Features

－Industry Standard Architecture
－Low－cost Easy－to－use Software Tools
－High－speed，Electrically－erasable Programmable Logic Devices
－ 7.5 ns Maximum Pin－to－pin Delay
－Several Power Saving Options

Device	$\mathbf{I}_{\mathbf{c C}}$, Standby	$\mathbf{I}_{\mathbf{c C}}$, Active
ATF22V10B	85 mA	90 mA
ATF22V10BQ $^{(1)}$	35 mA	40 mA
ATF22V10BQL $^{(2)}$	5 mA	20 mA

Notes：1．The shaded devices are obsolete．Suggested replacement：ATF22V10CQ
2．The shaded devices are obsolete．Suggested replacement：ATF22V10CQZ
－CMOS and TTL Compatible Inputs and Outputs
－Input and I／O Pull－up Resistors
－Advanced Flash Technology
－Reprogrammable
－100\％Tested
－High－reliability CMOS Process
－20－year Data Retention
－ 100 Erase／Write Cycles
－2，000V ESD Protection
－ 200 mA Latchup Immunity
－Full Military，Commercial，and Industrial Temperature Ranges
－Dual－in－line and Surface Mount Packages in Standard Pinouts
－PCI Compliant

Logic Diagram

Pin Configurations

All Pinouts Top View

Pin Name	Function
CLK	Clock
IN	Logic Inputs
I／O	Bidirectional Buffers
＊	No Internal Connection
V $_{\text {CC }}$	＋5V Supply

ATF22V10B

Description

The ATF22V10B is a high－performance CMOS（electri－ cally－erasable）programmable logic device（PLD）which utilizes Atmel＇s proven electrically－erasable Flash memory technology．Speeds down to 7.5 ns and power dissipation as low as 10 mA are offered．All speed ranges are specified over the full $5 \mathrm{~V} \pm 10 \%$ range for military and industrial
temperature ranges，and $5 \mathrm{~V} \pm 5 \%$ for commercial tempera－ ture ranges．
Several low－power options allow selection of the best solu－ tion for various types of power－limited applications．Each of these options significantly reduces total system power and enhances system reliability．
＊NOTICE：Stresses beyond those listed under＂Absolute Maximum Ratings＂may cause permanent dam－ age to the device．This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．
Note：1．Minimum voltage is -0.6 V DC，which may under－ shoot to－2．0V for pulses of less than 20 ns ． Maximum output pin voltage is $\mathrm{V}_{\mathrm{CC}}+0.75 \mathrm{~V}$ DC， which may overshoot to 7.0 V for pulses of less than 20 ns．

DC and AC Operating Conditions

	Commercial	Industrial	Military
Operating Temperature	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ $($ Ambient $)$	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$ （Ambient）	$-55^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}$ (Case)
V_{CC} Power Supply	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 10 \%$	$5 \mathrm{~V} \pm 10 \%$

Note：1．The shaded devices are obsolete．

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力 电子（深圳）86－755－83298787

Http：／／www．100y．com．tw

DC Characteristics

Symbol	Parameter	Condition			Min	Typ	Max	Units
$\mathrm{I}_{\text {IL }}$	Input or I／O Low Leakage Current	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathbb{I N}} \leq \\ & \mathrm{V}_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$				－35	－100	$\mu \mathrm{A}$
I_{IH}	Input or I／O High Leakage Current	$3.5 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$					10	$\mu \mathrm{A}$
I_{CC}	Power Supply Current， Standby	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{Max}, \\ & \text { Outputs Open } \end{aligned}$	B－7	Com．		85	120	mA
				Ind．，Mil．		85	140	mA
I_{CC}	Power Supply Current， Standby	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IN}}=\text { Max, } \\ & \text { Outputs Open } \end{aligned}$	B－10	Com．／Ind．		85／85	120／140	mA
				Mil．		85	140	mA
			B－15	Com．／Ind．		65／65	90／115	mA
				Mil．		65	115	mA
			B－25	Com．		65	90	mA
				Ind．，Mil．		65	115	mA
			BQ－15	Com．		35	55	mA
			BQL－20，－25	Com．		5	10	mA
				Ind．，Mil．		5	15	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Clocked Power Supply Current	$V_{C C}=$ Max， Outputs Open， $\mathrm{f}=15 \mathrm{MHz}$	B－7	Com．	－	90	120	mA
				Mil．，Ind．		90	145	mA
			B－10	Com．／Ind．		90／90	120／145	mA
				Mil．		90	145	mA
			B－15	Com．／Ind．		65／65	90／120	mA
				Mil．		65	120	mA
			B－25	Com．		65	90	mA
				Ind．，Mil．		65	120	mA
			BQ－15	Com．		40	60	mA
			BQL－20，－25	Com．		20	50	mA
				Ind．，Mil．		20	70	mA
$\mathrm{los}^{(1)}$	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$					－130	mA
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				－0．5		0.8	V
V_{IH}	Input High Voltage		\square		2.0		$\mathrm{V}_{\mathrm{CC}}+0.75$	V
V_{OL}	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	Com．，Ind．			0.5	V
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Mil．			0.5	V
V_{OH}	Output High Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4			V

Notes：1．Not more than one output at a time should be shorted．Duration of short circuit test should not exceed 30 sec．
2．The shaded devices are obsolete．

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www． 100 y．com．tw

AC Waveforms ${ }^{(1)}$

Note：1．Timing measurement reference is 1.5 V ．Input AC driving levels are 0.0 V and 3.0 V ，unless otherwise specified．

AC Characteristics ${ }^{(1)}$

Symbol	Parameter	－7		－10		－15		－20		－25		Units
		Min	Max									
$t_{\text {PD }}$	Input or Feedback to Combinatorial Output	3	7.5	3	10	3	15	3	20	3	25	ns
t_{co}	Clock to Output	2	$4.5{ }^{(2)}$	2	6.5	2	8	2	12	2	15	ns
t_{CF}	Clock to Feedback		2.5		2.5		2.5		8		13	ns
t_{s}	Input or Feedback Setup Time	3.5		4.5		10			14	15		ns
$t_{\text {H }}$	Hold Time	0		0		0		0		0		ns
$\mathrm{f}_{\text {MAX }}$	External Feedback 1／（ $\left.\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{co}}\right)$	$125{ }^{(3)}$		90		55.5		38.5		33.3		MHz
	Internal Feedback 1／（ $\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{CF}}$ ）	166		142		69		45.5		40		MHz
	No Feedback 1／（ $\mathrm{twH}+\mathrm{t}_{\mathrm{wL}}$ ）	166		142		83.3				38.5		MHz
$t_{\text {w }}$	Clock Width（ $\mathrm{t}_{\text {WL }}$ and $\mathrm{t}_{\text {WH }}$ ）	3		3.5		6		10		13		ns
$t_{\text {EA }}$	Input or I／O to Output Enable	3	7.5	3	10	3	15	3	20	3	25	ns
t_{ER}	Input or I／O to Output Disable	3	7.5	3	9	3	15	3	20	3	25	ns
$\mathrm{t}_{\text {AP }}$	Input or I／O to Asynchronous Reset of Register	3	10	3	12	3	20	3	22	3	25	ns
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	7		8		15		20		25		ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset Recovery Time	5		6		10		20		25		ns
$\mathrm{t}_{\text {SP }}$	Setup Time，Synchronous Preset	4.5		6		10		14		15		ns
${ }_{\text {t SPR }}$	Synchronous Preset to Clock Recovery Time	5		8		10		14		15		ns

Notes：1．See ordering information for valid part numbers．
2． 5.5 ns for DIP package devices．
3． 111 MHz for DIP package devices．
4．The shaded devices are obsolete．

Input Test Waveforms and Measurement Levels

$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}<3 \mathrm{~ns}$

Output Test Loads

＊All except -7 which is $\mathrm{R} 2=300 \Omega$

Pin Capacitance

$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}^{(1)}$

	Typ	Max	Units	Conditions
$\mathrm{C}_{\mathbb{I N}}$	5	8	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	6	8	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note：1．Typical values for nominal supply voltage．This parameter is only sampled and is not 100% tested．

Power－up Reset

The registers in the ATF22V10Bs are designed to reset during power－up．At a point delayed slightly from V_{CC} cross－ ing $\mathrm{V}_{\mathrm{RST}}$ ，all registers will be reset to the low state．The output state will depend on the polarity of the output buffer． This feature is critical for state machine initialization．How－ ever，due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system，the following conditions are required：
1．The V_{CC} rise must be monotonic，
2．After reset occurs，all input and feedback setup times must be met before driving the clock pin high，and
3．The clock must remain stable during t_{PR} ．

Preload of Registered Outputs

The ATF22V10B＇s registers are provided with circuitry to allow loading of each register with either a high or a low． This feature will simplify testing since any state can be forced into the registers to control test sequencing．A JEDEC file with preload is generated when a source file with vectors is compiled．Once downloaded，the JEDEC file preload sequence will be done automatically by most of the approved programmers after the programming．

Parameter	Description	Typ	Max	Units
t_{PR}	Power－up Reset Time	600	1,000	ns
$\mathrm{~V}_{\mathrm{RST}}$	Power－up Reset Voltage	3.8	4.5	V

Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the ATF22V10B fuse patterns．Once programmed，fuse verify and preload are inhibited．However，the 64－bit User Signature remains accessible．
The security fuse should be programmed last，as its effect is immediate．

Electronic Signature Word

There are 64 bits of programmable memory that are always available to the user，even if the device is secured．These bits can be used for user－specific data．

Programming／Erasing

Programming／erasing is performed using standard PLD programmers．See CMOS PLD Programming Hardware and Software Support for information on software／programming．

Input and I／O Pull－ups

All ATF22V10B family members have internal input and I／O pull－up resistors．Therefore，whenever inputs or I／Os are not being driven externally，they will float to V_{Cc} ．This ensures that all logic array inputs are at known states． These are relatively weak active pull－ups that can easily be overdriven by TTL－compatible drivers（see input and I／O diagrams below）．

Input Diagram

I／O Diagram

> 勝 特 力 材 料 $886-3-5753170$
> 胜特力电子(上海) $86-21-54151736$
> 胜特力电子(深圳) $86^{-}-755-83298787$
> Http: //www. 100 y. com. tw

Functional Logic Diagram ATF22V10B

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www．100y．com．tw

SUPPLY CURRENT vs．SUPPLY VOLTAGE

SUPPLY CURRENT vs．AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT

SUPPLY CURRENT vs．INPUT FREQUENCY

SUPPLY CURRENT vs．SUPPLY VOLTAGE

SUPPLY CURRENT vs．AMBIENT TEMPERATURE

OUTPUT SINK CURRENT

OUTPUT SOURCE CURRENT

OUTPUT SOURCE CURRENT

NORMALIZED $t_{P D}$

NORMALIZED $t_{c o}$ vs．SUPPLY VOLTAGE $\left(T A=25^{\circ} \mathrm{C}\right)$

OUTPUT SINK CURRENT

OUTPUT SINK CURRENT

NORMALIZED $t_{p D}$

NORMALIZED t_{co}

NORMALIZED t_{s} vs．SUPPLY VOLTAGE $\left(T A=25^{\circ} \mathrm{C}\right)$

DELTA $t_{\text {PD }}$ vs．OUTPUT LOADING

DELTA $\mathrm{t}_{\text {PD }}$ vs．\＃OUTPUT SWITCHING

INPUT CURRENT vs．INPUT VOLTAGE

NORMALIZED t_{s} vs．AMBIENT TEMPERATURE $(V C C=5 V)$

DELTA $t_{\text {co }}$ vs．\＃OUTPUT SWITCHING

INPUT CLAMP CURRENT

ATF22V10B Ordering Information

$\mathrm{t}_{\mathrm{PD}}(\mathrm{ns})$	$\mathrm{t}_{\mathrm{S}}(\mathrm{ns})$	$\mathrm{t}_{\mathrm{co}}(\mathrm{ns})$	Ordering Code	Package	Operation Range
7.5	3.5	4.5	ATF22V10B－7JC ${ }^{(1)}$ ATF22V10B－7PC ${ }^{(1)}$ ATF22V10B－7SC ${ }^{(1)}$ ATF22V10B－7XC ${ }^{(1)}$	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ ）
10	4.5	6.5	ATF22V10B－10JC ${ }^{(1)}$ ATF22V10B－10PC ${ }^{(1)}$ ATF22V10B－10SC ${ }^{(1)}$ ATF22V10B－10XC ${ }^{(1)}$	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ ）
			ATF22V10B－10JI ${ }^{(1)}$ ATF22V10B－10PI ${ }^{(1)}$ ATF22V10B－10SI ${ }^{(1)}$ ATF22V10B－10XI ${ }^{(1)}$	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	Industrial （ $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ）
			ATF22V10B－10GM／883 ATF22V10B－10NM／883	$\begin{aligned} & \text { 24D3 } \\ & \text { 28L } \end{aligned}$	$\begin{gathered} \text { Military } / 883 \mathrm{C} \\ \left(-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right) \end{gathered}$ Class B，Fully Compliant
			$\begin{aligned} & 5962-89841 \text { 06LA } \\ & 5962-89841 \text { 063X } \end{aligned}$	$\begin{aligned} & \text { 24D3 } \\ & \text { 28L } \end{aligned}$	Military $\left(-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right)$ Class B，Fully Compliant
15	10	8	ATF22V10B－15JC ${ }^{(1)}$ ATF22V10B－15PC ${ }^{(1)}$ ATF22V10B－15SC ${ }^{(1)}$ ATF22V10B－15XC ${ }^{(1)}$	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ ）
			ATF22V10B－15JI ${ }^{(1)}$ ATF22V10B－15PI ${ }^{(1)}$ ATF22V10B－15SI ${ }^{(1)}$ ATF22V10B－15XI ${ }^{(1)}$	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}$ ）
			ATF22V10B－15GM／883 ATF22V10B－15NM／883	$\begin{aligned} & \text { 24D3 } \\ & \text { 28L } \end{aligned}$	$\begin{gathered} \text { Military } / 883 \mathrm{C} \\ \left(-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right) \end{gathered}$ Class B，Fully Compliant
			$\begin{aligned} & 5962-89841 \text { 03LA } \\ & 5962-89841 \text { 033X } \end{aligned}$	$\begin{aligned} & \text { 24D3 } \\ & \text { 28L } \end{aligned}$	Military $\left(-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right)$ Class B，Fully Compliant
25	15	15	ATF22V10B－25JC ATF22V10B－25PC ATF22V10B－25SC ATF22V10B－25XC	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ ）
			ATF22V10B－25JI ATF22V10B－25PI ATF22V10B－25SI ATF22V10B－25XI	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Notes：1．Recommend ATF22V10C versions．
2．The shaded devices are obsolete．

胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www．100y．com．tw

ATF22V10BQ（L）Ordering Information

t_{PD}（ ns ）	$\mathrm{t}_{\mathrm{S}}(\mathrm{ns})$	$\mathrm{t}_{\mathrm{co}}(\mathrm{ns})$	Ordering Code	Package	Operation Range
15	10	8	ATF22V10BQ－15JC ${ }^{(1)}$	28 J	Commercial
			ATF22V10BQ－15PC ${ }^{(1)}$	24P3	$\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
			ATF22V10BQ－15SC ${ }^{(1)}$	24S	
			ATF22V10BQ－15XC ${ }^{(1)}$	24X	
20	14	12	ATF22V10BQL－20JC ${ }^{(1)}$	28.	Commercial
			ATF22V10BQL－20PC ${ }^{(1)}$	24P3	$\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ ）
			ATF22V10BQL－20SC ${ }^{(1)}$	24S	
			ATF22V10BQL－20XC ${ }^{(1)}$	24X	
			ATF22V10BQL－20JI ${ }^{(1)}$	28J	Industrial
			ATF22V10BQL－20PI ${ }^{(1)}$	24P3	$\left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right)$
			ATF22V10BQL－20SI ${ }^{(1)}$	24S	
			ATF22V10BQL－20XI ${ }^{(1)}$	24X	
			ATF22V10BQL－20GM／883	24D3	Military／883C
			ATF22V10BQL－20NM／883	28L	$\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ Class B，Fully Compliant
			$\text { 5962-89841 } 14 \text { LA }$	24D3	Military
			5962－89841 14 3X		$\left(-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right)$ Class B，Fully Compliant
25	15	15	ATF22V10BQL－25JC	28 J	Commercial
			ATF22V10BQL－25PC	24P3	$\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
			ATF22V10BQL－25SC	24S	
			ATF22V10BQL－25XC	24X	
			ATF22V10BQL－25JI	28 J	Industrial
			ATF22V10BQL－25PI	24P3	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
			ATF22V10BQL－25SI	24 S	
			ATF22V10BQL－25XI	24X	
			ATF22V10BQL－25GM／883	24D3	Military／883C
			ATF22V10BQL－25NM／883	28L	$\left(-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right)$
					Class B，Fully Compliant
			5962－89841 13 LA	24D3	Military
			5962－89841 13 3X	28L	$\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
					Class B，Fully Compliant

Notes：1．Recommend ATF22V10CQ and ATF22V10CQZ
2．The shaded devices are obsolete．

ATF22V10B

Package Information

24D3

24D3，24－lead，0．300＂Wide．Non－windowed， Ceramic Dual Inline Parkage（Cerdip）
Dimensions in Millimeters and（Inches）＊
MIL－STD－1835 D－9 CONFIG A（Glass Sealed）

＊Controlling dimension：Inches

REV．A 04／11／2001

28L，28－pad，Non－windowed，Ceramic lid，Leadless Chip Carrier（LCC）
Dimensions in Millimeters and（Inches）＊
MIL－STD－1835 C－4

PIN 1

＊Controlling dimension：Inches

