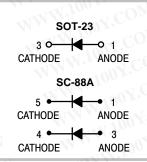
Preferred Devices

High Voltage Switching Diode

Device Marking:


- BAS19LT1 = JP
- BAS20LT1 = JR
- BAS21LT1 = JS
- BAS21DW5T1 = JS

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

ON Semiconductor®

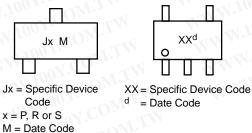
HIGH VOLTAGE SWITCHING DIODE

MAXIMUM RATINGS

Rating	N	Symbol	Value	Unit
Continuous Reverse Voltage	BAS19 BAS20 BAS21	VR	120 200 250	Vdc
Continuous Forward Current	.Com	IF	200	mAdc
Peak Forward Surge Current	Y.COm	I _{FM(surge)}	625	mAdc
Maximum Junction Temperature	A.COM	T _{Jmax}	150	°C
Power Dissipation (Note 3)	COV	PD	385	mW

THERMAL CHARACTERISTICS (SOT-23)

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1)	PD	225	mW
T _A = 25°C Derate above 25°C	COMP	1.8	mW/°C
Thermal Resistance Junction-to-Ambient (SOT-23)	R _{θJA}	556	°C/W
Total Device Dissipation Alumina Substrate (Note 2) $T_A = 25^{\circ}C$	PD	300	mW
Derate above 25°C	001.0	2.4	mW/°C
Thermal Resistance Junction-to-Ambient	R _{0JA}	417	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C


1. FR-5 = 1.0 \times 0.75 \times 0.062 in.

2. Alumina = 0.4 \times 0.3 \times 0.024 in. 99.5% alumina.

SOT-23 CASE 318 STYLE 8 SOT-353 SC-88A CASE 419A

ORDERING INFORMATION

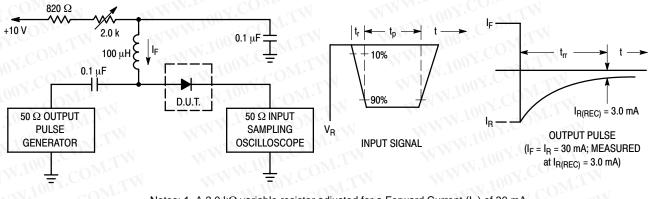
Device	Package	Shipping
BAS19LT1	SOT-23	3000/Tape & Reel
BAS20LT1	SOT-23	3000/Tape & Reel
BAS21LT1	SOT-23	3000/Tape & Reel
BAS21DW5T1	SC-88A	3000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

Characteristic	Symbol	Max	Unit
Power Dissipation (Note 3)	PD	385	mW
Thermal Resistance - Junction to Ambient Derate Above 25°C	R _{θJA}	328 3.0	°C/W mW/°C
Maximum Junction Temperature	T _{Jmax}	150	°C
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

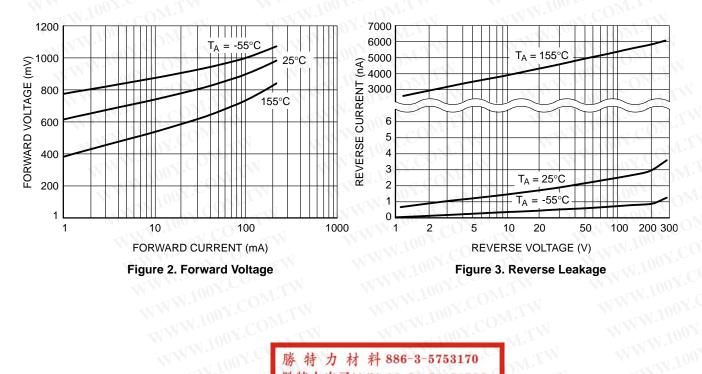
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

WWW.100Y.CON


WWW.100Y.COM.TW

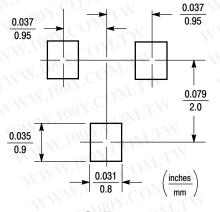
Characteristic	DOX. ONIT	Symbol	Min	Max	Unit
Reverse Voltage Leakage Current	1007.00	N I _R		101.0	μAdc
(V _R = 100 Vdc)	BAS19	1 Avenue	W.V.	0.1	W
(V _R = 150 Vdc)	BAS20	L.M.		0.1	M.L.
(V _R = 200 Vdc)	BAS21	W	- N	0.1	WT .
(V _R = 100 Vdc, T _J = 150°C)	BAS19		-	100	OM.
$(V_R = 150 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	BAS20	WT.	-	100	TW
(V _R = 200 Vdc, T _J = 150°C)	BAS21	1.1	W	100	COMP.
Reverse Breakdown Voltage	1001.	V _(BR)		N.100	Vdc
(I _{BR} = 100 μAdc)	BAS19	(BII)	120	- 001	00
$(I_{BR} = 100 \mu Adc)$	BAS20	OM.L	200	W.IV	- COM- '
$(I_{BR} = 100 \ \mu Adc)$	BAS21	WILL	250 🔨	001	I.C.
Forward Voltage	WWW.	VE	×	JANN.	Vdc
(I _F = 100 mAdc)	N 100 1	-M.L	-	1.0	ACON
(I _F = 200 mAdc)	WWW	.00	- 12	1.25	10Y.C.
Diode Capacitance (V _R = 0, f = 1.0 MHz)	WWW.	CD	- 17	5.0	pF
Reverse Recovery Time ($I_F = I_R = 30$ mAdc, $I_{R(REC)} = 3$.	.0 mAdc, R _L = 100)	trr		50	ns

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


WWW.100Y.CU

WWW.100Y.COM.TW

Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (I_F) of 30 mA. 2. Input pulse is adjusted so I_{R(peak)} is equal to 30 mA. 3. t_p » t_{rr}



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

INFORMATION FOR USING THE SOT-23 SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

SOT-23

SOT-23 POWER DISSIPATION

The power dissipation of the SOT-23 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, $R_{\theta JA}$, the thermal resistance from the device junction to ambient, and the operating temperature, T_A . Using the values provided on the data sheet for the SOT-23 package, P_D can be calculated as follows:

$$P_{D} = \frac{T_{J(max)} - T_{A}}{R_{\theta JA}}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C,

SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

• Always preheat the device.

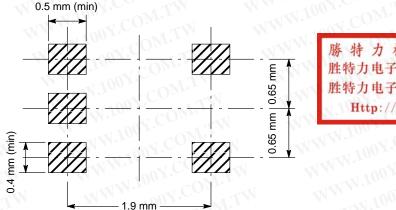
one can calculate the power dissipation of the device which in this case is 225 milliwatts.

$$P_{D} = \frac{150^{\circ}C - 25^{\circ}C}{556^{\circ}C/W} = 225 \text{ milliwatts}$$

The 556°C/W for the SOT-23 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 225 milliwatts. There are other alternatives to achieving higher power dissipation from the SOT-23 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad[®]. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint.

100¹

- The delta temperature between the preheat and soldering should be 100°C or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C.


INFORMATION FOR USING THE SOT-353/SC-88A SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection

interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

SOT-353/SC-88A POWER DISSIPATION

The power dissipation of the SOT-353/SC-88A is a function of the pad size. This can vary from the minimum pad size for soldering to the pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, $R\theta_{JA}$, the thermal resistance from the device junction to ambient; and the operating temperature, TA. Using the values provided on the data sheet, P_D can be calculated as follows.

$$P_{D} = \frac{T_{J(max)} - T_{A}}{R_{\theta}JA}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values

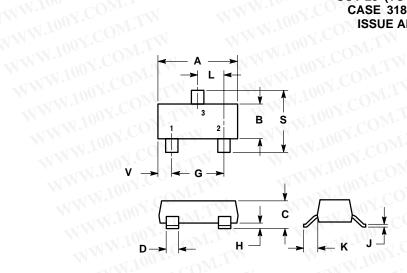
SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- Always preheat the device.
- The delta temperature between the preheat and soldering should be 100°C or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference should be a maximum of 10°C.

into the equation for an ambient temperature TA of 25°C one can calculate the power dissipation of the device which in this case is 125 milliwatts.

$$P_{D} = \frac{150^{\circ}C - 25^{\circ}C}{833^{\circ}C/W} = 150 \text{ milliwatts}$$


The 833°C/W assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 150 milliwatts. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad[™]. Using a board material such as Thermal Clad, a higher power dissipation can be achieved using the same footprint.

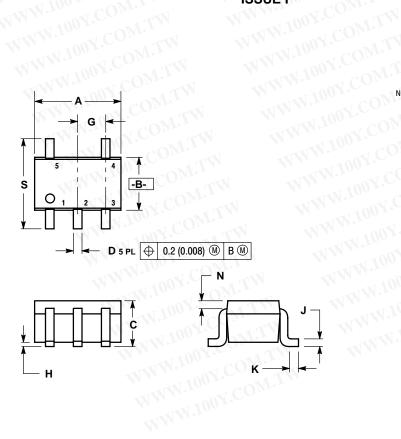
- The soldering temperature and time should not exceed 260°C for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient should be 5°C or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling

* Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-09 **ISSUE AH**

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH. MAXIUMUM LEAD THICKNESS INCLUDES LEAD 2. 3.
- FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE
- MATERIAL. 4. 318-01, -02, AND -06 OBSOLETE, NEW STANDARD 318-09.

	IN	CHES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.1102	0.1197	2.80	3.04
В	0.0472	0.0551	1.20	1.40
С	0.0385	0.0498	0.99	1.26
D	0.0140	0.0200	0.36	0.50
G	0.0670	0.0826	1.70	2.10
Н	0.0040	0.0098	0.10	0.25
J	0.0034	0.0070	0.085	0.177
Κ	0.0180	0.0236	0.45	0.60
L	0.0350	0.0401	0.89	1.02
S	0.0830	0.0984	2.10	2.50
٧	0.0177	0.0236	0.45	0.60

STYLE 8: PIN 1.

ANODE NO CONNECTION CATHODE 2. 3.

SC-88A (SOT-353) CASE 419A-02 **ISSUE F** WWW.100Y.C

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI 100Y.COM Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

DIM	MIN	MAX	MIN	ETERS MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65 BSC	
н	<u></u>	0.004		0.10
្យ	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N		B REF		REF
S	0.079	0.087	2.00	2.20