Features

- Fast Read Access Time 45 ns
 - Low-Power CMOS Operation
 - 100 μA max. Standby
 - 20 mA max. Active at 5 MHz
- JEDEC Standard Packages
 - 28-Lead 600-mil PDIP
 - 32-Lead PLCC
 - 28-Lead TSOP and SOIC
- 5V ± 10% Supply
 High-Reliability CMOS Technology
 - 2,000V ESD Protection
 - 200 mA Latchup Immunity
- Rapid[™] Programming Algorithm 100 µs/byte (typical)
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Commercial, Industrial and Automotive Temperature Ranges

Description

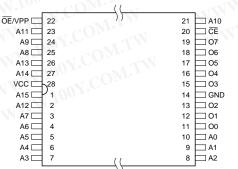
The AT27C512R is a low-power, high-performance 524,288-bit one-time programmable read only memory (OTP EPROM) organized 64K by 8 bits. It requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 45 ns, eliminating the need for speed reducing WAIT states on high-performance microprocessor systems.

Atmel's scaled CMOS technology provides high-speed, lower active power consumption, and significantly faster programming. Power consumption is typically only 8 mA in Active Mode and less than 10 μ A in Standby.

Pin Configurations

Pin Name	Function
A0 to A15	Addresses
00 - 07	Outputs
CE	Chip Enable
OE/VPP	Output Enable/VPP
NC	No Connect

PLCC Top View


	2	¥	A12	A15	Ŋ	SOV	A14	A13			
	٦								_		
		4	С	2	Ξ	32	33	30			
A6 🗆	5				0			29	эP	A8	
A5 🗆	6							28	зþ	A9	
A4 🗆	7							2	۶Þ	A11	
A3 🗆	8							20	зþ	NC	
A2 🗆	9							2	5日	OE/	/PP
A1 🗆	10							24		A10	
A0 🗆	11							23	зþ	CE	
NC 🗆	12							22	2þ	07	
00 □	13	4	2	9	12	8	6	2 ²	۱þ	O6	
L	_	_	÷	÷	Ť	Ť	Ť				
		_				8	4	ц			
	Ċ	5	02	GN	NC	ö	Ŏ	õ			

Note: PLCC Package Pins 1 and 17 are DON'T CONNECT.

(continued)

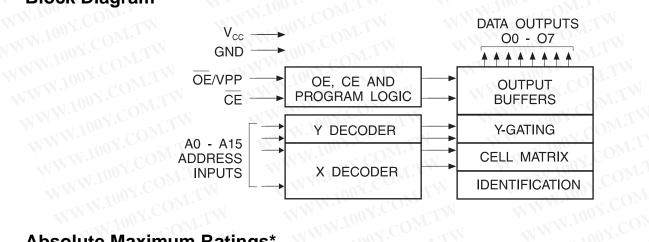
Rev. 0015I-07/98

512K (64K x 8) OTP EPROM

AT27C512R

The AT27C512R is available in a choice of industry standard JEDEC-approved one-time programmable (OTP) plastic PDIP, PLCC, SOIC, and TSOP packages. All devices feature two-line control (\overline{CE} , \overline{OE}) to give designers the flexibility to prevent bus contention.

With 64K byte storage capability, the AT27C512R allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.


Atmel's 27C512R has additional features to ensure high quality and efficient production use. The Rapid[™] Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 µs/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

System Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device non-conformance. At a minimum, a 0.1 μ F high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

AT27C512R

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias	55°C to + 125°C	*NOTICE:	Stresses beyond those listed under "Absolute Maxi- mum Ratings" may cause permanent damage to
Storage Temperature	65°C to + 150°C		the device. This is a stress rating only and func- tional operation of the device at these or any other
Voltage on Any Pin with	M.T.		conditions beyond those indicated in the opera-
Respect to Ground	2.0V to + 7.0V ⁽¹⁾		tional sections of this specification is not implied.
	WW WT		Exposure to absolute maximum rating conditions
Voltage on A9 with	COM-1		for extended periods may affect device reliability.
Respect to Ground	2.0V to + 14.0V ⁽¹⁾		NITW WE TIGOT ONLY
	COM	Note: 1.	
V _{PP} Supply Voltage with	M.TW		to -2.0V for pulses of less than 20 ns. Maximum
Respect to Ground	-2.0V to + 14.0V ⁽¹⁾		output pin voltage is V _{CC} + 0.75V dc which may
	2.00 10 1 1.00		overshoot to +7.0 volts for pulses of less than 20 ns.

Operating Modes

Mode\Pin	CE	OE/V _{PP}	Ai	Outputs
Read	VILCOM	V _{IL}	Ai	D _{OUT}
Output Disable	V _{IL} CO	VIH	X ⁽¹⁾	High Z
Standby	V _{IH} COM	X ⁽¹⁾	X	High Z
Rapid Program ⁽²⁾	VIL COM	V _{PP}	Ai	D _{IN}
PGM Inhibit	V _{IH} CO	V _{PP}	X ⁽¹⁾	High Z
Product Identification ⁽⁴⁾	V _{IL}	VIL	$A9 = V_{H}^{(3)}$ $A0 = V_{IH} \text{ or } V_{IL}$ $A1 - A15 = V_{IL}$	Identification Code

3. $V_{\rm H} = 12.0 \pm 0.5 V$.

4. Two identifier bytes may be selected. All Ai inputs are held low (VIL), except A9 which is set to VH and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

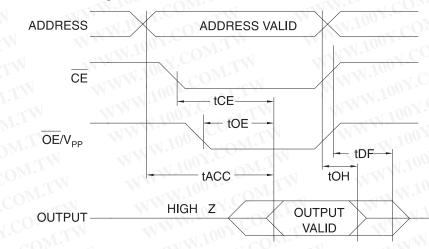
DC and AC Operating Conditions for Read Operation

			AT27C512R										
		-45	-55	-70	-90	-12	-15						
W.100Y.C	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C						
Operating Temp.(Case)	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C						
iomp.(oaco)	Auto.	IN NI	1001.0	-40°C - 125°C	-40°C - 125°C	-40°C - 125°C	-40°C - 125°C						
V _{CC} Supply	N.CO.	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%						

DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	WIN	Min	Max	Units
NV	Input Load Current		Com., Ind,	WW 100	±1	μA
I _U	Input Load Current	$V_{IN} = 0V$ to V_{CC}	Auto.	WWW 10	±5	μA
	Output Leakage	NY OVER VINN	Com., Ind,	MMM	±5	μA
I _{LO}	Current	$V_{OUT} = 0V$ to V_{CC}	Auto.	MMM.	±10	μA
	V _{CC} ⁽¹⁾ Standby	I_{SB1} (CMOS), $\overline{CE} = V_{CC \pm} 0.3V$	LCONT TW	MMM	100	μA
I _{SB}	Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC+} 0.5V	N.COM.	WW	1.CO	mA
I _{CC}	V _{CC} Active Current	f = 5 MHz, I_{OUT} = 0 mA, \overline{CE} = V_{IL}		WW I	20	mA
V _{IL}	Input Low Voltage	CONTRA MANA	N.COM.	-0.6	0.8	v
V _{IH}	Input High Voltage	CONCLUM NIMM.	LUN COM.	2.0	V _{CC} + 0.5	v
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA	.100 LCOM.	N X	0.4	C V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	N.100 COM	2.4	WW.IOU	V

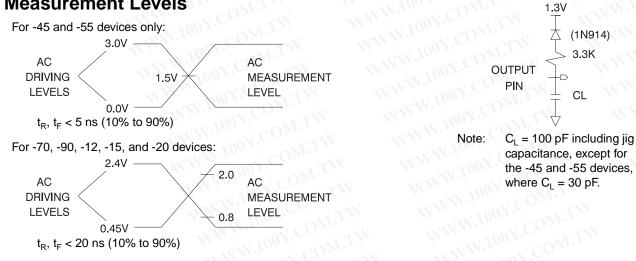
Notes: 1. V_{CC} must be applied simultaneously with or before \overline{OE}/V_{PP} and removed simultaneously with or after \overline{OE}/V_{PP} .


AC Characteristics for Read Operation

	W T	1.1001. COM.T			VI.	WID	100	AT270	C512	2	ſ			$N.I_{l}$	
	WW	N.100Y.COM.		45		55	1.10	70	ON	90	-	12		15	100
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{ACC} ⁽³⁾	Address to Output Delay	$\overline{CE} = \overline{OE} / V_{PP} = V_{IL}$	1.TV	45		55	N.	70		90	N	120	N	150	ns
t _{CE} ⁽²⁾	CE to Output Delay	$\overline{OE}/V_{PP} = V_{IL}$	TIM	45		55		70		90	IN	120		150	ns
t _{OE} ⁽²⁾⁽³⁾	OE/V _{PP} to Output Delay	$\overline{CE} = V_{IL}$	J.	20		25		30	2.	35	1.1	35		40	ns
t _{DF} ⁽⁴⁾⁽⁵⁾	OE/V _{PP} or CE High to Outp occurred first	out Float, whichever	dow.	20	J	20	A AV	25	001	25		30		35	ns
t _{OH}	Output Hold from Address whichever occurred first	, CE or OE/V _{PP}	7	л. 1 М.Т	7		7		0		0		0		ns

2, 3, 4, 5. - see AC Waveforms for Read Operation. Notes:

AT27C512R


AC Waveforms for Read Operation⁽¹⁾

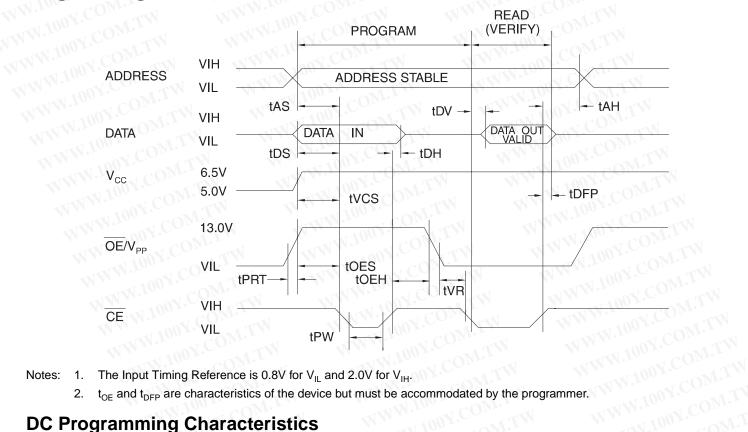
- Notes: 1. Timing measurement reference level is 1.5V for -45 and -55 devices. Input AC drive levels are $V_{IL} = 0.0V$ and $V_{IH} = 3.0V$. Timing measurement reference levels for all other speed grades are $V_{OL} = 0.8V$ and $V_{OH} = 2.0V$. Input AC drive levels are $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$.
 - 2. \overline{OE}/V_{PP} may be delayed up to t_{CE} t_{OE} after the falling edge of \overline{CE} without impact on t_{CE} .
 - 3. \overline{OE}/V_{PP} may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} .
 - 4. This parameter is only sampled and is not 100% tested.
 - 5. Output float is defined as the point when data is no longer driven.

Input Test Waveforms and Measurement Levels

Output Test Load

Pin Capacitance

 $(f = 1 \text{ MHz T} = 25^{\circ}\text{C})^{(1)}$


	Тур	Max	Units	Conditions
C _{IN}	4	6	pF	V _{IN} = 0V
C _{OUT}	8	12	pF	$V_{OUT} = 0V$

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms⁽¹⁾

Notes: 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} .

2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.

DC Programming Characteristics

	WW TI 100Y.CO. M.TW	WW 100Y.COM	Li	mits	001.0
Symbol	Parameter	Test Conditions	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$	WI.IW	±10	μA
V _{IL}	Input Low Level	N WWW. 100Y.CC	-0.6	0.8	V
V _{IH}	Input High Level	W WWW.100Y.C	2.0	V _{cc} + 1	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA	WT IN	0.4	V
/ _{он}	Output High Voltage	I _{OH} = -400 μA	2.4	N N	V
CC2	V _{CC} Supply Current (Program and Verify)	CW WWW.100	V.COM	25	mA
PP2	OE/V _{PP} Current	$\overline{CE} = V_{IL}$	N.COM	25	mA
/ _{ID}	A9 Product Identification Voltage	DN	11.5	12.5	V

AT27C512R

100X.COM.T

AC Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C, V_{CC} = 6.5 \pm 0.25V, \overline{OE}/V_{PP} = 13.0 \pm 0.25V$

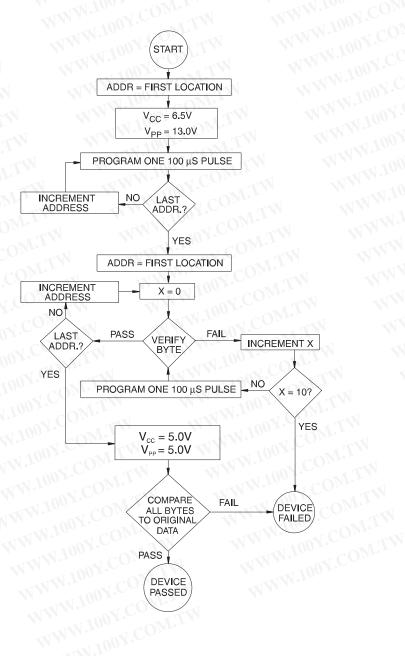
1005	MT.W.	V.100X.CONLTW	N.1001.	imits	
Symbol	Parameter	Test Conditions ⁽¹⁾	Min	Max	Units
t _{AS}	Address Setup Time	TI 100X.COMLIN W	2001	. M.TW	μs
t _{OES}	OE/V _{PP} Setup Time	NNI 100Y.COM.TW	2 00	N.TW	μs
t _{OEH}	OE/V _{PP} Hold Time	Input Rise and Fall Times	2	Y.COM.TY	μs
t _{DS}	Data Setup Time	(10% to 90%) 20ns	2	OY.COM.T	μs
t _{AH}	Address Hold Time	WWW.ICOOY.COM	0	100Y.CO.M.	μs
t _{DH}	Data Hold Time	Input Pulse Levels 0.45V to 2.4V	2	100Y.CO.	μs
t _{DFP}	CE High to Output Float Delay ⁽²⁾	Input Timing Reference Level	0	130	ns
t _{vcs}	V _{CC} Setup Time	0.8V to 2.0V	2	W.100 P. CC	μs
t _{PW}	CE Program Pulse Width ⁽³⁾	N N N N N N N N N N N N N N N N N N N	95	105	μs
t _{DV}	Data Valid from CE ⁽²⁾	Output Timing Reference Level 0.8V to 2.0V		WW.1001	μs
t _{VR}	OE/V _{PP} Recovery Time	WWW.1002 COMPLY	2	WW.1001.	μs
t _{PRT}	OE/V _{PP} Pulse Rise Time During Programming	W WWW.100X.COM.T	50	WWW.100	ns

Notes: 1. V_{CC} must be applied simultaneously or before \overline{OE}/V_{PP} and removed simultaneously or after \overline{OE}/V_{PP}

2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven—see timing diagram.

3. Program Pulse width tolerance is 100 $\mu\text{sec}\pm5\%.$

Atmel's 27C512R Integrated Product Identification Code


Pins							Hex			
Codes	WV	A0	A0 07	06	O5 🔨	04	03	02 01	00	Data
Manufacturer	Å	0	0.0	0	0	1	1001.	1 1	0	1E
Device Type	-		0.0	0	0	0	101	1 0	1	0D

Rapid Programming Algorithm

A 100 μ s \overline{CE} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and \overline{OE}/V_{PP} is raised to 13.0V. Each address is first programmed with one 100 μ s \overline{CE} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μ s pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. \overline{OE}/V_{PP} is then lowered to V_{IL} and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

AT27C512R

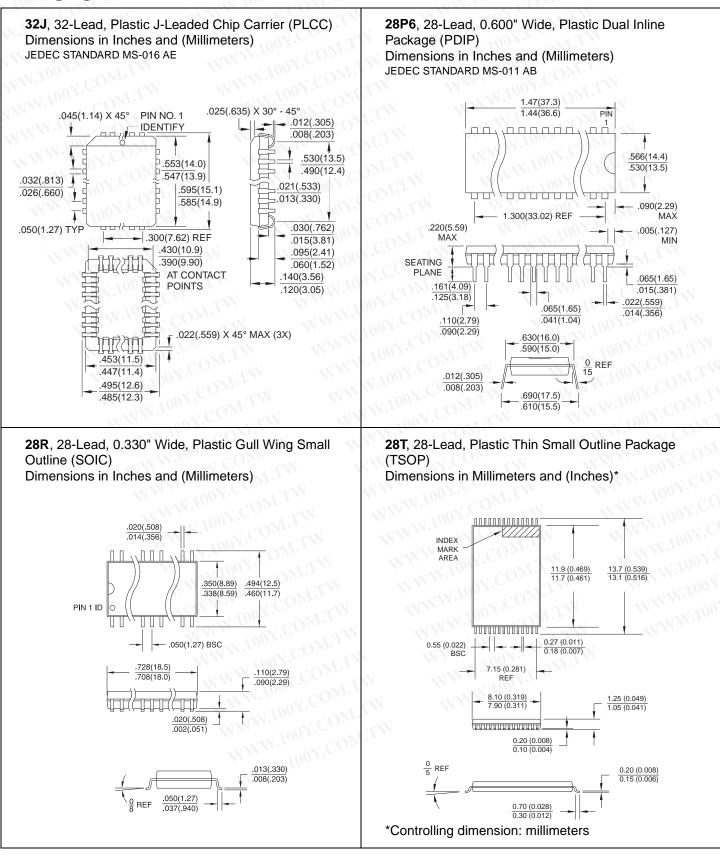
Ordering Information

ACC	I _{cc} /	(mA)	100Y. ONI.TW	W	ONLIN
ns)	Active	Standby	Ordering Code	Package	Operation Range
45	20	0.1	AT27C512R-45JC AT27C512R-45PC AT27C512R-45RC AT27C512R-45TC	32J 28P6 28R 28T	Commercial (0°C to 70°C)
	20	0.1	AT27C512R-45JI AT27C512R-45PI AT27C512R-45RI AT27C512R-45TI	32J 28P6 28R 28T	Industrial (-40°C to 85°C)
55	20	0.1	AT27C512R-55JC AT27C512R-55PC AT27C512R-55RC AT27C512R-55TC	32J 28P6 28R 28T	Commercial (0°C to 70°C)
	20	0.1	AT27C512R-55JI AT27C512R-55PI AT27C512R-55RI AT27C512R-55TI	32J 28P6 28R 28T	Industrial (-40°C to 85°C)
70	20	0.1	AT27C512R-70JC AT27C512R-70PC AT27C512R-70RC AT27C512R-70TC	32J 28P6 28R 28T	Commercial (0°C to 70°C)
	20	0.1	AT27C512R-70JI AT27C512R-70PI AT27C512R-70RI AT27C512R-70TI	32J 28P6 28R 28T	Industrial (-40°C to 85°C)
	20	0.1	AT27C512R-70JA AT27C512R-70PA AT27C512R-70RA	32J 28P6 28R	Automotive (-40°C to 125°C)

(continued) WWW.100Y.COM. WWW.10

	WWW.100X.COM.TW WWW.100X.COM.TW WWW.100X.COM.TW WWW.100X.COM.TW WWW.100X.COM.TW	
	Package Type	
32J	32-Lead, Plastic J-Leaded Chip Carrier (PLCC)	
28P6	28-Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)	
28R	28-Lead, 0.330" Wide, Plastic Gull Wing Small Outline (SOIC)	
28T	28-Lead, Thin Small Outline Package (TSOP)	

Ordering Information (Continued)


t _{ACC}	I _{CC} (mA)		WITT ON YOU TH	WW 100Y.C	WIM
(ns)	Active	Standby	Ordering Code	Package	Operation Range
90	20	0.1	AT27C512R-90JC AT27C512R-90PC AT27C512R-90RC AT27C512R-90TC	32J 28P6 28R 28T	Commercial (0°C to 70°C)
NWW.10	20	0.1	AT27C512R-90JI AT27C512R-90PI AT27C512R-90RI AT27C512R-90TI	32J 28P6 28R 28T	Industrial (-40°C to 85°C)
WW.	20	0.1	AT27C512R-90JA AT27C512R-90PA AT27C512R-90RA	32J 28P6 28R	Automotive (-40°C to 125°C)
120	20	0.1	AT27C512R-12JC AT27C512R-12PC AT27C512R-12RC AT27C512R-12TC	32J 28P6 28R 28T	Commercial (0°C to 70°C)
	20	0.1	AT27C512R-12JI AT27C512R-12PI AT27C512R-12RI AT27C512R-12TI	32J 28P6 28R 28T	Industrial (-40°C to 85°C)
	20	0.1	AT27C512R-12JA AT27C512R-12PA AT27C512R-12RA	32J 28P6 28R	Automotive (-40°C to 125°C)
150	20	0.1	AT27C512R-15JC AT27C512R-15PC AT27C512R-15RC AT27C512R-15TC	32J 28P6 28R 28T	Commercial (0°C to 70°C)
	20	0.1	AT27C512R-15JI AT27C512R-15PI AT27C512R-15RI AT27C512R-15TI	32J 28P6 28R 28T	Industrial (-40°C to 85°C)
	20	0.1	AT27C512R-15JA AT27C512R-15PA AT27C512R-15RA	32J 28P6 28R	Automotive (-40°C to 125°C)

	WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW
	Package Type
32J	32-Lead, Plastic J-Leaded Chip Carrier (PLCC)
28P6	28-Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
28R	28-Lead, 0.330" Wide, Plastic Gull Wing Small Outline (SOIC)
28T	28-Lead, Thin Small Outline Package (TSOP)

AT27C512R

AT27C512R

Packaging Information

