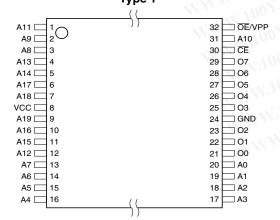
Features

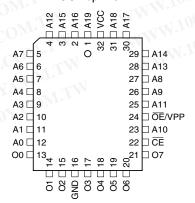
- · Fast Read Access Time 90 ns
- Low Power CMOS Operation
 - 100 µA max. Standby
 - 40 mA max. Active at 5 MHz
- JEDEC Standard Packages
 - 32 Lead PLCC
 - 32-Lead 600-mil PDIP
 - 32-Lead 450-mil SOIC (SOP)
 - 32-Lead TSOP
- 5V ± 10% Supply
- High-Reliability CMOS Technology
 - 2,000V ESD Protection
 - 200 mA Latchup Immunity
- Rapid™ Programming Algorithm 50 µs/byte (typical)
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Industrial and Commercial Temperature Ranges


Description

The AT27C080 chip is a low-power, high-performance 8,388,608-bit one-time programmable read only memory (OTP EPROM) organized as 1M by 8 bits. The AT27C080 requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 90 ns, eliminating the need for speed reducing WAIT states on high-performance microprocessor systems. *(continued)*

Pin Configurations

Pin Name	Function
A0 - A19	Addresses
O0 - O7	Outputs
CE	Chip Enable
OE/VPP	Output Enable/ Program Supply



PDIP, SOIC Top View

		$\alpha 0$	
A19 🗆	1. 1.	32	□ vcc
A16 🗆	2	31	□ A18
A15 🗆	3	30	□ A17
A12 □	4	29	□ A14
A7 □	5	28	□ A13
A6 □	6	27	□ A8 □
A5 □	7	26	□ A9
A4 🗆	8	25	□ A11
A3 🗆	9	24	□ ŌĒ/VPP
A2 🗆	10	23	□ A10
A1 □	11	22	□ CE
√ A0 □	12	21	□ 07
00 □	13	20	□ 06
01 🗆	14	19	□ O5
02 □	15	18	□ 04
GND □	16	17	□ O3
1.11			

PLCC Top View

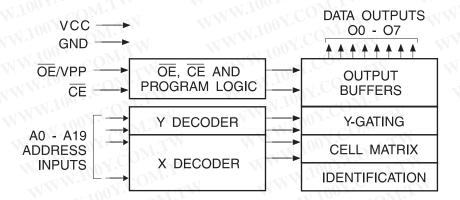
8-Megabit (1M x 8) OTP EPROM

AT27C080

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Atmel's scaled CMOS technology provides low active power consumption and fast programming. Power consumption is typically 10 mA in active mode and less than 10 μ A in standby mode.

The AT27C080 is available in a choice of packages, including; one-time programmable (OTP) plastic PLCC, PDIP, SOIC (SOP), and TSOP. All devices feature two-line control $(\overline{CE}, \overline{OE})$ to give designers the flexibility to prevent bus contention.


With high density 1M byte storage capability, the AT27C080 allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Atmel's 27C080 has additional features to ensure high quality and efficient production use. The Rapid $^{\text{\tiny M}}$ Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 50 $\mu s/byte$. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

System Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device non-conformance. At a minimum, a 0.1 μF high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μF bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

Block Diagram

AT27C080

Absolute Maximum Ratings*

Temperature Under Bias	55°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on Any Pin with Respect to Ground	2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground	2.0V to +14.0V ⁽¹⁾
V _{PP} Supply Voltage with Respect to Ground	2.0V to +14.0V ⁽¹⁾
Integrated UV Erase Dose	7258 W•sec/cm ²

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

 Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V DC which may overshoot to +7.0V for pulses of less than 20 ns.

Operating Modes

Mode/Pin	CE	OE/V _{PP}	W Ai 100	Outputs
Read	V _{IL}	V _{IL}	Ai	D _{OUT}
Output Disable	X	V _{IH}	X ⁽¹⁾	High Z
Standby	V _{IH}	OOY.CX	X	High Z
Rapid Program ⁽²⁾	V _{IL}	V _{PP}	Ai	D _{IN}
PGM Verify	V _{IL}	V _{IL}	Ai W	D _{OUT}
PGM Inhibit	V _{IH}	V_{PP}	WW X WY	High Z
Product Identification ⁽⁴⁾	V _{IL}	V _{IL} CO	$A9 = V_{H}^{(3)}$ $A0 = V_{IH} \text{ or } V_{IL}$ $A1 - A19 = V_{IL}$	Identification Code

Notes:

- 1. X can be V_{IL} or V_{IH}.
- 2. Refer to Programming Characteristics.
- 3. $V_H = 12.0 \pm 0.5 V$.
- 4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}) , except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

勝 特 力 材 料 886-3-5753170 Http://www.100y.com.tw

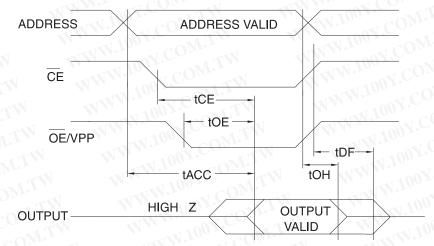
DC and AC Operating Conditions for Read Operation

N.100X.COM.TW	W.	AT27C080-90	AT27C080-10	AT27C080-12	AT27C080-15
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C
Temperature (Case)	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
V _{CC} Power Supply	W W	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%

DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	Min	Max	Units
LUNIN	Input Load Current	V _{IN} = 0V to V _{CC} (Com., Ind.)	WW 100	±1.0	μА
I _{LO}	Output Leakage Current	V _{OUT} = 0V to V _{CC} (Com., Ind.)	WW TO	±5.0	μА
WW	V (1) Standby Current	I_{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$	WWW	100	μА
I _{SB}	V _{CC} ⁽¹⁾ Standby Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0.5V	MMM	1.0	mA
I _{cc}	V _{CC} Active Current	$f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}$	MMM	40	mA
V _{IL}	Input Low Voltage	N MAN TOOK COME LA	-0.6	0.8	VV
V _{IH}	Input High Voltage	WWW.IOUY.COM. TW	2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA	N W	0.4	VTV
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4	WWIT	COV

1. V_{CC} must be applied simultaneously or before \overline{OE}/V_{PP} , and removed simultaneously or after \overline{OE}/V_{PP} .


AC Characteristics for Read Operation

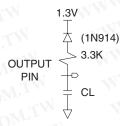
	WWW.LOOY.CO	WT	WW			AT27	C080				
WWW.Ioo	MAM. Jao	OM	-9	90	OOY.C	10	-12		-15		COR
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{ACC} ⁽⁴⁾	Address to Output Delay	$\overline{CE} = \overline{OE}/V_{PP}$ = V_{IL}	1	90	1.100	100	I.TW	120	WW	150	ns
t _{CE} ⁽³⁾	CE to Output Delay	$\overline{OE} = V_{IL}$		90	W.100	100	M_{II}	120	11	150	ns
t _{OE} (3)(4)	OE to Output Delay	CE = V _{IL}		20	W.10	20	OM_{ij}	30		35	ns
t _{DF} ⁽²⁾⁽⁵⁾	OE or CE High to Output Flo	at, whichever		30	WW.	30	COM	35		40	ns
t _{OH}	Output Hold from Address, Corrections or OE/V _{PB} whichever occurre		0	1	0	V.100	0	M.TW	0	WW	ns

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

AT27C080

AC Waveforms for Read Operation(1)

1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified.


- 2. t_{DF} is specified form OE/VPP or CE, whichever occurs first. Output float is defined as the point when data is no longer driven.
- 3. $\overline{\text{OE}}/\text{V}_{\text{PP}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} .
- 4. $\overline{\text{OE}}/\text{V}_{\text{PP}}$ may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} -
- 5. This parameter is only sampled and is not 100% tested.

Input Test Waveform and Measurement Levels

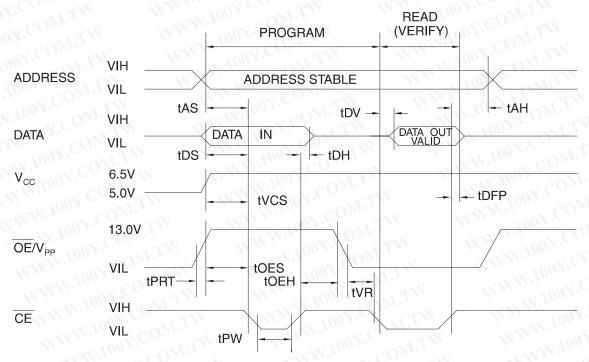
2.4V 2.0 AC AC **DRIVING MEASUREMENT LEVELS LEVEL** 0.45V

 $t_{\rm R},\,t_{\rm F}$ < 20 ns (10% to 90%)

Output Test Load

CL = 100 pF including jig capacitance. Note:

Pin Capacitance


Pin Capaci f = 1 MHz, T = 2		MM.100X	COM:TW	WWW.100Y.COM.TV	WWW.100Y.C
Symbol	Тур	MM. Joo	Max	Units	Conditions
C _{IN}	4	IN In	CO 8	pF COM	V _{IN} = 0V
C _{OUT}	8	1.1	12	pF COM	V _{OUT} = 0V

1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. Note:

勝特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Programming Waveforms

1. The Input Timing reference is 0.8V for $V_{\rm IL}$ and 2.0V for $V_{\rm IH}$.

2. t_{OE} and t_{DEP} are characteristics of the device but must be accommodated by the programmer.

DC Programming Characteristics

	gramming Characteristics °C, $V_{CC} = 6.5 \pm 0.25 \text{V}$, $\overline{\text{OE}}/V_{PP} = 13.0 \pm 0.25 \text{V}$).25V	I.TW	MMM.10	OOY.COM
	WW. TOOY. COM.TW	WW.1007.C	M.TW Li	mits	1001.
Symbol	Parameter	Test Conditions	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$	WI.MO.	±10	μА
V _{IL}	Input Low Level	N WW. 100X.	-0.6	0.8	107.0
V _{IH}	Input High Level	M MM 100X	2.0	V _{CC} + 1.0	NOON.
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA	I.Com.T	0.4	V ₁₀₀
V _{OH}	Output High Voltage	Ι _{ΟΗ} = -400 μΑ	2.4	IW Y	V 100
I _{CC2}	V _{CC} Supply Current (Program and Verify)	TW WWW.	OY.COM	40	mA
I _{PP2}	OE/V _{PP} Supply Current	CE = V _{IL}	ON CON	25	mA
V _{ID}	A9 Product Identification Voltage	DM. TW WWW	11.5	12.5	V

Http://www.100y.com.tw

AC Programming Characteristics

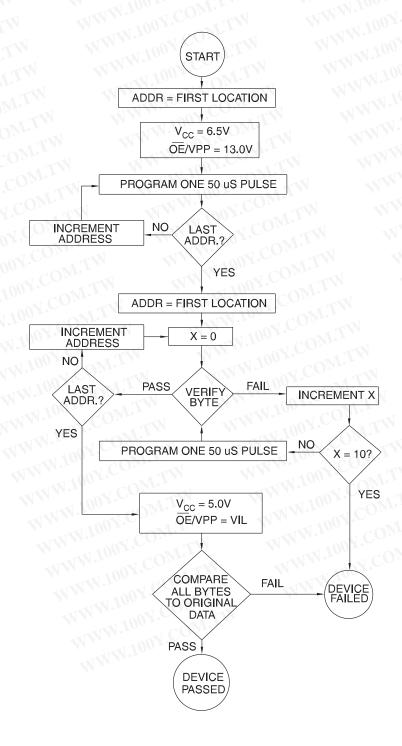
	WILLIAM WILLIAM	OX.COM.TW WY	Lim	its	
Symbol Parameter	Parameter	Test Conditions ⁽¹⁾	Min	Max	Units
t _{AS}	Address Setup Time	MIN MAN	2.0	OM.TW	μs
t _{OES}	OE/V _{PP} Setup Time	HOOY.COMITY WY	2.0		μs
t _{OEH}	OE/V _{PP} Hold Time	Input Rise and Fall Times: (10% to 90%) 20 ns Input Pulse Levels:	2.0	TOM.TW	μs
t _{DS}	Data SetupTime		2.0	.Com.TV	μs
t _{AH}	Address Hold Time		0.0	Y.COM.T	N µs
t _{DH}	Data Hold Time	0.45V to 2.4V	2.0	O.Y.CO.	μs
t _{DFP}	CE High to Output Float Delay ⁽²⁾	MMM. TO COM. TW	0.0	130	ns ns
t _{vcs}	V _{CC} Setup Time	Input Timing Reference Level: 0.8V to 2.0V	2.0		μs
t _{PW}	CE Program Pulse Width(3)	MMM TOOK COME TIM	47.5	52.5	μs
t _{DV}	Data Valid from CE	Output Timing Reference Level:	WW	1.0 CC	μs
t _{VR}	ŌE/V _{PP} Recovery Time	0.8V to 2.0V	2.0	W. Too Y.C.	ns
t _{PRT}	OE/V _{PP} Pulse Rise Time During Programming	MAM. Ton T. COM'TA	50	NN.100X	ns

1. V_{CC} must be applied simultaneously or before \overline{OE}/V_{PP} and removed simultaneously or after \overline{OE}/V_{PP} Notes:

3. Program Pulse width tolerance is 50 μ s \pm 5%.

Atmel's 27C080 Integrated Product Identification Code

		Pins N. N. COM.							M.M. TOOX.CO	
Codes	A0	07	O6	O5	04	О3	02	01	00	Hex Data
Manufacturer	0	0.10	0	0	1	1W.1	J C	ONT	0	1E
Device Type	1	1.V.1	0	0	0	1.11	0	ON	0	8A
		MMA	X 100X N 100X 100X	COM.T	LA M	MMA	M.100 A	Y.COM.	TW .TW	MMM.100.



^{2.} This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer drivensee timing diagram.

Rapid Programming Algorithm

A 50 μs \overline{CE} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and \overline{OE}/V_{PP} is raised to 13.0V. Each address is first programmed with one 50 μs \overline{CE} pulse without verification. Then a verification reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 50 μs pulses are applied with a verification after each

pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. $\overline{\text{OE}}/\text{V}_{\text{PP}}$ is then lowered to V_{IL} and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

AT27C080

Ordering Information

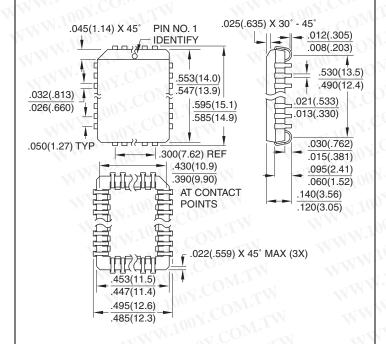
W.100Y.CO

t _{ACC}	I _{cc}	(mA)	100Y. OM.TW		COMITY
(ns)	Active	Standby	Ordering Code	Package	Operation Range
90	CO 40	0.1	AT27C080-90JC AT27C080-90PC AT27C080-90RC AT27C080-90TC	32J 32P6 32R 32T	Commercial (0°C to 70°C)
	40	0.1	AT27C080-90JI AT27C080-90PI AT27C080-90RI AT27C080-90TI	32J 32P6 32R 32T	Industrial (-40°C to 85°C)
100	40	0.1	AT27C080-10JC AT27C080-10PC AT27C080-10RC AT27C080-10TC	32J 32P6 32R 32T	Commercial (0°C to 70°C)
	40	C 0.1	AT27C080-10JI AT27C080-10PI AT27C080-10RI AT27C080-10TI	32J 32P6 32R 32T	Industrial (-40°C to 85°C)

	Package Type
32J	32-Lead,Plastic J-Leaded Chip Carrier (PLCC)
32P6	32-Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
32R	32-Lead, 0.450" Wide, Plastic Gull Wing Small Outline (SOIC)
32T	32-Lead, Plastic Thin Small Outline Package (TSOP)

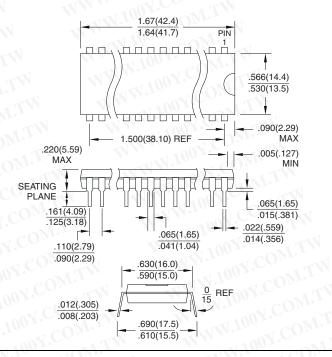
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Ordering Information (Continued)

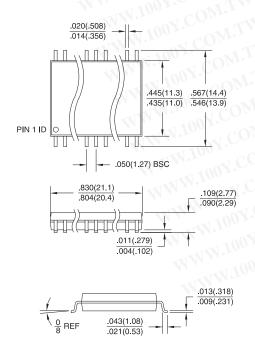

t _{ACC}	I _{CC} (mA)		1100Y.CO. 11.TY	WW. 100X.	ON THE
(ns)	Active	Standby	Ordering Code	Package	Operation Range
120	40	0.1	AT27C080-12JC	32J	Commercial
	TOMAT		AT27C080-12PC	32P6	(0°C to 70°C)
	Y.CO. 7	W.	AT27C080-12RC	32R	DY. C.M.TIN
	Y.COM.	W	AT27C080-12TC	32T	MY.CO. TW
	40	0.1	AT27C080-12JI	32J	Industrial
	00λ	LTW	AT27C080-12PI	32P6	(-40°C to 85°C)
	OOX.CO	WILL	AT27C080-12RI	32R	100 X. OM. TW
	To CO	WI.	AT27C080-12TI	32T	"TOOY.CO" TW
150	40	0.1	AT27C080-15JC	32J	Commercial
	x 100 Y.	W.TW	AT27C080-15PC	32P6	(0°C to 70°C)
	YOUY.	WILL	AT27C080-15RC	32R	1007. OM.TW
	M.To	COM	AT27C080-15TC	32T	WY TOOY CO. TITW
	40	0.1	AT27C080-15JI	32J	Industrial
	1, 100	. COM.T	AT27C080-15PI	32P6	(-40°C to 85°C)
	1111	Y.Co.	AT27C080-15RI	32R	M. 100X.
	WWW.IO	COM.	AT27C080-15TI	32T	M. John Co.

	Package Type				
32J	32-Lead,Plastic J-Leaded Chip Carrier (PLCC)				
32P6	32-Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)				
32R	32-Lead, 0.450" Wide, Plastic Gull Wing Small Outline (SOIC)				
32T	32-Lead, Plastic Thin Small Outline Package (TSOP)				

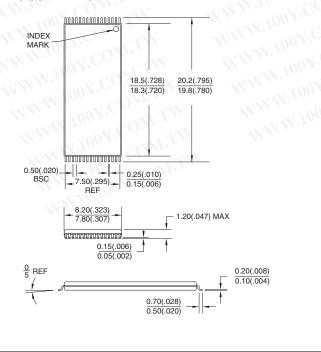
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


Packaging Information

32J, 32-Lead, Plastic J-Leaded Chip Carrier (PLCC) Dimensions in Inches and (Millimeters)
JEDEC STANDARD MS-016 AE


32P6, 32-Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)

Dimensions in Inches and (Millimeters)


32R, 32-Lead, 0.440" Wide, Plastic Gull Wing Small Outline (SOIC)

Dimensions in Inches and (Millimeters)

32T, 32-Lead, Plastic Thin Small Outline Package (TSOP)

Dimensions in Millimeters and (Inches)*
JEDEC OUTLINE MO-142 BD

