Plastic Package, Power Dissipation	C_{S} (OFF)	"OFF" Switch Source Capacitance.
θ_{JA} , Thermal Impedance	0	"OFF" Switch Drain Capacitance.
Lead Temperature, Soldering (10 sec) +260°C	C_D (OFF)	
SOIC Package, Power Dissipation 600 mW	C_D , C_S (ON)	"ON" Switch Capacitance.
θ_{IA} , Thermal Impedance	ton	Delay between applying the digital control
Lead Temperature, Soldering	TOON.CO.	input and the output switching on.
Vapor Phase (60 sec) +215°C	t _{OFF}	Delay between applying the digital control
Infrared (15 sec) +220°C	N 100 Y.	input and the output switching off.
NOTES	t _{OPEN}	Break-Before-Make Delay when switches are
¹ Stresses above those listed under "Absolute Maximum Ratings" may cause	M. To	configured as a multiplexer.
permanent damage to the device. This is a stress rating only and functional	Crosstalk	A measure of unwanted signal which is coupled
operation of the device at these or any other conditions above those listed in the	MAN. OUX.	through from one channel to another as a result
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only	M.100	of parasitic capacitance.
one absolute maximum rating may be applied at any one time.	Off Isolation	A measure of unwanted signal coupling through
² Overvoltages at IN, S or D will be clamped by internal diodes. Current should be	WWW	an "OFF" switch.
limited to the maximum ratings given.	Charge	A measure of the glitch impulse transferred from
	-21.VV-	

Injection

switching.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



ADG441/ADG442 PIN CONFIGURATION (DIP/SOIC)

16 IN2 IN1 1 D1 2 15 D2 ADG441 S1 3 14 S2 **ADG442** V_{SS} 4 13 V_{DD} TOP VIEW GND 5 12 NC (Not to Scale) S4 6 11 S3 D4 7 10 D3 IN4 8 9 IN3 NC = NO CONNECT

ADG444 PIN CONFIGURATION (DIP/SOIC)

the digital input to the analog output during

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

ADG441/ADG442/ADG444

TRENCH ISOLATION

WWW.100Y.COM

In the ADG441, ADG442 and ADG444, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, the result being a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode becomes forward biased. A silicon-controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current which, in turn, leads to latch up. With trench isolation, this diode is removed, the result being a latch-up proof switch.

Trench isolation also leads to lower leakage currents. The ADG441, ADG442 and ADG444 have a leakage current of 0.5 nA as compared with a leakage current of several nanoamperes in non-trench isolated switches. Leakage current is an important parameter in sample-and-hold circuits, this current being responsible for the discharge of the holding capacitor with time causing droop. The ADG441/ADG442/ADG444's low leakage current, along with its fast switching speeds, make it suitable for fast and accurate sample-and-hold circuits.

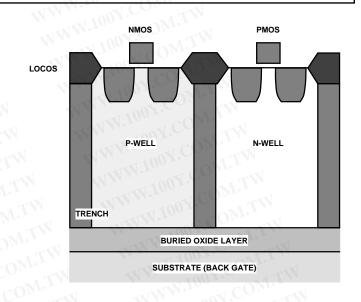


Figure 1. Trench Isolation

Typical Performance Characteristics

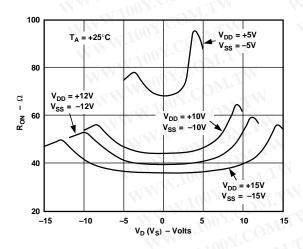


Figure 2. R_{ON} as a Function of V_D (V_S): Dual Supply

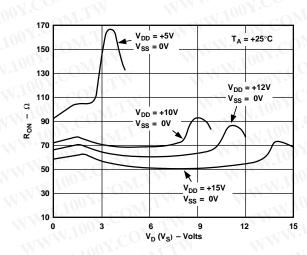


Figure 3. R_{ON} as a Function of V_D (V_S): Single Supply

REV. 0 –5–

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

ADG441/ADG442/ADG444

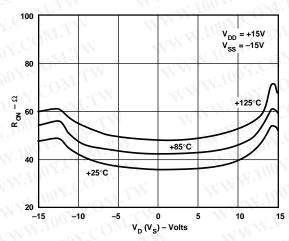


Figure 4. R_{ON} as a Function of V_D (V_S) for Different Temperatures

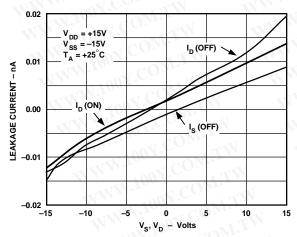


Figure 5. Leakage Currents as a Function of $V_S(V_D)$

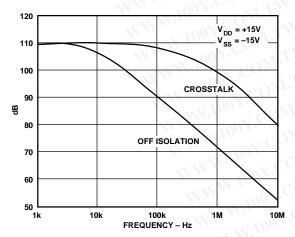


Figure 6. Crosstalk and Off Isolation vs. Frequency

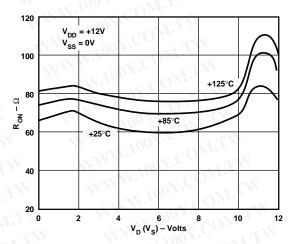


Figure 7. R_{ON} as a Function of V_D (V_S) for Different Temperatures

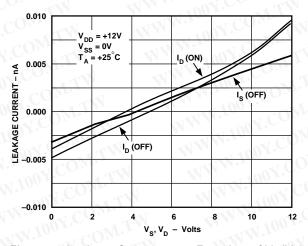


Figure 8. Leakage Currents as a Function of $V_S(V_D)$

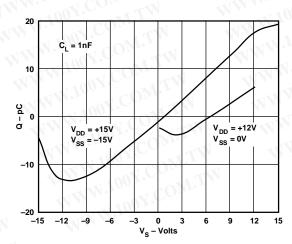


Figure 9. Charge Injection vs. Source Voltage

-6- REV. 0

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

ADG441/ADG442/ADG444

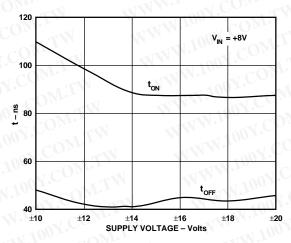
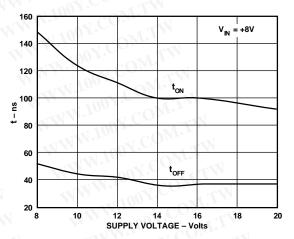
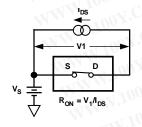
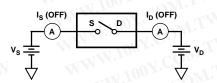
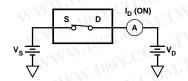


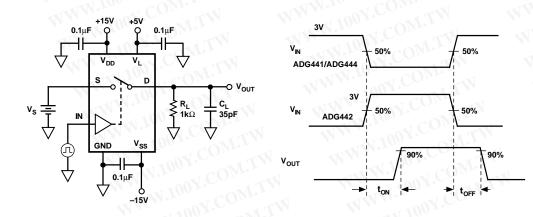
Figure 10. Switching Time vs. Bipolar Supply


Figure 11. Switching Time vs. Single Supply

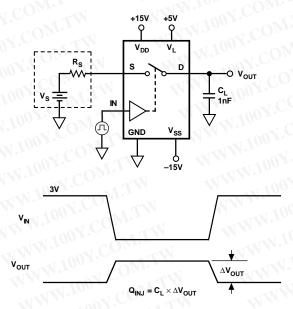
Test Circuits

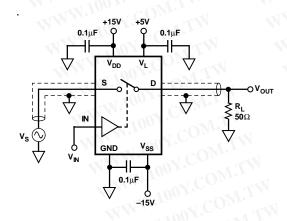
WWW.100Y.COM.



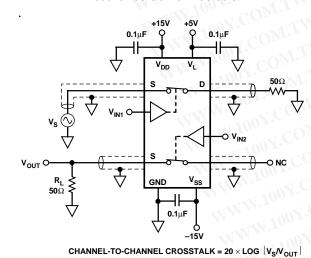
Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage


Test Circuit 3. On Leakage

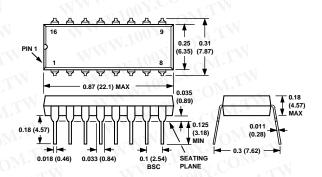

Test Circuit 4. Switching Times

REV. 0 -7-

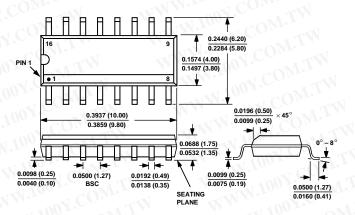

ADG441/ADG442/ADG444

Test Circuit 5. Charge Injection

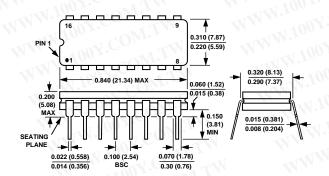
Test Circuit 6. Off Isolation


Test Circuit 7. Channel-to-Channel Crosstalk

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).


Plastic DIP (N-16)

Small Outline IC (R-16A)

Cerdip (Q-16)

-8-

ADG441/ADG442/ADG444

W.100Y.CO

WWW.100Y

WWW.100Y.C FOR CATALOG WWW.100Y.COM

WWW.100Y.COM.TW

ORDERING GUIDE

WWW.100Y.C

WWW.100Y.COM.TW

ORDERING GUIDE				
Model ¹	Temperature Range	Package Option ²		
ADG441BN	-40°C to +85°C	N-16		
ADG441BR	-40°C to +85°C	R-16A		
ADG441TQ	−55°C to +125°C	Q-16		
ADG442BN	-40°C to +85°C	N-16		
ADG442BR	-40°C to +85°C	R-16A		
ADG444BN	-40°C to +85°C	N-16		
ADG444BR	-40°C to +85°C	R-16A		

NOTES

REV. 0 -9-

¹To order MIL-STD-883, Class B processed parts, add /883B to T grade part

aume COM.TW WWW.100Y.COM.TW ²N = Plastic DIP, R = 0.15" Small Outline IC (SOIC), Q = Cerdip. For outline information see Package Information section. WWW.100Y.COM.TW WWW.100Y.C