

CMOS 1.8 V to 5.5 V, 2.5 Ω 2:1 Mux/SPDT Switch in SOT-23

ADG719

FEATURES

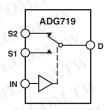
1.8 V to 5.5 V Single Supply 4 Ω (Max) On Resistance 0.75 Ω (Typ) On Resistance Flatness Automotive Temperature Range: -40°C to +125°C -3 dB Bandwidth > 200 MHz Rail-to-Rail Operation 6-Lead SOT-23 Package and 8-Lead μ SOIC Package Fast Switching Times:

 t_{ON} = 12 ns t_{OFF} = 6 ns Typical Power Consumption (< 0.01 μ W) TTL/CMOS Compatible

APPLICATIONS
Battery-Powered Systems
Communication Systems
Sample-and-Hold Systems
Audio Signal Routing
Video Switching
Mechanical Reed Relay Replacement

GENERAL DESCRIPTION

The ADG719 is a monolithic CMOS SPDT switch. This switch is designed on a submicron process that provides low power dissipation yet gives high switching speed, low on resistance, and low leakage currents.


The ADG719 can operate from a single-supply range of 1.8 V to 5.5 V, making it ideal for use in battery-powered instruments and with the new generation of DACs and ADCs from Analog Devices.

Each switch of the ADG719 conducts equally well in both directions when on. The ADG719 exhibits break-before-make switching action.

Because of the advanced submicron process, –3 dB bandwidths of greater than 200 MHz can be achieved.

The ADG719 is available in a 6-lead SOT-23 package and an 8-lead µSOIC package.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC "1" INPUT

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PRODUCT HIGHLIGHTS

- 1. 1.8 V to 5.5 V Single-Supply Operation. The ADG719 offers high performance, including low on resistance and fast switching times, and is fully specified and guaranteed with 3 V and 5 V supply rails.
- 2. Very Low R_{ON} (4 Ω Max at 5 V and 10 Ω Max at 3 V). At 1.8 V operation, R_{ON} is typically 40 Ω over the temperature range.
- 3. Automotive Temperature Range: -40°C to +125°C
- 4. On Resistance Flatness ($R_{FLAT(ON)}$) (0.75 Ω typ).
- 5. -3 dB Bandwidth > 200 MHz.
- Low Power Dissipation. CMOS construction ensures low power dissipation.
- Fast t_{ON}/t_{OFF}.
- 8. Tiny 6-lead SOT-23 and 8-lead μSOIC packages.

ADG719—SPECIFICATIONS¹ $(V_{DD} = 5 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V.})$

+25°C	+85°C	+125°C	Unit	Test Conditions/Comments
WY.CO	WT	WW	100X.C	WIN
-100		0 V to Vpp	V	ON
1007		O V to VDD	1001.	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA};$
25		W	O typ	Test Circuit 1
4	5	7	2 K = 1 V	Test Circuit 1
Y CON	CS	1	32 IIIax	T.TW
M.Too	00	XI .	O typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
-T 100		0.4		vs = 0 v to vpp, 1s = -10 mm
0.75	0.4	0.4		$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
0.15	1201	1.5		$V_S = 0$ V to V_{DD} , $I_S = -10$ m/A
W 1.	1.2	1.3	SZ IIIAX	MIT THE
KTWW.L		- XX		$V_{DD} = 5.5 \text{ V}$
- T 1 1 1		1.7	nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$
	±0.35	1		nA max Test Circuit 2
±0.01		Mi	nA typ	$V_S = V_D = 1 \text{ V or } V_S = V_D = 4.5 \text{ V};$
±0.25	± 0.35	5		nA max Test Circuit 3
	W. C	OBE	VVV	N. Com TW
		2.4	V min	M.In. COM.
WW				1100Y.C TITH
-17		0.6	V IIIax	TWW. TO V. COM
0.005		·	uΔ typ	$V_{IN} = V_{INL}$ or V_{INH}
0.003		+0.1		VIN - VINL OI VINH
	- XX XX 100	±0.1	ил шах	COMP.
4		01.0		M. 1005.
7		COM	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		12	ns max	$V_S = 3 V$; Test Circuit 4
3		any.Co.	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
-7		16	ns max	$V_S = 3 V$; Test Circuit 4
8		11007.	ns typ	$R_L = 300 \Omega, C_L = 35 pF,$
-XXI		1 C	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$; Test Circuit 5
-67		W.100 E	dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
-87		A CONT.	dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
M.		W.10		Test Circuit 6
-62		100 X	dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
-82		MM.	dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
OM.L		-XW.100		Test Circuit 7
200		111	MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 8
7		TWW.IC	pF typ	TAN TANNING CO. CO.
27		W - TXX 1	pF typ	. TW.100
CON	TW	MM M.	OUX.CO	V _{DD} = 5.5 V
COM		WW.		$V_{DD} = 5.5 \text{ V}$ Digital Inputs = 0 V or 5.5 V
0.001		MAL	uΔ typ	Digital Inputs – 0 v of 5.5 v
0.001		1.0		YOU.
Mr.	MILL	1.0	ил шах	ON. I
any Co	WTI			
	OM.			
n test.	THE	M.	1001.	ON:11
	0.005 7 3 8 -67 -87 -62 -82 200 7 27 0.001	4 5 0.1 0.4 0.75 1.2 ±0.01 ±0.25 ±0.01 ±0.25 ±0.35 0.005 7 3 8 -67 -87 -62 -82 200 7 27 0.001	0.1 0.4 0.75 1.2 1.5 1.2 1.5 1.2 1.5 1.2 1.5 1.2 1.5 1.2 1.5 1.2 1.5 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	2.5 4 5 7 Ω typ Ω max 0.1 0.4 0.4 0.4 Ω typ Ω max 0.75 1.2 1.5 Ω max ±0.01 ±0.25 ±0.35 1 ±0.01 ±0.25 ±0.35 5 2.4 ∇ min ∇ max V max 0.005 μA typ μA max 7 12 12 15 12 15 12 15 12 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15

NOTES

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw

100 Y.C-2-L REV. B

WWW.100Y.COM.TW

¹Temperature range is as follows: B Version: −40°C to +125°C.

²Guaranteed by design, not subject to production test.

SPECIFICATIONS¹ $(V_{DD} = 3 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V.})$

Parameter	+25°C	B Version -40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R _{ON})	6 COM	7 10	0 V to V _{DD}	V Ω typ Ω max	$V_S = 0$ V to V_{DD} , $I_S = -10$ mA; Test Circuit 1
On Resistance Match Between Channels (ΔR_{ON}) On Resistance Flatness ($R_{FLAT(ON)}$)	1.100Y.CU	0.1 0.4 2.5	0.4	Ω typ Ω max Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$ $V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS Source Off Leakage I_S (Off) Channel On Leakage I_D , I_S (On)	±0.01 ±0.25 ±0.01 ±0.25	±0.35 ±0.35	1	nA typ nA max nA typ nA max	$V_{\rm DD} = 3.3 \ V$ $V_{\rm S} = 3 \ V/1 \ V, \ V_{\rm D} = 1 \ V/3 \ V;$ Test Circuit 2 $V_{\rm S} = V_{\rm D} = 1 \ V \ {\rm or} \ V_{\rm S} = V_{\rm D} = 3 \ V;$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, V_{INH} Input Low Voltage, V_{INL} Input Current I_{INL} or I_{INH}	0.005	00X.COM 100X.COM 100X.CO	2.0 0.8 ±0.1	V min V max μA typ μA max	$V_{IN} = V_{INL}$ or V_{INH}
DYNAMIC CHARACTERISTICS ² t_{ON} t_{OFF} Break-Before-Make Time Delay, t_{D} Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{S} (Off) C_{D} , C_{S} (On)	10 4 8 -67 -87 -62 -82 200 7 27	MAMA: MAMA: MAMA: MAM: MAM: MAM: MAM: M	15 8 1	ns typ ns max ns typ ns max ns typ ns min dB typ dB typ dB typ dB typ dB typ fB typ dB typ	$\begin{array}{c} R_L = 300 \; \Omega, \; C_L = 35 \; pF \\ V_S = 2 \; V; \; Test \; Circuit \; 4 \\ R_L = 300 \; \Omega, \; C_L = 35 \; pF \\ V_S = 2 \; V; \; Test \; Circuit \; 4 \\ R_L = 300 \; \Omega, \; C_L = 35 \; pF \\ V_{S1} = V_{S2} = 2 \; V; \; Test \; Circuit \; 5 \\ R_L = 50 \; \Omega, \; C_L = 5 \; pF, \; f = 10 \; MHz \\ R_L = 50 \; \Omega, \; C_L = 5 \; pF, \; f = 1 \; MHz; \\ Test \; Circuit \; 6 \\ R_L = 50 \; \Omega, \; C_L = 5 \; pF, \; f = 10 \; MHz \\ R_L = 50 \; \Omega, \; C_L = 5 \; pF, \; f = 1 \; MHz; \\ Test \; Circuit \; 7 \\ R_L = 50 \; \Omega, \; C_L = 5 \; pF; \; Test \; Circuit \; 8 \\ \end{array}$
POWER REQUIREMENTS I_{DD}	0.001		1.0	μΑ typ μΑ max	$V_{DD} = 3.3 \text{ V}$ Digital Inputs = 0 V or 3.3 V

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw WWW.100Y.COM.TW

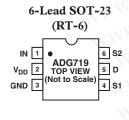
WWW.100Y.COM.TW 100Y.CON-3-REV. B

WWW.100Y.COM.T

¹Temperature range is as follows: B Version: -40°C to +125°C.

²Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS1


$(T_A = 25^{\circ}C, \text{ unless otherwise noted.})$
V_{DD} to GND $$
Analog, Digital Inputs ² -0.3 V to $V_{DD} + 0.3 \text{ V}$ or
30 mA, Whichever Occurs First
Peak Current, S or D 100 mA
(Pulsed at 1 ms, 10% Duty Cycle Max)
Continuous Current, S or D
Operating Temperature Range
Industrial (B Version)40°C to +125°C
Storage Temperature Range65°C to +150°C
Junction Temperature
μSOIC Package, Power Dissipation
θ_{JA} Thermal Impedance
θ _{IC} Thermal Impedance
SOT-23 Package, Power Dissipation 282 mW
θ_{JA} Thermal Impedance
θ_{IC} Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec)
Infrared (15 sec)
ESD 1 kV
NOTES

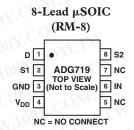

¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table I. Truth Table

ADG719 IN	Switch S1	Switch S2
0	ON	OFF
1	OFF	ON

PIN CONFIGURATIONS

TERMINOLOGY

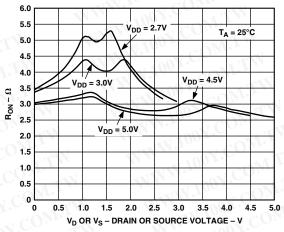
$\overline{V_{DD}}$	Most Positive Power Supply Potential
GND	Ground (0 V) Reference
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input
R _{ON}	Ohmic Resistance between D and S
ΔR_{ON}	On Resistance Match between Any Two Channels i.e., $R_{\rm ON}$ max – $R_{\rm ON}$ min
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.
I _S (Off)	Source Leakage Current with the Switch Off
I_D , I_S (On)	Channel Leakage Current with the Switch On
$V_D(V_S)$	Analog Voltage on Terminals D and S
C _S (Off)	Off Switch Source Capacitance
C_D , C_S (On)	On Switch Capacitance
t _{ON}	Delay between Applying the Digital Control Input and the Output Switching On
t _{OFF}	Delay between Applying the Digital Control Input and the Output Switching Off
t _D	Off Time or On Time Measured between the 90% Points of Both Switches, when Switching From One Address State to Another
Crosstalk	A Measure of Unwanted Signal That Is Coupled through from One Channel to Another as a Result of Parasitic Capacitance
Off Isolation	A Measure of Unwanted Signal Coupling through an Off Switch
Bandwidth	The Frequency at Which the Output is Attenuated by -3 dBs
On Response	The Frequency Response of the On Switch
Insertion Loss	Loss due to On Resistance of Switch

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

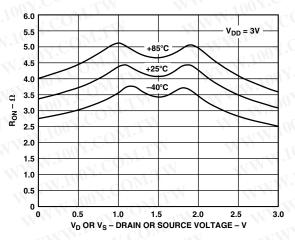
ORDERING GUIDE

Model	Temperature Range	Brand*	Package Description	Package Option
ADG719BRM	-40°C to +125°C	S5B	μSOIC (MicroSmall Outline IC) [MSOP] SOT-23 (Plastic Surface Mount)	RM-8
ADG719BRT	-40°C to +125°C	S5B		RT-6

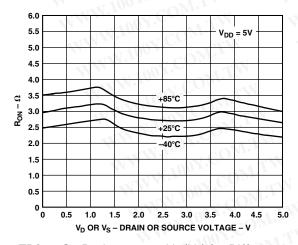
^{*}Branding on these packages is limited to three characters due to space constraints.

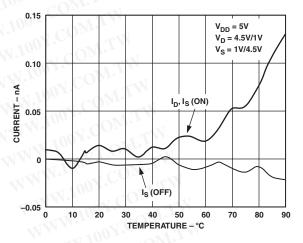

CAUTION

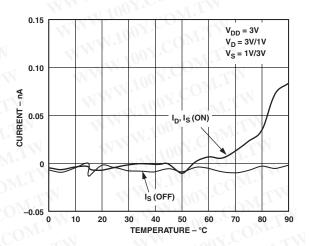
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG719 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

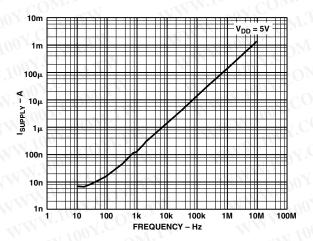


² Overvoltages at IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

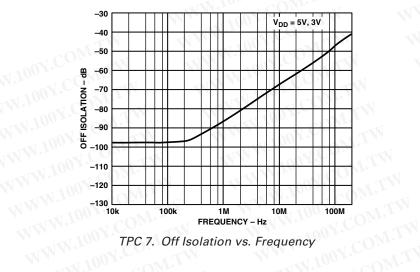

Typical Performance Characteristics—ADG719

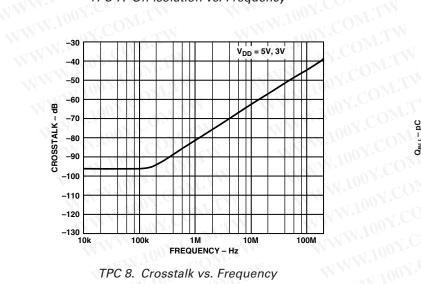

TPC 1. On Resistance vs. V_D (V_S), Single Supplies


TPC 2. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 3 \ V$


TPC 3. On Resistance vs. V_D (V_S) for Different Temperatures, V_{DD} = 5 V

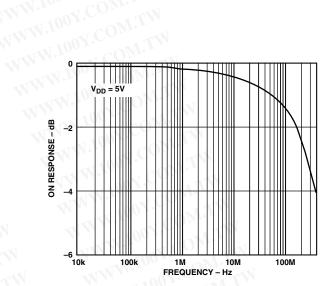
TPC 4. Leakage Currents vs. Temperature


TPC 5. Leakage Currents vs. Temperature

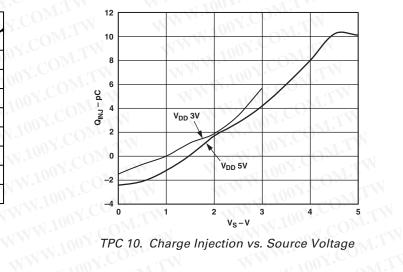

TPC 6. Supply Current vs. Input Switching Frequency

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

REV. B



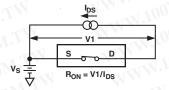
TPC 7. Off Isolation vs. Frequency



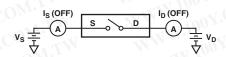
TPC 8. Crosstalk vs. Frequency WWW.100X.C

WWW.100Y.CC

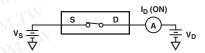
TPC 9. On Response vs. Frequency

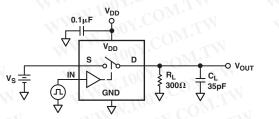

WWW.100Y.COM.TW

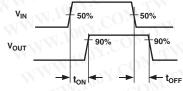
WWW.100Y.COM.TW


WWW.100Y.COM.T 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

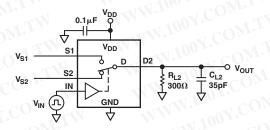
> WWW.100Y.COM.TW WWW.100Y.COM.TW TANK TOUX.C-6-LITW REV. B

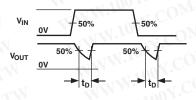

Test Circuits

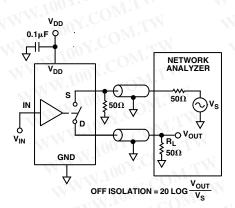

Test Circuit 1. On Resistance



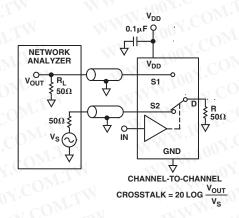
Test Circuit 2. Off Leakage

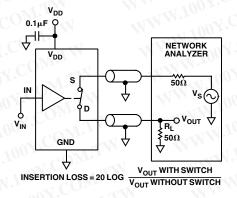



Test Circuit 3. On Leakage



Test Circuit 4. Switching Times




Test Circuit 5. Break-Before-Make Time Delay, t_D

Test Circuit 6. Off Isolation

Test Circuit 7. Channel-to-Channel Crosstalk

Test Circuit 8. Bandwidth

APPLICATIONS INFORMATION

The ADG719 belongs to Analog Devices' new family of CMOS switches. This series of general-purpose switches has improved switching times, lower on resistance, higher bandwidths, low power consumption, and low leakage currents.

ADG719 Supply Voltages

Functionality of the ADG719 extends from 1.8 V to 5.5 V single supply, which makes it ideal for battery-powered instruments where power efficiency and performance are important design parameters.

It is important to note that the supply voltage effects the input signal range, the on resistance, and the switching times of the part. By taking a look at the Typical Performance Characteristics and the Specifications, the effects of the power supplies can be clearly seen.

For V_{DD} = 1.8 V operation, R_{ON} is typically 40 Ω over the temperature range.

On Response vs. Frequency

Figure 1 illustrates the parasitic components that affect the ac performance of CMOS switches (the switch is shown surrounded by a box). Additional external capacitances will further degrade some performance. These capacitances affect feedthrough, crosstalk, and system bandwidth.

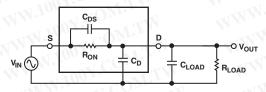


Figure 1. Switch Represented by Equivalent Parasitic Components

The transfer function that describes the equivalent diagram of the switch (Figure 1) is of the form A(s) shown below:

$$A(s) = R_T \left[\frac{s(R_{ON} \ C_{DS}) + 1}{s(R_T \ R_{ON} \ C_T) + 1} \right]$$

where:

$$R_T = R_{LOAD} / \left(R_{LOAD} + R_{ON} \right)$$

$$C_T = C_{LOAD} + C_D + C_{DS}$$

The signal transfer characteristic is dependent on the switch channel capacitance, C_{DS} . This capacitance creates a frequency zero in the numerator of the transfer function A(s). Because the switch on resistance is small, this zero usually occurs at high frequencies. The bandwidth is a function of the switch output capacitance combined with C_{DS} and the load capacitance. The frequency pole corresponding to these capacitances appears in the denominator of A(s).

The dominant effect of the output capacitance, C_D , causes the pole breakpoint frequency to occur first. Therefore, in order to maximize bandwidth, a switch must have a low input and output capacitance and low on resistance. The On Response vs. Frequency plot for the ADG719 can be seen in TPC 9.

Off Isolation

Off isolation is a measure of the input signal coupled through an off switch to the switch output. The capacitance, C_{DS} , couples the input signal to the output load when the switch is off, as shown in Figure 2.

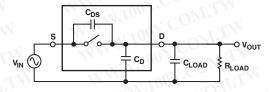
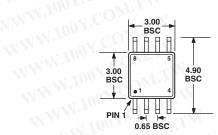


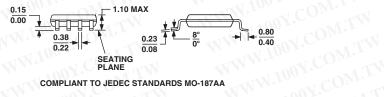
Figure 2. Off Isolation Is Affected by External Load Resistance and Capacitance

The larger the value of C_{DS} , the larger the values of feedthrough that will be produced. TPC 7 illustrates the drop in off isolation as a function of frequency. From dc to roughly 200 kHz, the switch shows better than –95 dB isolation. Up to frequencies of 10 MHz, the off isolation remains better than –67 dB. As the frequency increases, more and more of the input signal is coupled through to the output. Off isolation can be maximized by choosing a switch with the smallest C_{DS} possible. The values of load resistance and capacitance also affect off isolation, since they contribute to the coefficients of the poles and zeros in the transfer function of the switch when open.

$$A(s) = \left[\frac{s(R_{LOAD} \ C_{DS})}{s(R_{LOAD}) (C_{LOAD} + C_D + C_{DS}) + 1} \right]$$


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

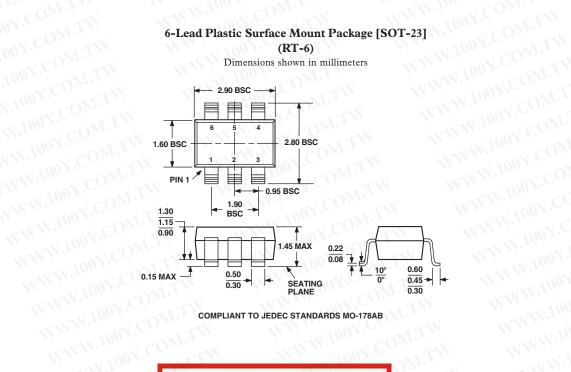
WWW.1007.C-8-1.TW REV. B


OUTLINE DIMENSIONS

8-Lead Small Outline Package [MSOP] (RM-8)

WWW.100Y.COM.TW Dimensions shown in millimeters

WWW.100Y.COM



COMPLIANT TO JEDEC STANDARDS MO-187AA

6-Lead Plastic Surface Mount Package [SOT-23]

(RT-6)

Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178AB

WWW.100Y.COM.TW

WWW.100Y.COM. 特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.100Y.COM.TW WWW.100Y.COM.TW 100 Y.CON-9-REV. B

WWW.100Y.COM.TW

ADG719		
Revision History		
Location WWW.100V.C		Page
7/02 Data Sheet changed from REV. A to RE	V. B.	
Changes to Product Name	COne at attimes at Con atti	1
Changes to FEATURES	$CO_{M_{\bullet,\bullet}}$ at $CO_{M_{\bullet,\bullet}}$ at	1
Additions to PRODUCT HIGHLIGHTS	$\sim com^2$ $\sim com^2$	1
Changes to SPECIFICATIONS	Dec ON IL	2
Edits to ABSOLUTE MAXIMUM RATINGS	Description Marie 1003 - Marie 1	4
Changes to TERMINOLOGY	ODA COLLEGE AND COUNTY OF THE	4
Edits to ORDERING GUIDE	A CONTRACT THE TOTAL OF THE TANK	4
	The Column at Mary at Comment	
Replaced TPC 10	KIJON COMPT. COMPT. COMPT.	6
TEST CIRCUITs 6, 7, and 8 replaced	4 100 m ONE TO THE TOTAL COMP.	7
Updated RM-8 and RT-6 package outlines	100x 200x 200x	9
WWW. CON CONTRACTOR	WW. TOOY.COM.TW	
MWW.100V.COM	特力材料886-3-5753170	
K. M. M. COM. T.	特力电子(上海) 86-21-54151736	

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.1003

WWW.100Y.COM.T