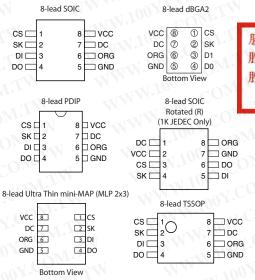
Features

- Low-voltage and Standard-voltage Operation
 - $-2.7 (V_{CC} = 2.7V \text{ to } 5.5V)$
 - $-1.8 (V_{CC} = 1.8V \text{ to } 5.5V)$
- User-selectable Internal Organization
 - 1K: 128 x 8 or 64 x 16
- Three-wire Serial Interface
- 2 MHz Clock Rate (5V)
- Self-timed Write Cycle (10 ms max)
- High Reliability
 - Endurance: 1 Million Write Cycles
 - Data Retention: 100 Years
- Automotive Grade Devices Available
- 8-lead JEDEC PDIP, 8-lead JEDEC SOIC, 8-lead EIAJ SOIC, 8-lead Ultra Thin mini-MAP (MLP 2x3), 8-lead TSSOP and 8-ball dBGA2 Packages

Description


The AT93C46 provides 1024 bits of serial electrically erasable programmable readonly memory (EEPROM), organized as 64 words of 16 bits each (when the ORG pin is connected to VCC), and 128 words of 8 bits each (when the ORG pin is tied to ground). The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operations are essential. The AT93C46 is available in space-saving 8-lead PDIP, 8-lead JEDEC SOIC, 8-lead EIAJ SOIC, 8-lead Ultra Thin mini-MAP (MLP 2x3), 8-lead TSSOP, and 8-lead dBGA2 packages.

The AT93C46 is enabled through the Chip Select pin (CS) and accessed via a three-wire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a Read instruction at DI, the address is decoded and the data is clocked out serially on the DO pin. The Write cycle is completely self-timed, and no separate Erase cycle is required before Write. The Write cycle is only enabled when the part is in the Erase/Write Enable state. When CS is brought high following the initiation of a Write cycle, the DO pin outputs the Ready/Busy status of the part.

The AT93C46 is available in 2.7V to 5.5V and 1.8V to 5.5V versions.

Table 1. Pin Configurations

Pin Name	Function
CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
VCC	Power Supply
ORG	Internal Organization
DC	Don't Connect

Three-wire Serial EEPROM

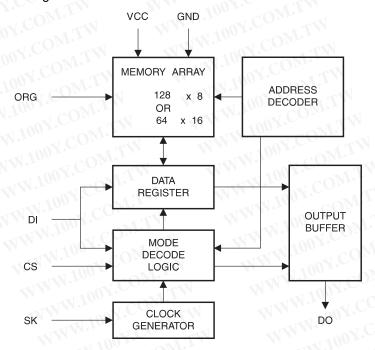
1K (128 x 8 or 64 x 16)

AT93C46

Note: Not recommended for new design; please refer to AT93C46D datasheet.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

5140B-SEEPR-2/07


Absolute Maximum Ratings*

Operating Temperature	55°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on Any Pin with Respect to Ground	1.0V to +7.0V
Maximum Operating Voltage	6.25V
DC Output Current	5.0 mA

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

Figure 1. Block Diagram

Note:

When the ORG pin is connected to VCC, the "x 16" organization is selected. When it is connected to ground, the "x 8" organization is selected. If the ORG pin is left unconnected and the application does not load the input beyond the capability of the internal 1 Meg ohm pullup, then the "x 16" organization is selected. The feature is not available on the 1.8V devices.

For the AT93C46, if "x 16" organization is the mode of choice and Pin 6 (ORG) is left unconnected, Atmel recommends using the AT93C46A device. For more details, see the AT93C46A datasheet.

Table 2. Pin Capacitance⁽¹⁾

Applicable over recommended operating range from $T_A = 25^{\circ}C$, f = 1.0 MHz, $V_{CC} = +5.0$ V (unless otherwise noted)

Symbol	Test Conditions	MMM.	Max	TW	Units	Conditions
C _{OUT}	Output Capacitance (DO)	WWW.	, 5 ⁰		pF	V _{OUT} = 0V
C _{IN}	Input Capacitance (CS, SK, DI)	VWW V	500	Ar.	pF	$V_{IN} = 0V$

1. This parameter is characterized and is not 100% tested.

Table 3. DC Characteristics

Applicable over recommended operating range from: $T_{AI} = -40^{\circ}\text{C}$ to +85°C, $V_{CC} = +1.8\text{V}$ to +5.5V, T_{AE} = -40°C to +125°C, V_{CC} = +1.8V to +5.5V (unless otherwise noted)

Parameter	Test Condition	Min	Тур	Max	Unit	
Supply Voltage	MANN TOO	OM.	1.8	$^{O,CO_{M}}$	5.5	V
Supply Voltage	WWW.1002	COM	2.7	CO	5.5	V
Supply Voltage	W. 100 -	COM	4.5	ON CC	5.5	V
Sumply Comment	V 50V	READ at 1.0 MHz	VVVV	0.5	2.0	mA
Supply Current	$V_{CC} = 5.0V$	WRITE at 1.0 MHz	TANN V	0.5	2.0	mA
Standby Current	V _{CC} = 1.8V	CS = 0V		0	0.1	μA
Standby Current	V _{CC} = 2.7V	CS = 0V		6.0	10.0	μA
Standby Current	V _{CC} = 5.0V	CS = 0V	N	17	30	μA
Input Leakage	V _{IN} = 0V to V _{CC}			0.1	1.0	μA
Output Leakage	V _{IN} = 0V to V _{CC}			0.1	1.0	μA
Input Low Voltage	2.7V ≤ V _{CC} ≤ 5.5V		-0.6	MAL	0.8	V
Input High Voltage			2.0	MM	V _{CC} + 1	
Input Low Voltage	101/1	(107) 00Y.CO	-0.6	WW	V _{CC} x 0.3	V
Input High Voltage	1.8V ≤ V	/ _{CC} ≤ 2.7 V	V _{CC} x 0.7	WW	V _{CC} + 1	TMO
Output Low Voltage	0.71/ (1// 1.5.51/	I _{OL} = 2.1 mA	WIN	W	0.4	V
Output High Voltage	$2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{ V}$	$I_{OH} = -0.4 \text{ mA}$	2.4	V	1001	V
Output Low Voltage	4.01/ 51/ 50.71/	I _{OL} = 0.15 mA	CONTAIN	4	0.2	V
Output High Voltage	$I_{OH} = -100 \mu\text{A}$		V _{CC} - 0.2	V	WWW	V.CO
	Supply Voltage Supply Voltage Supply Voltage Supply Current Standby Current Standby Current Standby Current Input Leakage Output Leakage Input Low Voltage Input High Voltage Input High Voltage Output Low Voltage	Supply Voltage Supply Voltage Supply Voltage Supply Current $V_{CC} = 5.0V$ Standby Current $V_{CC} = 1.8V$ Standby Current $V_{CC} = 2.7V$ Standby Current $V_{CC} = 5.0V$ Input Leakage $V_{IN} = 0V \text{ to } V_{CC}$ Input Low Voltage Input High Voltage Input High Voltage Output Low Voltage $1.8V \le V_{CC} \le 5.5V$	$\begin{array}{c c} \text{Supply Voltage} \\ \text{Supply Voltage} \\ \text{Supply Current} \\ \\ \text{Supply Current} \\ \\ \text{V}_{CC} = 5.0V \\ \\ \text{READ at 1.0 MHz} \\ \\ \text{WRITE at 1.0 MHz} \\ \\ \text{WRITE at 1.0 MHz} \\ \\ \text{Standby Current} \\ \\ \text{V}_{CC} = 1.8V \\ \\ \text{CS} = 0V \\ \\ \text{Standby Current} \\ \\ \text{V}_{CC} = 2.7V \\ \\ \text{CS} = 0V \\ \\ \text{Standby Current} \\ \\ \text{V}_{CC} = 5.0V \\ \\ \text{CS} = 0V \\ \\ \text{CS} = 0V \\ \\ \text{CS} = 0V \\ \\ \text{Input Leakage} \\ \\ \text{Input Leakage} \\ \\ \text{Input Low Voltage} \\ \\ \text{Input High Voltage} \\ \\ \text{Input High Voltage} \\ \\ \text{Input High Voltage} \\ \\ \text{Output Low Voltage} \\ \\ \text{Output Low Voltage} \\ \\ \text{Output High Voltage} \\ \\ \text{Output High Voltage} \\ \\ \text{Output Low Voltage} \\ \\ \\ \text{Output Low Voltage} \\ \\ \\ \text{Output Low Voltage} \\ \\ \\ Output Low Voltag$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 4. AC Characteristics

Applicable over recommended operating range from $T_{AI} = -40^{\circ}C$ to + 85°C, $V_{CC} = As$ Specified, CL = 1 TTL Gate and 100 pF (unless otherwise noted)

Symbol	Parameter	Test Condition	. WW.	Min	Тур	Max	Units
f _{SK}	SK Clock Frequency	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{CC} \leq 5.5 \\ 2.7 \text{V} \leq \text{V}_{CC} \leq 5.5 \\ 1.8 \text{V} \leq \text{V}_{CC} \leq 5.5 \end{array}$	V	0 0 0	OM.TW	2 1 0.25	MHz
t _{SKH}	SK High Time	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5^{\circ} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5^{\circ} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5^{\circ} \end{array}$	V	250 250 1000	COM.T	CM M	ns
t _{SKL}	SK Low Time	$4.5V \le V_{CC} \le 5.5^{\circ}$ $2.7V \le V_{CC} \le 5.5^{\circ}$ $1.8V \le V_{CC} \le 5.5^{\circ}$	V	250 250 1000	N.COM	.TW n.TW	ns
t _{CS}	Minimum CS Low Time	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{CC} \leq 5.5^{\circ} \\ 2.7 \text{V} \leq \text{V}_{CC} \leq 5.5^{\circ} \\ 1.8 \text{V} \leq \text{V}_{CC} \leq 5.5^{\circ} \end{array}$	V _C O _M .	250 250 1000	100X.CC	M.TW OM.TW	ns
t _{CSS}	CS Setup Time	Relative to SK	$\begin{array}{c} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	50 50 200	M.100X.	CONITY	N ns
t _{DIS}	DI Setup Time	Relative to SK	$\begin{array}{c} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	100 100 400	M.M. 100	Y.COM.	TW ns
t _{CSH}	CS Hold Time	Relative to SK	100x. COM.1	0	WWW.10	COJ	ns
t _{DIH}	DI Hold Time	Relative to SK	$\begin{array}{c} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \\ 1.8V \leq V_{CC} \leq 5.5V \end{array}$	100 100 400	WWW.	100X.CO	ow.Ths
t _{PD1}	Output Delay to "1"	AC Test	$4.5V \le V_{CC} \le 5.5V$ $2.7V \le V_{CC} \le 5.5V$ $1.8V \le V_{CC} \le 5.5V$	TW	WW	250 250 1000	co ns
t _{PD0}	Output Delay to "0"	AC Test	$4.5V \le V_{CC} \le 5.5V$ $2.7V \le V_{CC} \le 5.5V$ $1.8V \le V_{CC} \le 5.5V$	M.TW OM.TW	M.	250 250 1000	Cons
t _{SV}	CS to Status Valid	AC Test	$4.5V \le V_{CC} \le 5.5V$ $2.7V \le V_{CC} \le 5.5V$ $1.8V \le V_{CC} \le 5.5V$	CON.TY	N	250 250 1000	100X (ns) M.
t _{DF}	CS to DO in High Impedance	AC Test CS = V _{IL}	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{CC} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{CC} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{CC} \leq 5.5 \text{V} \end{array}$	N.COM.	TW	100 100 400	V.100 ns CO
t	Write Cycle Time	OX. OM.TA	WW.11		U.LA.	10	ms
t _{WP}	Write Cycle Time	TOON: COMITY	4.5V ≤ V _{CC} ≤ 5.5V	0.1	3	VV	ms
Endurance ⁽¹⁾	5.0V, 25°C	100Y. OM.T	M MA	1M	MITW	1	Write Cycles

Note: 1. This parameter is characterized and is not 100% tested.

Table 5. Instruction Set for the AT93C46

WT		Op	Add	ress	Da	ata	IN
Instruction	SB	Code	x 8	x 16	x 8	x 16	Comments
READ	1	10	$A_6 - A_0$	$A_5 - A_0$	MMM	1.100X.CO	Reads data stored in memory, at specified address
EWEN	1	00	11XXXXX	11XXXX	MM	M.100X.C	Write enable must precede all programming modes
ERASE	1	11 📢	$A_6 - A_0$	$A_5 - A_0$	W	1001	Erases memory location A _n – A ₀
WRITE	11	01	$A_6 - A_0$	$A_5 - A_0$	$D_7 - D_0$	D ₁₅ - D ₀	Writes memory location A _n – A ₀
ERAL	MIT!	00	10XXXXX	10XXXX	W	MM.100	Erases all memory locations. Valid only at V _{CC} = 4.5V to 5.5V
WRAL	OMIT	00	01XXXXX	01XXXX	D ₇ – D ₀	$D_{15} - D_0$	Writes all memory locations. Valid only at $V_{\rm CC} = 4.5 \mbox{V}$ to 5.5 \mathbb{V}
EWDS	C ₁	00	00XXXXX	00XXXX	1.TW	MM	Disables all programming instructions

Note: The Xs in the address field represent DON'T CARE values and must be clocked.

Functional Description

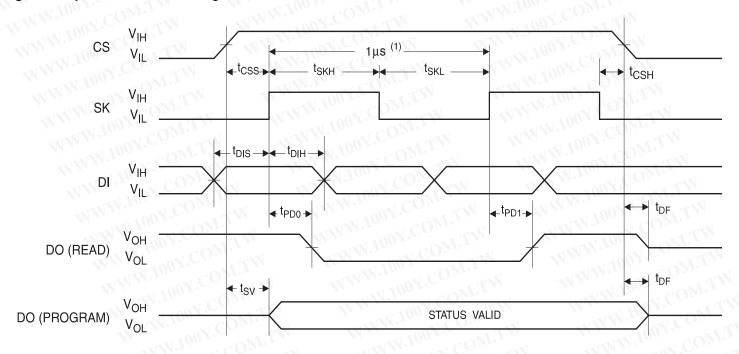
The AT93C46 is accessed via a simple and versatile three-wire serial communication interface. Device operation is controlled by seven instructions issued by the host processor. A valid instruction starts with a rising edge of CS and consists of a start bit (logic "1") followed by the appropriate op code and the desired memory address location.

READ (READ): The Read (READ) instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the serial output pin DO. Output data changes are synchronized with the rising edges of serial clock SK. It should be noted that a dummy bit (logic "0") precedes the 8- or 16-bit data output string.

ERASE/WRITE ENABLE (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable (EWEN) instruction must be executed first before any programming instructions can be carried out. Please note that once in the EWEN state, programming remains enabled until an EWDS instruction is executed or V_{CC} power is removed from the part.

ERASE (ERASE): The Erase (ERASE) instruction programs all bits in the specified memory location to the logical "1" state. The self-timed erase cycle starts once the Erase instruction and address are decoded. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "1" at pin DO indicates that the selected memory location has been erased and the part is ready for another instruction.

WRITE (WRITE): The Write (WRITE) instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle t_{WP} starts after the last bit of data is received at serial data input pin DI. The DO pin outputs the Read/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "0" at DO indicates that programming is still in progress. A logic "1" indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. A Ready/Busy status cannot be obtained if the CS is brought high after the end of the self-timed programming cycle tWP.


ERASE ALL (ERAL): The Erase All (ERAL) instruction programs every bit in the memory array to the logic "1" state and is primarily used for testing purposes. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The ERAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.

WRITE ALL (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The WRAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.

ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturb, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the Read instruction is independent of both the EWEN and EWDS instructions and can be executed at any time.

Timing Diagrams

Figure 2. Synchronous Data Timing

Note: 1. This is the minimum SK period.

Table 6. Organization Key for Timing Diagrams

100.	COM	AT93C46	(1K)
	I/O	x 8	x 16
W.10'	A_N	A ₆	A_5
.W.1	D_N	D ₇	D ₁₅

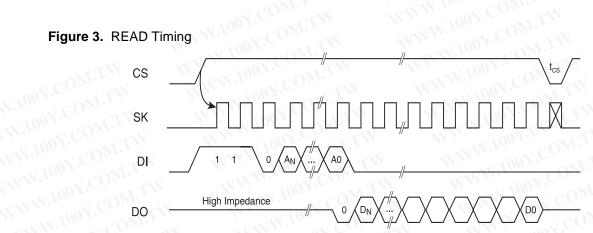


Figure 4. EWEN Timing

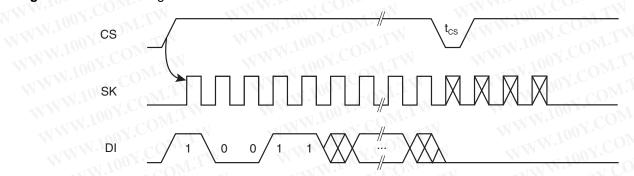
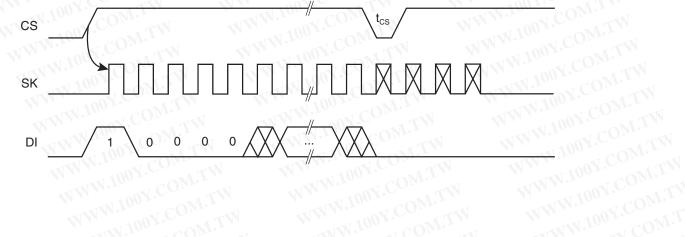



Figure 5. EWDS Timing

W.100Y.COM.TW

Figure 6. WRITE Timing

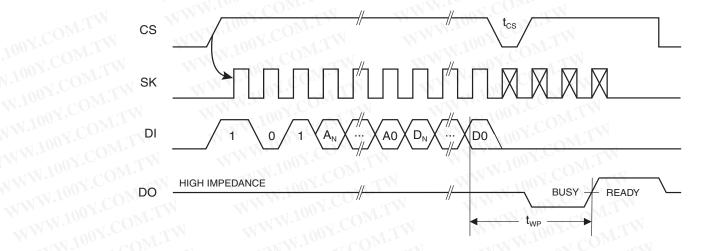
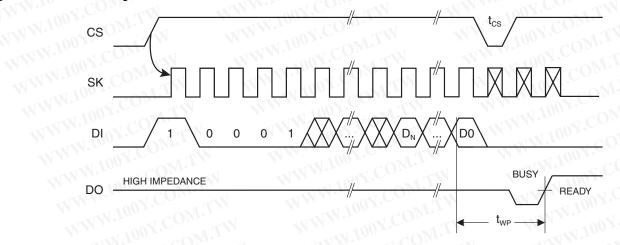
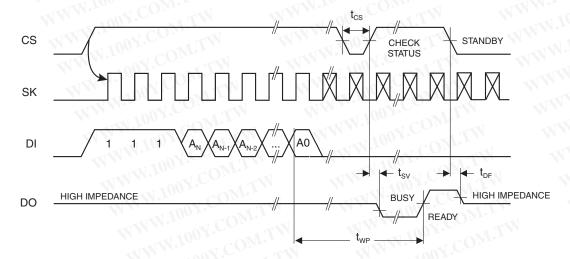
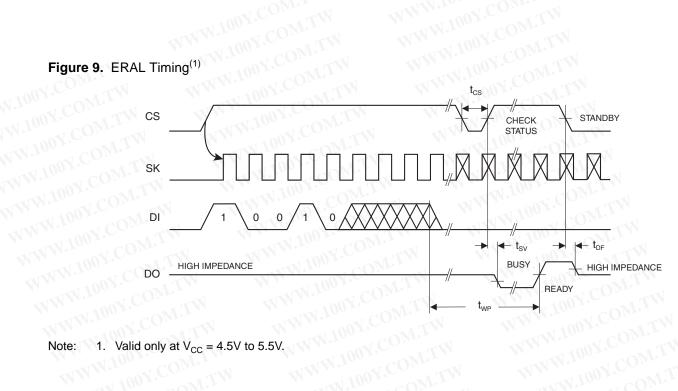




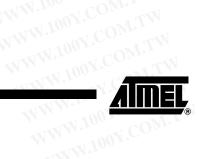
Figure 7. WRAL Timing⁽¹⁾

1. Valid only at $V_{CC} = 4.5V$ to 5.5V. Note:


Figure 8. ERASE Timing

TWIN INNY.COM.TW

WWW.100Y.C


WWW.100Y.COM.T

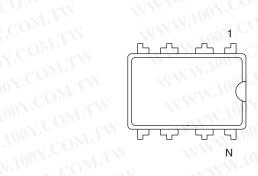
WWW.1003

WWW.100Y.COM.

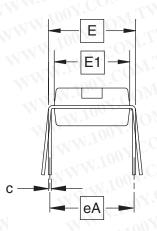
WWW.100 WWW.100Y.COM

WW.100Y.COM.TW

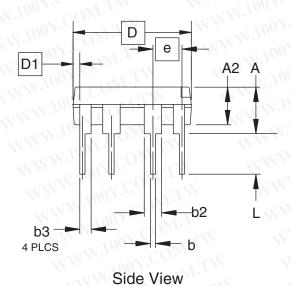
AT93C46 Ordering Information⁽¹⁾


Ordering Code	Package	Operation Range
AT93C46-10PU-2.7 ⁽²⁾	8P3	TW
AT93C46-10PU-1.8 ⁽²⁾	8P3	
AT93C46-10SU-2.7 ⁽²⁾	8S1	
AT93C46-10SU-1.8 ⁽²⁾	// // // // // // // // // // // // //	
AT93C46W-10SU-2.7 ⁽²⁾	8S1	Load from /Halagan from/
AT93C46W-10SU-1.8 ⁽²⁾	8S2	Lead-free/Halogen-free/ Industrial Temperature
AT93C46-10TU-2.7 ⁽²⁾	8S2	(–40°C to 85°C)
AT93C46-10TU-1.8 ⁽²⁾	8A2	(=40 € 10 83 €)
AT93C46Y1-10YU-1.8 ⁽²⁾ (Not recommended for new	8A2	
designs)	8Y1	
AT93C46Y6-10YH-1.8 ⁽³⁾	8Y6	
AT93C46U3-10UU-1.8 ⁽²⁾	8U3-1	
AT93C46-W1.8-11 ⁽⁴⁾	Die Sale	Industrial (-40°C to 85°C)

- 1. For 2.7V devices used in the 4.5V to 5.5V range, please refer to performance values in the Table 3 on page 3 and Table 4 on page 4. Not recommended for new design. Please refer to AT93C46D datasheet.
- 2. "U" designates Green Package and RoHS compliant.
- 3. "H" designates Green Package and RoHS compliant, with NiPdAu Lead finish
- 4. Available in waffle pack and wafer form, order as SL788 for inkless wafer form. Bumped die available upon request.


	Package Type COMMAN COM
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
8S2	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC)
8A2	8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)
8U3-1	8-ball, Die Ball Grid Array Package (dBGA2)
8Y1	8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP)
8Y6	8-lead, 2.00 mm x 3.00 mm Body, 0.50mm Pitch, Ultra-Thin Mini-MAO, Dual No Lead Package. (DFN), (MLP 2x3mm)
	WWW. COMMON OPTIONS WWW. COMMON WWW. 1907. COMMON WWW. 1907.
-2.7	Low Voltage (2.7V to 5.5V)
-1.8	Low Voltage (1.8V to 5.5V)
R	Rotated Pinout

Packaging Information


8P3 - PDIP

Top View

End View

COMMON DIMENSIONS

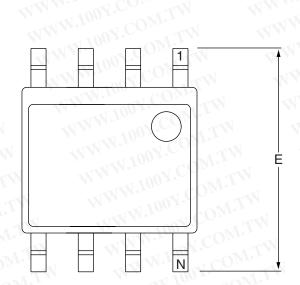
(Unit of Measure = inches)

		~ 4711 7		
SYMBOL	MIN	NOM	MAX	NOTE
Α	TAN V	1.700	0.210	2
A2	0.115	0.130	0.195	1.7
N b	0.014	0.018	0.022	5
b2	0.045	0.060	0.070	6
b3	0.030	0.039	0.045	6
С	0.008	0.010	0.014	OM
D	0.355	0.365	0.400	3
D1	0.005	MAL	1 1007	3
E	0.300	0.310	0.325	4
E1	0.240	0.250	0.280	3
е		0.100 BSC	MN'In	~√C
eA		0.300 BSC	- 1.W.1	4
. L	0.115	0.130	0.150	2

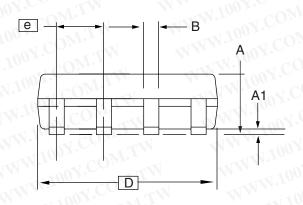
Notes:

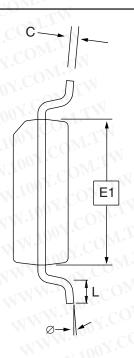
- 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
- 2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
- 3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
- 4. E and eA measured with the leads constrained to be perpendicular to datum.
- 5. Pointed or rounded lead tips are preferred to ease insertion.
- 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).

01/09/02


2325 Orchard Parkway San Jose, CA 95131 **8P3**, 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP)

BP3 B




8S1 – JEDEC SOIC

Top View

Side View

End View

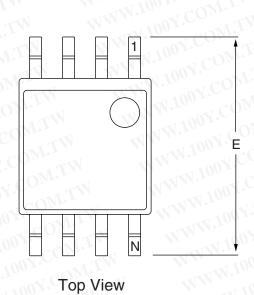
COMMON DIMENSIONS

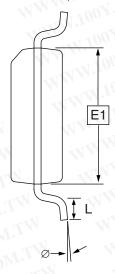
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	1.35	3110	1.75	T.Mc
A1	0.10	11 7	0.25	-217
b	0.31	W.	0.51	Oar
С	0.17	TINN	0.25	CO_{M_I}
D	4.80		5.00	CON
E1	3.81	NT.	3.99	Y
E	5.79	\$W	6.20	OVICE
e e	W.	1.27 BSC	MM	N.C
CGM	0.40		1.27	
Ø	0°	-	8°	100

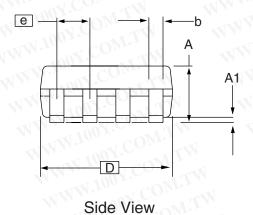
Note: These drawings are for general information only. Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc.

10/7/03


AMEL


1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 **TITLE 8S1**, 8-lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC)

DRAWING NO. 8S1 B


8S2 - EIAJ SOIC

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

End View

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	1.70	1N.100	2.16	M.J.
A1	0.05	110	0.25	TIME
b	0.35	MM.	0.48	5
С	0.15	WW.	0.35	5
D	5.13		5.35	COM
E1	5.18	N .	5.40	2, 3
ETV	7.70	MAN	8.26	Y.C.
O'L	0.51	WW	0.85	N.Co
Ø	0°	W	8°	N.C
е	- 43	1.27 BSC	WW.	4

Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.

2. Mismatch of the upper and lower dies and resin burrs are not included.

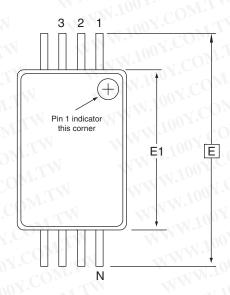
3. It is recommended that upper and lower cavities be equal. If they are different, the larger dimension shall be regarded.

4. Determines the true geometric position.

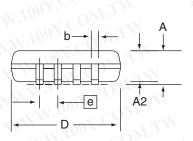
5. Values b and C apply to pb/Sn solder plated terminal. The standard thickness of the solder layer shall be 0.010 +0.010/-0.005 mm.

10/7/03

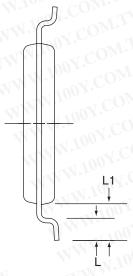
2325 Orchard Parkway San Jose, CA 95131


TITLE 8S2, 8-lead, 0.209" Body, Plastic Small Outline Package (EIAJ)

DRAWING NO. REV. **8S2** С



料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787


Http://www. 100y. com. tw

Top View

Side View

End View

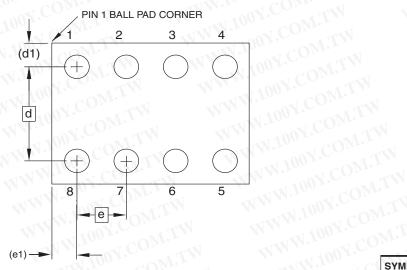

COMMON DIMENSIONS

(Unit of Measure = mm)

	•		, A	
SYMBOL	MIN	NOM	MAX	NOTE
D	2.90	3.00	3.10	2, 5
É		6.40 BSC	.10	CO_{D_2}
E1	4.30	4.40	4.50	3, 5
Α	_	1/1	1.20	7.0
A2	0.80	1.00	1.05	01.0
b	0.19	-11	0.30	4
е	-NN	0.65 BSC	INN.	ON.
FOM	0.45	0.60	0.75	100
L1	LTW	1.00 REF	M. T.	N 100 x

- Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances,
 - 2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed 0.15 mm (0.006 in) per side.
 - 3. Dimension E1 does not include inter-lead Flash or protrusions. Inter-lead Flash and protrusions shall not exceed 0.25 mm (0.010 in) per side.
 - 4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Minimum space between protrusion and adjacent lead is 0.07 mm.
 - 5. Dimension D and E1 to be determined at Datum Plane H.

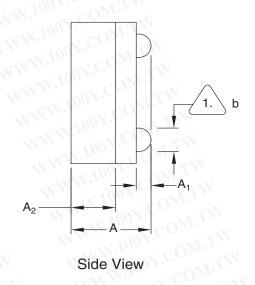
5/30/02


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

8U3-1 - dBGA2

D PIN 1 BALL PAD CORNER


Top View

Bottom View 8 SOLDER BALLS

1. Dimension "b" is measured at the maximum solder ball diameter.

This drawing is for general information only.

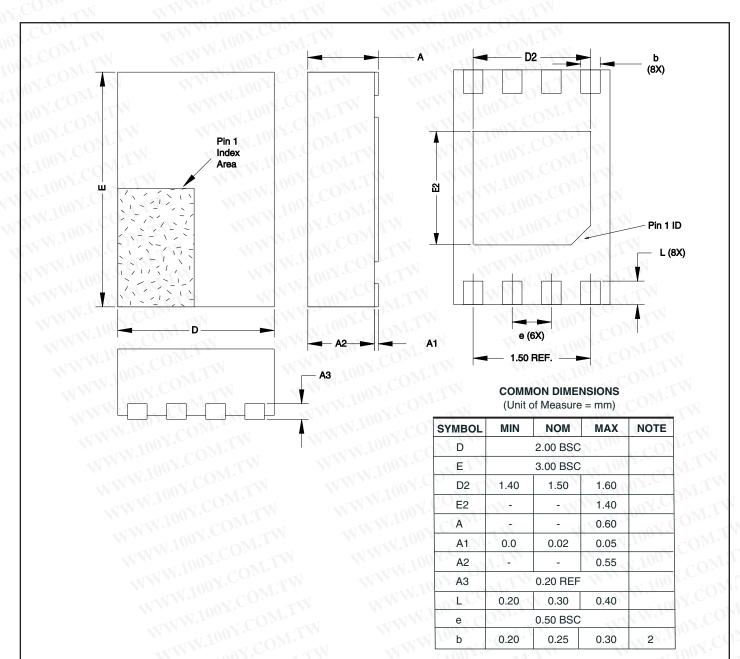
COMMON DIMENSIONS

(Unit of Measure = mm)

			- 411	111
SYMBOL	MIN	NOM	MAX	NOTE
Α	0.71	0.81	0.91	00 1
A1	0.10	0.15	0.20	1007.
A2	0.40	0.45	0.50	. 003
b	0.20	0.25	0.30	1.700
D	TW	1.50 BSC	NN T	N.100
Y.E	TW	2.00 BSC	MAN	10
e CO	Mr.	0.50 BSC	11/	Mir
e1	MI	0.25 REF	1	WW.
d	ow.I	1.00 BSC	W	-730
d1	OF	0.25 REF	1	MAL

6/24/03

1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TITLE 8U3-1, 8-ball, 1.50 x 2.00 mm Body, 0.50 mm pitch, Small Die Ball Grid Array Package (dBGA2) WWW.100Y.COM


DRAWING NO. PO8U3-1

REV.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

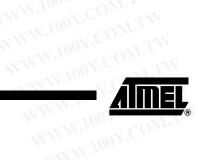
Http://www. 100y. com. tw

Notes:

- This drawing is for general information only. Refer to JEDEC Drawing MO-229, for proper dimensions, tolerances, datums, etc.
- 2. Dimension b applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension should not be measured in that radius area.

8/26/05

		DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	8Y6 , 8-lead 2.0 x 3.0 mm Body, 0.50 mm Pitch, Utlra Thin Mini-Map, Dual No Lead Package (DFN) ,(MLP 2x3)	8Y6	С


Http://www. 100y. com. tw

WWW.I

WWW.100Y.COM

Revision History WWW.100Y.COM. WWW.100Y.COM.

Doc. Rev.	Date	Comments
5140B	2/2007	Implemented revision history.
	OM.TW	Added note to page 1 and ordering information; 'Not
	M.TW	recommended for new design; please refer to AT93C46 datasheet'.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

1150 East Cheyenne Mtn. Blvd.

Fax: (33) 4-42-53-60-01

Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine **BP 123**

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

