勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

WWW.100Y.COM.TV

WWW.100Y.COM. **Benchmarg Products** ୭ from Texas Instruments

bq4013/Y

Features

- ► Data retention for at least 10 years without power
- Automatic write-protection during power-up/power-down cycles
- Conventional SRAM operation, including unlimited write cycles
- ▶ Internal isolation of battery before power application
- Industry standard 32-pin DIP pinout

General Description

The CMOS bq4013/Y is a nonvolatile 1,048,576-bit static RAM organized as 131,072 words by 8 bits. The integral control circuitry and lithium energy source provide reliable nonvolatility coupled with the unlimited write cycles of standard SRAM.

The control circuitry constantly monitors the single 5V supply for an out-of-tolerance condition. When V_{CC} falls out of tolerance, the SRAM is unconditionally write-protected to prevent inadvertent write operation.


At this time the integral energy source is switched on to sustain the memory until after V_{CC} returns valid.

The bq4013/Y uses an extremely low standby current CMOS SRAM, coupled with a small lithium coin cell to provide nonvolatility without long write-cycle times and the write-cycle limitations associated with EEPROM.

128Kx8 Nonvolatile SRAM

The bq4013/Y requires no external circuitry and is socket-compatible with industry-standard SRAMs and most EPROMs and EEPROMs.

Pin Connections

Pin Names

Pin Na	ames	WTI	WWW.100Y.COM
A0-A16	Address inputs	WE	Write enable input
DQ0-DQ7	Data input/output	NC	No connect
CE	Chip enable input	Vcc	Supply voltage input
ŌĒ	Output enable input	V _{SS}	Ground

Selection Guide

32-Pin DI	RV 401301.eps				
Part Number	Maximum Access Time (ns)	Negative Supply Tolerance	Part Number	Maximum Access Time (ns)	Negative Supply Tolerance
	WWW	LOOY.CO.	bq4013YMA -70	70	-10%
bq4013MA -85	85	-5%	bq4013YMA -85	85	-10%
bq4013MA-120	120	-5%	bq4013YMA-120	120	-10%
9/96 D	N ²	WW.100Y.C	~q.o.o.nin 120		10,0

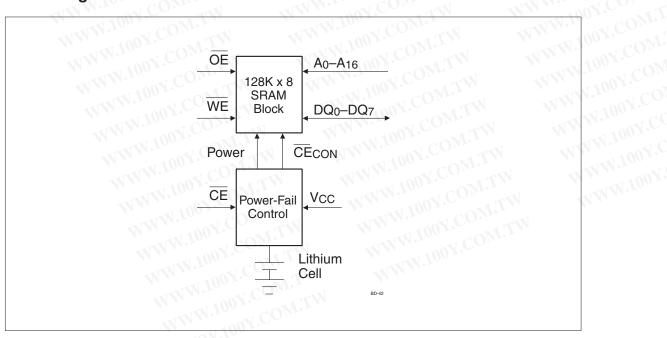
bq4013/Y

Functional Description

When power is valid, the bq4013/Y operates as a standard CMOS SRAM. During power-down and power-up cycles, the bq4013/Y acts as a nonvolatile memory, automatically protecting and preserving the memory contents.

Power-down/power-up control circuitry constantly monitors the V_{CC} supply for a power-fail-detect threshold V_{PFD}. The bq4013 monitors for V_{PFD} = 4.62V typical for use in systems with 5% supply tolerance. The bq4013Y monitors for V_{PFD} = 4.37V typical for use in systems with 10% supply tolerance.

When V_{CC} falls below the V_{PFD} threshold, the SRAM automatically write-protects the data. All outputs become high impedance, and all inputs are treated as "don't care." If a valid access is in process at the time of power-fail detection, the memory cycle continues to completion. If the memory cycle fails to terminate within time twpr, write-protection takes place.


As V_{CC} falls past V_{PFD} and approaches 3V, the control circuitry switches to the internal lithium backup supply, which provides data retention until valid V_{CC} is applied.

When V_{CC} returns to a level above the internal backup cell voltage, the supply is switched back to V_{CC} . After V_{CC} ramps above the V_{PFD} threshold, write-protection continues for a time t_{CER} (120ms maximum) to allow for processor stabilization. Normal memory operation may resume after this time.

The internal coin cell used by the bq4013/Y has an extremely long shelf life and provides data retention for more than 10 years in the absence of system power.

As shipped from Unitrode, the integral lithium cell of the MA-type module is electrically isolated from the memory. (Self-discharge in this condition is approximately 0.5% per year.) Following the first application of V_{CC} , this isolation is broken, and the lithium backup cell provides data retention on subsequent power-downs.

Block Diagram

WWW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

bq4013/Y

WWW.100Y.COM.T **Truth Table**

WWW.100Y.COM.TW

WWW.100Y.<u>C</u>OM.

WWW.100Y.C

Mode	CE	WE	OE	I/O Operation	Power
Not selected	H	X	X	High Z	Standb
Output disable	L	H	Н	High Z	Active
Read	L	Н	L	Dout	Active
Write	L	L	X	D _{IN}	Active

WW.100Y.COM.TW

WWW.100Y.COM.T **Absolute Maximum Ratings**

Symbol	Parameter	Value	Unit	Conditions
V _{CC}	DC voltage applied on V_{CC} relative to V_{SS}	-0.3 to 7.0	V	Conditions
VT	DC voltage applied on any pin excluding V_{CC} relative to V_{SS}	-0.3 to 7.0	v	$V_T \leq V_{CC} + 0.3$
m	al 100 contra	0 to +70	°C	Commercial
T _{OPR}	Operating temperature	-40 to +85	°C	Industrial "N"
m 📢	NW WW.	-40 to +70	°C	Commercial
T _{STG}	Storage temperature	-40 to +85	°C	Industrial "N"
m	WIN 100 COMPT	-10 to +70	°C	Commercial
T _{BIAS}	Temperature under bias	-40 to +85	°C	Industrial "N"
T _{SOLDER}	Soldering temperature	+260	°C	For 10 seconds

WWW.100Y.COM.TV Note: Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation WWW.100Y.COM.T should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW WWW.100Y.COM.TW bq4013/Y

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
Ver		4.5	5.0	5.5	V	bq4013Y
V _{CC}	Supply voltage	4.75	5.0	5.5	V	bq4013
V _{SS}	Supply voltage	0	0	0	V	WW. 100Y.COM
VIL	Input low voltage	-0.3	V.COD	0.8	V	WWW.P. ON.COM
VIH	Input high voltage	2.2		$V_{CC} + 0.3$	v	CON N.IV

Recommended DC Operating Conditions (TA = TOPR)

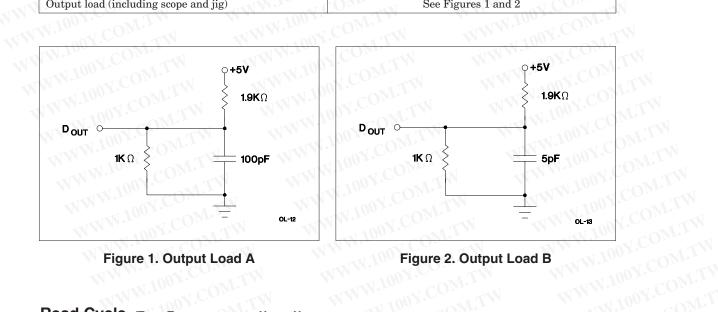
DC Electrical Characteristics (TA = TOPR, VCCmin ≤ VCC ≤ VCCmax)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions/Notes
I_{LI}	Input leakage current	<u></u>	N.100	± 1	μA	$V_{\rm IN}$ = $V_{\rm SS}$ to $V_{\rm CC}$
ILO	Output leakage current	- 11	WW.10	±-10M	μA	$\frac{\overline{CE}}{\overline{WE}} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or }$ $\overline{WE} = V_{IL}$
Voh	Output high voltage	2.4	WW.I	COl	V	I _{OH} = -1.0 mA
Vol	Output low voltage	-	NV.	0.4	v	I _{OL} = 2.1 mA
I _{SB1}	Standby supply current	-	4	107	mA	$\overline{\text{CE}} = \text{V}_{\text{IH}}$
I _{SB2}	Standby supply current	LM -	2.5	4	mA	$\label{eq:cell} \begin{array}{l} \overline{CE} \geq V_{CC} \mbox{ - } 0.2V, \\ 0V \leq V_{IN} \leq \mbox{ 0.2V}, \\ or \ V_{IN} \geq V_{CC} \mbox{ - } 0.2V \end{array}$
I _{CC}	Operating supply current	NT.	75	105	mA	$\label{eq:min.cycle, duty = 100\%, } \frac{Min. cycle, duty = 100\%,}{\overline{CE}} = V_{IL}, I_{I/O} = 0mA$
Van	Demon 6 il detert melterer	4.55	4.62	4.75	V	bq4013
VPFD	Power-fail-detect voltage	4.30	4.37	4.50	v	bq4013Y
V_{SO}	Supply switch-over voltage	MT.IN	3	- N 1	v	OM.TW

Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)

	WWW.LOOY.C					
Capacita	ANCE (TA = 25°C, F = 1MHz		N 291	WWW	100X.	COM.TW
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
C _{I/O}	Input/output capacitance	Mon	<u> </u>	10	pF	Output voltage = 0V
C_{IN}	Input capacitance	01.0	LTY .	10	\mathbf{pF}	Input voltage = 0V

These parameters are sampled and not 100% tested. Note: WWW.100Y


bq4013/Y

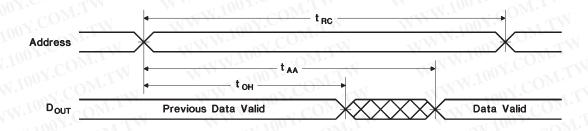
WWW.100Y.COM.TW WWW.100Y.CC

WWW.100Y.COM.TW

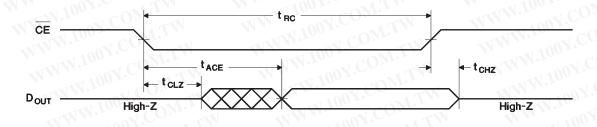
AC Test Conditions	
Parameter	Test Conditions
Input pulse levels	0V to 3.0V
Input rise and fall times	5 ns
Input and output timing reference levels	1.5 V (unless otherwise specifie
Output load (including scope and jig)	See Figures 1 and 2

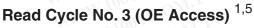
NWW.100Y.COM.TW

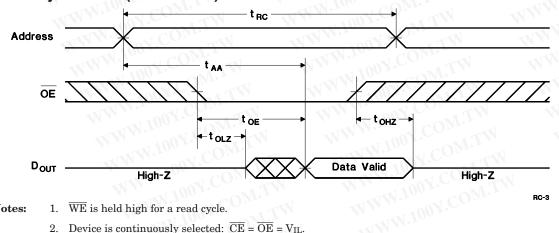
	Cycle (TA = TOPR, VCCmin ≤ VC	-70/-70N									-85/-85N		-85/-85N -12		-120		-120		-120		-120		W
Symbol	Parameter	Min.	Min.	Min.		Min. Max.		Unit	Conditions														
$t_{\rm RC}$	Read cycle time	70	-	85	W.1	120	cΘN	ns	I al														
t _{AA}	Address access time	<u>TT</u>	70	<u>N</u>	85	1002	120	ns	Output load A														
t _{ACE}	Chip enable access time	L.T.W	70	<u>_</u>	85	100	120	ns	Output load A														
t _{OE}	Output enable to output valid	T.	35	- 1	45	01 10	60	ns	Output load A														
t _{CLZ}	Chip enable to output in low Z	5	-17	5	<u>N-</u> N	5	10 ¹	ns	Output load B														
tolz	Output enable to output in low Z	0	P	0	W	0	Yoo	ns	Output load B														
t _{CHZ}	Chip disable to output in high Z	0	25	0	35	0	45	ns	Output load B														
tonz	Output disable to output in high Z	0	25	0	25	0	35	ns	Output load B														
ton	Output hold from address change	10	15	10	-	10	-	ns	Output load A														


料 886-3-5753170 特 力 材 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

RC-1


RC-2


WWW.100Y.COM. bq4013/Y



Read Cycle No. 2 (CE Access) 1,3,4

Notes:

2. Device is continuously selected: $\overline{CE} = \overline{OE} = V_{IL}$.

1. $\overline{\text{WE}}$ is held high for a read cycle.

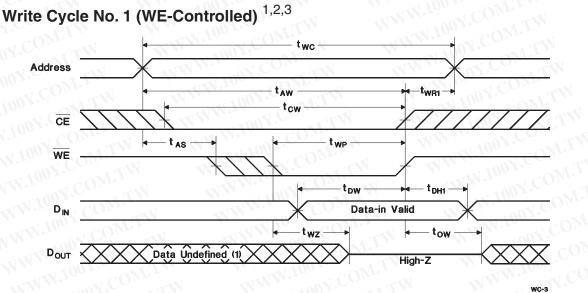
- 3. Address is valid prior to or coincident with $\overline{\text{CE}}$ transition low.
- 4. $\overline{OE} = V_{IL}$.
- Device is continuously selected: $\overline{CE} = V_{IL}$. 5.

力材料 886-3-5753170 特 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

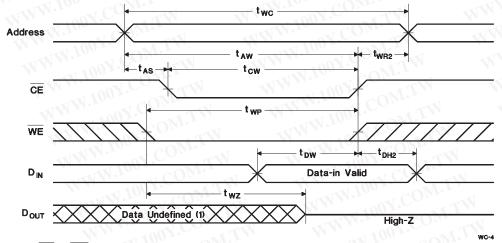
bq4013/Y

		-70/	-70N	-85/	-85N	-1	20		NI 100Y. COM.TW	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units	Conditions/Notes	
twc	Write cycle time	70		85	052	120	-	ns	WW. OOY.COM TW	
t _{CW}	Chip enable to end of write	65	N.10	75		100	- 17	ns		
t _{AW}	Address valid to end of write	65	NN.	75		100	N.	ns		
t _{AS}	Address setup time	0	NHV	0	N.C	0	17	ns	Measured from address valid to beginning of write. (2)	
twp	Write pulse width	55	N <u>N</u>	65	0 0 X	85	N.T	ns	Measured from beginning of write to end of write. (1)	
t _{WR1}	Write recovery time (write cycle 1)	5		5	100	5	OW.	ns	Measured from \overline{WE} going high to end of write cycle. (3)	
tw _{R2}	Write recovery time (write cycle 2)	15	- <	15	1.10	15	COM	ns	Measured from \overline{CE} going high to end of write cycle. (3)	
t _{DW}	Data valid to end of write	30	-	35	N.	45		ns	Measured to first low-to-high transition of either CE or WE.	
^t DH1	Data hold time (write cycle 1)	0	-	0	VI-V	0	NY.C	ns	Measured from \overline{WE} going high to end of write cycle. (4)	
t _{DH2}	Data hold time (write cycle 2)	10	-	10	NN	10	00 - X.	ns	Measured from \overline{CE} going high to end of write cycle. (4)	
GWZ	Write enabled to output in high Z	0	25	0	30	0	40	ns	I/O pins are in output state. (5)	
ow	Output active from end of write	0	W	0		0	1.100	ns	I/O pins are in output state. (5)	

Write Cycle $(T_A = TOPR, VCCmin \leq VCC \leq VCCmax)$


WWW.100Y.COM.TW

WWW.100Y.COM.T WWW.100Y.COM. A write occurs during the overlap of a low \overline{CE} and a low \overline{WE} . A write begins at the later transition of \overline{CE} going low and \overline{WE} going low. 2.


- 3. Either t_{WR1} or t_{WR2} must be met.
- 4. Either $t_{\rm DH1}$ or $t_{\rm DH2}$ must be met.
- 5. If $\overline{\operatorname{CE}}$ goes low simultaneously with $\overline{\operatorname{WE}}$ going low or after $\overline{\operatorname{WE}}$ going low, the outputs remain in WWW.100Y.CC high-impedance state.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Write Cycle No. 2 (CE-Controlled) ^{1,2,3,4,5}

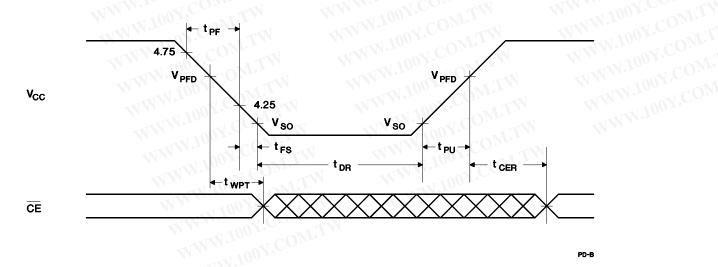
1. $\overline{\text{CE}}$ or $\overline{\text{WE}}$ must be high during address transition.

- 2. Because I/O may be active $(\overline{OE} \text{ low})$ during this period, data input signals of opposite polarity to the outputs must not be applied.
- 3. If $\overline{\text{OE}}$ is high, the I/O pins remain in a state of high impedance.
- 4. Either t_{WR1} or t_{WR2} must be met.
- 5. Either t_{DH1} or t_{DH2} must be met.

bq4013/Y

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Conditions
t _{PF} CO	$V_{\rm CC}$ slew, 4.75 to 4.25 V	300	VTI-		μs	100Y.CO.TW
tFS	V_{CC} slew, 4.25 to $V_{\rm SO}$	10	COM.	- 10	μs	
t _{PU}	V_{CC} slew, V_{SO} to $V_{PFD}\left(max.\right)$	0	COM	-	μs	W.10 N.COM.
t _{CER}	Chip enable recovery time	40	80	120	ms	Time during which SRAM is write-protected after $V_{\rm CC}$ passes $V_{\rm PFD}$ on power-up.
t _{DR}	Data-retention time in absence of $V_{\rm CC}$	10	00 1.CC	MT.I.	years	$T_{\rm A} = 25^{\circ} C. (2)$
t _{DR-N}	Data-retention time in absence of $V_{\rm CC}$	6	V.109Y.C	OM.TW	years	$T_A = 25$ °C (2); industrial temperature range only
twpT	Write-protect time	40	100	150	μs	Delay after V _{CC} slews down past V _{PFD} before SRAM is write-protected.

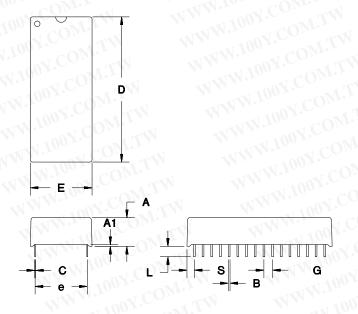
Power-Down/Power-Up Cycle (TA = TOPR)


WWW.100Y.COM

Notes: 1. Typical values indicate operation at $T_A = 25^{\circ}C$, $V_{CC} = 5V$.

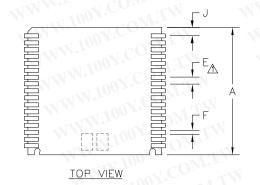
2. Battery is disconnected from circuit until after V_{CC} is applied for the first time. t_{DR} is the accumulated time in absence of power beginning when power is first applied to the device.

Caution: Negative undershoots below the absolute maximum rating of -0.3V in battery-backup mode may affect data integrity.


Power-Down/Power-Up Timing

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.T WWW.100Y.COM bq4013/Y

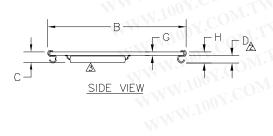

MA: 32-Pin A-Type Module

Dimension	Minimum	Maximum
Α	0.365	0.375
A1	0.015	Wr.
В	0.017	0.023
С	0.008	0.013
D	1.670	1.700
Е	0.710	0.740
е	0.590	0.630
G	0.090	0.110
L	0.120	0.150
S	0.075	0.110

All dimensions are in inches.

MS: 34-Pin Leaded Chip carrier for LIFETIME LITHIUM Module

W.100Y.COM. 34-Pin LCR LIFETIME LITHIUM Module


Dimension	Minimum	Maximum
Α	0.920	0.930
В	0.980	0.995
C	coM.L	0.080
D	0.052	0.060
Е	0.045	0.055
F	0.015	0.025
G	0.020	0.030
H	COM.	0.090
J	0.053	0.073

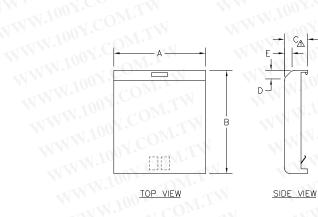
All dimensions are in inches.

<u>∕</u>1 Centerline of lead within ±0.005 of true position.

Leads coplanar within ±0.004 at seating plane.

/3 Components and location may vary.

/2

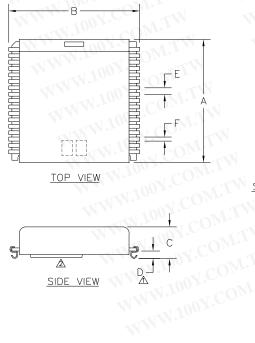

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

bq4013/Y

MS: LIFETIME LITHIUM Module Housing

WWW.100Y.COM

WWW.100Y


LIFETIME LITHIUM Module Housing

Dimension	Minimum	Maximum
Α	0.845	0.855
в	0.955	0.965
C 📢	0.210	0.220
D	0.065	0.075
Е	0.065	0.075

All dimensions are in inches.

<u>/</u>1 Edges coplanar within ±0.025.

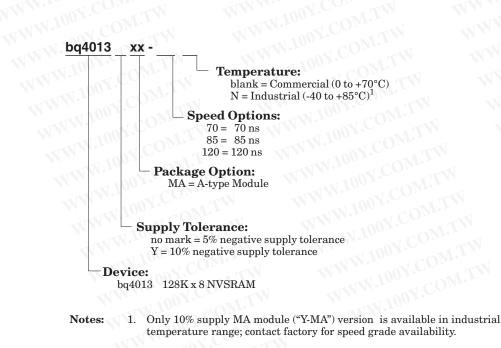
MS: LIFETIME LITHIUM Module with LCR attached

LIFETIME LITHIUM Module

Dimension	Minimum	Maximum
Α	0.955	0.965
B	0.980	0.995
С	0.240	0.250
D	0.052	0.060
E	0.045	0.055
F	0.015	0.025

SIDE VIEW

/1\ Leads coplanar within ±0.004 at seating plane. /2Components and location may vary.


特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW WWW.100Y.COM bq4013/Y

Data Sheet Revision History

Change No.	Page No.	Description
I. I. TW	2, 3, 4, 6, 8, 9	Added industrial temperature range.
2	1, 4, 6, 9	Added 70ns speed grade for bq4013Y-70.
3		Removed industrial temperature range for bq4013YMA-120N

Ordering Information

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

30-Mar-2005

PACKAGING INFORMATION

TRUMENTS www.ti.com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
BQ4013MA-120	ACTIVE	DIP MOD ULE	MA	0	1	TBD	Call TI	Call TI
BQ4013MA-85	ACTIVE	DIP MOD ULE	MA	0	1	TBD	Call TI	Call TI
BQ4013YMA-120	ACTIVE	DIP MOD ULE	MA	0	1	TBD	Call TI	Call TI
BQ4013YMA-70	ACTIVE	DIP MOD ULE	MA	0 0	1	TBD	Call TI	Call TI
BQ4013YMA-70N	ACTIVE	DIP MOD ULE	MA	0	WT.N	TBD	Call TI	Call TI
BQ4013YMA-85	ACTIVE	DIP MOD ULE	MA	0	M.1W	TBD 🔨	Call TI	Call TI
BQ4013YMA-85N	ACTIVE	DIP MOD ULE	MA	0	OMI.TV	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100X.COM WWW.100Y.COM Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

> TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

> TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

> TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

> Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

> Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

> Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated