# Triacs logic level

## **GENERAL DESCRIPTION**

Glass passivated, sensitive gate triacs in a plastic envelope, intended for use in general purpose bidirectional switching and phase control applications. These devices are intended to be interfaced directly to microcontrollers, logic integrated circuits and other low power gate trigger circuits.

## **PINNING - TO92**



BT132 series D

# QUICK REFERENCE DATA

| SYMBOL                                                      | PARAMETER                                                                                                    | MAX.                          | MAX.                          | UNIT        |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------|
| V <sub>drm</sub><br>I <sub>t(rms)</sub><br>I <sub>tsm</sub> | BT132-<br>Repetitive peak off-state voltages<br>RMS on-state current<br>Non-repetitive peak on-state current | <b>500D</b><br>500<br>1<br>16 | <b>600D</b><br>600<br>1<br>16 | V<br>A<br>A |

## **PIN CONFIGURATION**

# SYMBOL

| PIN | DESCRIPTION     | VVV. 100 V.COM TOW VV VV |                            |
|-----|-----------------|--------------------------|----------------------------|
| N10 | main terminal 2 |                          |                            |
| 2   | gate            | NYOW, 100 COT TW NWW     | T2                         |
| 3   | main terminal 1 | WWW.1000X.CC             |                            |
|     | LIVO COM. TW    |                          | Construction of the second |

### LIMITING VALUES

| SYMBOL                                  | PARAMETER                                                       | CONDITIONS                                                                                           | MIN.     | MA                              | X.                              | UNIT                  |
|-----------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|---------------------------------|---------------------------------|-----------------------|
| V <sub>DRM</sub>                        | Repetitive peak off-state voltages                              | WWW.100Y.COM.TW                                                                                      | -        | <b>-500</b><br>500 <sup>1</sup> | <b>-600</b><br>600 <sup>1</sup> | V                     |
| I <sub>T(RMS)</sub><br>I <sub>TSM</sub> | RMS on-state current<br>Non-repetitive peak<br>on-state current | full sine wave; T <sub>lead</sub> ≤51 °C<br>full sine wave; T <sub>j</sub> = 25 °C prior to<br>surge | N - 1    | MMM                             | 100X.C                          | A                     |
|                                         | WWW.Incov.COM.                                                  | t = Ž0 ms                                                                                            | W        |                                 |                                 | A                     |
| l <sup>2</sup> t                        | I <sup>2</sup> t for fusing                                     | t = 16.7 ms<br>t = 10 ms                                                                             | T-N      | 17<br>1.2                       |                                 | A<br>A <sup>2</sup> s |
| dl <sub>T</sub> /dt                     | Repetitive rate of rise of on-state current after               | I <sub>TM</sub> = 1.5 A; I <sub>G</sub> = 0.2 A;<br>dI <sub>G</sub> /dt = 0.2 A/μs                   | T.I.     |                                 |                                 | I.CON                 |
|                                         | triggering                                                      | T2+ G+<br>T2+ G-                                                                                     | Mr.      | 5<br>5                          |                                 | A/μs<br>A/μs          |
|                                         | WW.100 1. CON                                                   | T2- G- C                                                                                             | DW.      | S 5                             | 0                               | A/µs                  |
|                                         | W 1002.0                                                        | T2- G+                                                                                               | 1.170    |                                 |                                 | A/µs                  |
| I <sub>GM</sub><br>V <sub>GM</sub>      | Peak gate current<br>Peak gate voltage                          | TW WW 100Y.                                                                                          |          | 11<br>22<br>55<br>55            |                                 | A                     |
| PGM                                     | Peak gate power                                                 | WWW.                                                                                                 | COM      | TN 5                            |                                 | Ŵ                     |
| P <sub>G(AV)</sub>                      | Average gate power                                              | over any 20 ms period                                                                                | $CO^{N}$ | 0.                              | 5                               | W                     |
| T <sub>stg</sub><br>T <sub>j</sub>      | Storage temperature<br>Operating junction                       | ON.TW WILLIN.100                                                                                     | -40      | 15                              |                                 | °C<br>O               |
| •]                                      | temperature                                                     | WITH WWW TIO                                                                                         | N.C.     | M.TW                            |                                 | 10                    |

<sup>1</sup> Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 3 A/µs.

Triacs

logic level

# THERMAL RESISTANCES

100X.COM.TW

| SYMBOL                                        | PARAMETER                                                                           | CONDITIONS                                                | MIN.             | TYP.          | MAX.          | רואט              |
|-----------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|---------------|---------------|-------------------|
| R <sub>th j-lead</sub><br>R <sub>th j-a</sub> | Thermal resistance<br>junction to lead<br>Thermal resistance<br>junction to ambient | full cycle<br>half cycle<br>pcb mounted;lead length = 4mm | COMIN<br>X.COMIN | -<br>-<br>150 | 60<br>80<br>- | K/W<br>K/W<br>K/W |

WWW.100Y.COM.TW

WWW.100Y.C

100X.COM.TW

W.100Y.COM.TW

OM.TW

#### 100Y.COT STATIC CHARACTERISTICS

| SYMBOL          | PARAMETER                 | CONDITIONS                                                                              |        | MIN.             | TYP. | MAX.  | UNIT  |
|-----------------|---------------------------|-----------------------------------------------------------------------------------------|--------|------------------|------|-------|-------|
| I <sub>GT</sub> | Gate trigger current      | $V_{\rm D} = 12 \text{ V}; I_{\rm T} = 0.1 \text{ A}$                                   | WWW.   | N.CO             | 17.  |       |       |
| 1001            |                           | 100 CON. I                                                                              | T2+ G+ |                  | 2.0  | 5     | mA    |
|                 | WW WN                     | The second second                                                                       | T2+ G- | 007.0            | 2.5  | 5     | mA 🛛  |
|                 | CON-1                     | N.IOC CONL.                                                                             | T2- G- | × (              | 2.5  | 5     | mA    |
|                 | WW WTM                    | 100X.0 M.TW                                                                             | T2- G+ | 1067.            | 5.0  | 10    | mA    |
| LN.10           | Latching current          | $V_{\rm D} = 12 \text{ V}; I_{\rm GT} = 0.1 \text{ A}$                                  | _www.  | Va               | COF  | WT    |       |
|                 | . M.T.                    | NICON TONI                                                                              | T2+ G+ | N.140            | 1.6  | 10    | mA    |
|                 | V.COM WW                  | N W. OV.                                                                                | T2+ G- | 1.00             | 4.5  | 15    | mA    |
|                 | CONFIL                    | W.100 COM.                                                                              | T2- G- | N.100            | 1.2  | 10    | mA    |
|                 | NT WT                     | NT I CONTRACTOR                                                                         | T2- G+ | -10              | 2.2  | 15    | mA mA |
| н<br>Vт         | Holding current           | $V_{\rm D} = 12 \text{ V}; I_{\rm GT} = 0.1 \text{ A}$                                  |        |                  | 1.2  | 10    | mA    |
|                 | On-state voltage          | $I_T = 5 A$                                                                             |        |                  | 1.4  | 1.70  | N N   |
| V <sub>GT</sub> | Gate trigger voltage      | $\dot{V}_{\rm D} = 12 \text{ V}; \text{ I}_{\rm T} = 0.1 \text{ A}$                     |        |                  | 0.7  | 1.5   | V V   |
| NI              | 1002.001.11               | $V_{\rm D} = 400 \text{ V}; \text{ I}_{\rm T} = 0.1 \text{ A}; \text{ T}_{\rm L} = 125$ | Ċ      | 0.25             | 0.4  | -01-' | V     |
| D               | Off-state leakage current | $V_D = V_{DRM(max)}; T_j = 125 °C$                                                      |        | 1 <del>1</del> 1 | 0.1  | 0.5   | mA    |

### DYNAMIC CHARACTERISTICS

| SYMBOL                                 | PARAMETER                                                                        | CONDITIONS                                                                                                                                                                                                                                                                                                                                    | MIN. | TYP.   | MAX.                                       | UNIT       |
|----------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|--------------------------------------------|------------|
| dV <sub>D</sub> /dt<br>t <sub>gt</sub> | Critical rate of rise of<br>off-state voltage<br>Gate controlled turn-on<br>time | $ \begin{array}{l} V_{\text{DM}} = 67\% \; V_{\text{DRM(max)}}; \; T_{j} = 125 \; ^{\circ}\text{C}; \\ \text{exponential waveform}; \; R_{\text{GK}} = 1 \; k\Omega \\ I_{\text{TM}} = 6 \; \text{A}; \; V_{\text{D}} = V_{\text{DRM(max)}}; \; I_{\text{G}} = 0.1 \; \text{A}; \\ dI_{\text{G}}/dt = 5 \; \text{A}/\mu\text{s} \end{array} $ | - V  | 5<br>2 | 00 <del>4</del> .C4<br>10 <del>0</del> ¥.C | V/μs<br>μs |

| WWW.100X | COM.TW     | WWW.100Y          |
|----------|------------|-------------------|
| WW 100   | 勝特力材料      | 886-3-5753170     |
| WW 100   | 胜特力电子(上海   | ) 86-21-54151736  |
| WWW.     | 胜特力电子(深圳   | ) 86-755-83298787 |
| WW.L     | Http://www | v. 100y. com. tw  |

100Y.COM.TW

Y.COM.TW DY.COM.TW

# BT132 series D

WWW.100Y.COM.TW

WWW.100Y.C



## Triacs logic level

BT132 series D

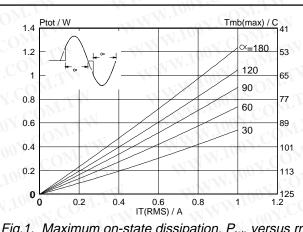



Fig.1. Maximum on-state dissipation, P<sub>tot</sub>, versus rms on-state current,  $I_{T(RMS)}$ , where  $\alpha = conduction$  angle.

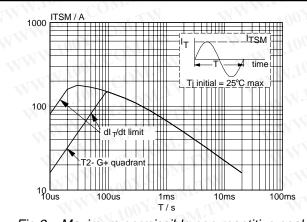
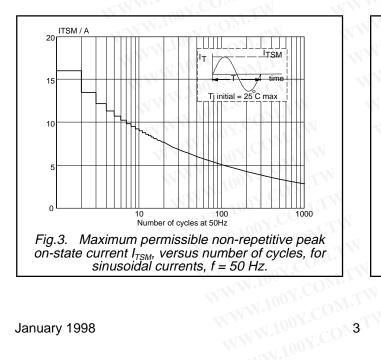
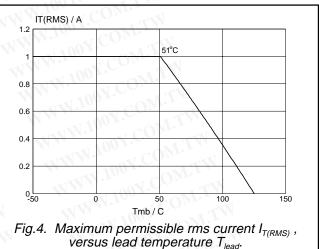
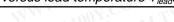






Fig.2. Maximum permissible non-repetitive peak on-state current  $I_{TSM}$ , versus pulse width  $t_p$ , for sinusoidal currents,  $t_0 \leq 20ms$ .







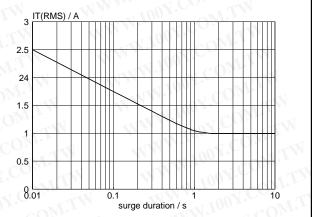
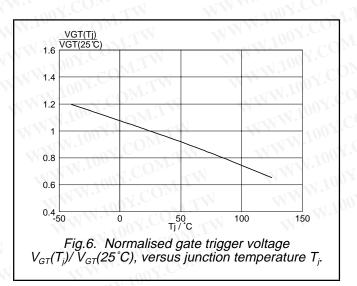
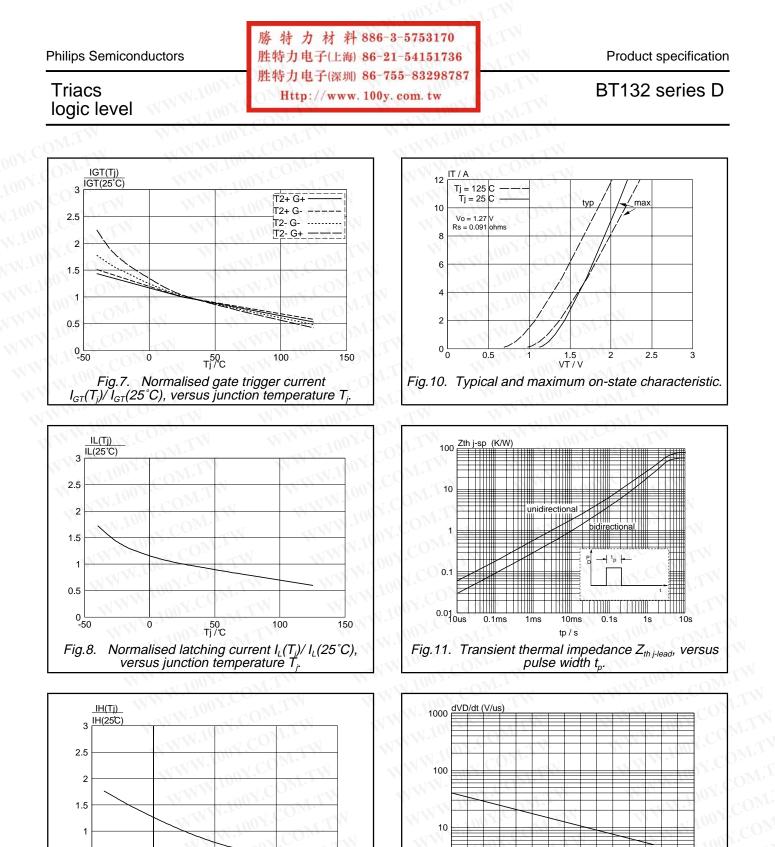





Fig.5. Maximum permissible repetitive rms on-state current  $I_{T(RMS)}$ , versus surge duration, for sinusoidal currents, f = 50 Hz;  $T_{lead} \le 51$  °C.





0.5

0 └ -50

50 Tj /℃

Fig.9. Normalised holding current  $I_H(T_j)/I_H(25^{\circ}C)$ , versus junction temperature  $T_j$ .

100

150

0

150

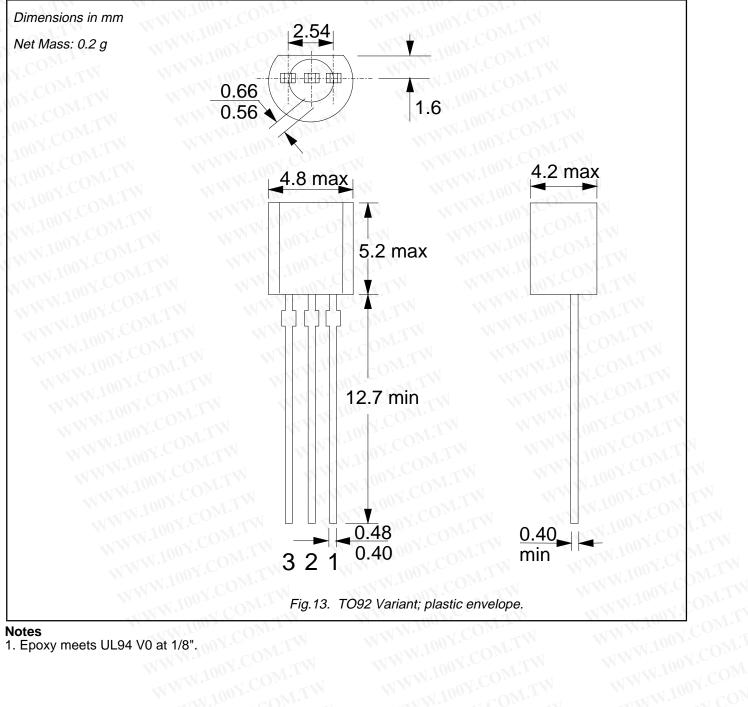
100

50

WWW.100

Tj / C

Fig.12. Typical, critical rate of rise of off-state voltage,  $dV_D/dt$  versus junction temperature  $T_i$ .


Philips Semiconductors

Triacs logic level

#### 特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

BT132 series D

# **MECHANICAL DATA**



1. Epoxy meets UL94 V0 at 1/8". WWW.100Y.COM.TW

Product specification

#### Triacs logic level

# DEFINITIONS

| Data sheet status                                         |                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective specification                                   | This data sheet contains target or goal specifications for product development.                                                                                                                                                                                                                                                                          |
| Preliminary specification                                 | This data sheet contains preliminary data; supplementary data may be published later.                                                                                                                                                                                                                                                                    |
| Product specification                                     | This data sheet contains final product specifications.                                                                                                                                                                                                                                                                                                   |
| Limiting values                                           | WWW. 100Y.CO.T. TW WWW.TI 100Y.CO.M.TW                                                                                                                                                                                                                                                                                                                   |
| or more of the limiting val<br>operation of the device at | in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one<br>ues may cause permanent damage to the device. These are stress ratings only and<br>these or at any other conditions above those given in the Characteristics sections of<br>uplied. Exposure to limiting values for extended periods may affect device reliability. |

#### Application information

Where application information is given, it is advisory and does not form part of the specification.

#### © Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any guotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

# LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.