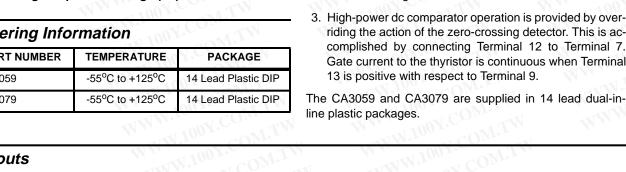
5
OR


ne 1994	勝 特 力 材 料 886-3-5 胜特力电子(上海) 86-21-5 胜特力电子(深圳) 86-755- Http://www.100y.co	4151736 8329878	and a state of the
Features	N.T.W WILL	100 1.	COM.
 Relay Cont Valve Cont Synahrona 		V.100Y	
 On-Off Mot 		ynts	
 Differential Supply for Photosens 	Comparator with Self-Co Industrial Applications itive Control -Shot Control	ntained	Power
Lamp Cont	rol		
Type Feat	ures	CA3059	CA3079
• 24V, 120V, 2 or 400Hz O	208/230V, 277V at 50/60 peration	X	X
• Differential	Input	х	X
Low Balance	e Input Current (Max) - μ A	1	2
	otection Circuit for Shorted Sensor (Term 14)	X	X
Sensor Rai	nge (Rx) - kΩ	2 - 100	2 - 50
• DC Mode (Term 12)	х	
• External Tr	igger (Term 6)	X	
• External In	hibit (Term 1)	X	
• DC Supply	Volts (Max)	14	10

Operating Temperature Range (°C) . . . -55 to +125

Ordering Information

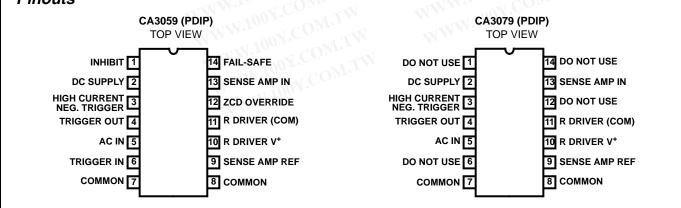
PART NUMBER	TEMPERATURE	PACKAGE
CA3059	-55°C to +125°C	14 Lead Plastic DIP
CA3079	-55°C to +125°C	14 Lead Plastic DIP

Pinouts

CA3059, CA3079

ero-Voltage Switches for 50Hz-60Hz and 400Hz Thyristor Control Applications

Description

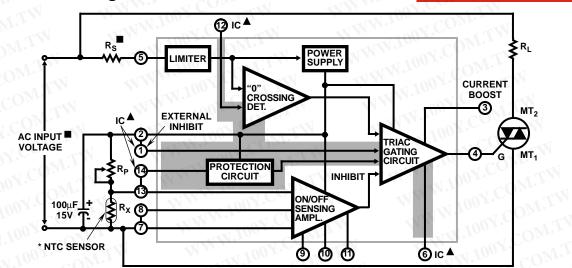

The CA3059 and CA3079 zero-voltage switches are monolithic silicon integrated circuits designed to control a thyristor in a variety of AC power switching applications for AC input voltages of 24V, 120V, 208/230V, and 277V at 50Hz-60Hz and 400Hz. Each of the zero-voltage switches incorporates 4 functional blocks (see the Functional Block Diagram) as follows:

- 1. Limiter-Power Supply Permits operation directly from an AC line.
- 2. Differential On/Off Sensing Amplifier Tests the condition of external sensors or command signals. Hysteresis or proportional-control capability may easily be implemented in this section.
- 3. Zero-Crossing Detector Synchronizes the output pulses of the circuit at the time when the AC cycle is at zero voltage point; thereby eliminating radio-frequency interference (RFI) when used with resistive loads.
- 4. Triac Gating Circuit Provides high-current pulses to the gate of the power controlling thyristor.

In addition, the CA3059 provides the following important auxiliary functions (see the Functional Block Diagram).

- 1. A built-in protection circuit that may be actuated to remove drive from the triac if the sensor opens or shorts.
- 2. Thyristor firing may be inhibited through the action of an internal diode gate connected to Terminal 1.
- 3. High-power dc comparator operation is provided by overriding the action of the zero-crossing detector. This is accomplished by connecting Terminal 12 to Terminal 7. Gate current to the thyristor is continuous when Terminal

The CA3059 and CA3079 are supplied in 14 lead dual-in-



CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures. Copyright C Harris Corporation 1994

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Functional Block Diagram

WW.100Y.COM.T

* NEGATIVE TEMPERATURE COEFFICIENT

AC INPUT VOLTAGE (50/60 OR 400Hz) V AC	INPUT SERIES RESISTOR (R _S) kΩ	DISSIPATION RATING FOR R _S W
24	1 2 NO. CO.	0.5
120	10	2
208/230	20	41.100
277	25	5

NOTE: Circuitry within shaded areas, not included in CA3079

See chart

▲ IC = Internal connection - DO NOT USE (Terminal restriction applies only to CA3079)

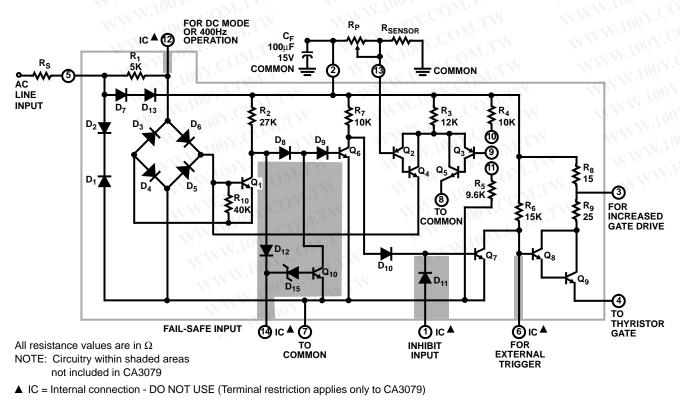


FIGURE 1. SCHEMATIC DIAGRAM OF CA3059 AND CA3079

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

Absolute Maximum Ratings T _A = +25°C	Thermal Information Http://www.100y.com
DC Supply Voltage (Between Terminals 2 & 7) CA3059	Thermal Resistance θ _{JA} PDIP Package 100°C/W Power Dissipation 100°C/W
DC Supply Voltage (Between Terminals 2 & 8) CA3059	Up to $T_A = +55^{\circ}C$ CA3059, CA3079
Peak Supply Current (Terminals 5 & 7)±50mA Output Pulse Current (Terminal 4)	Operating

for 10 seconds max

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications

WW.100Y.COM.T

 T_A = +25°C, For all Types, Unless Otherwise Specified. All voltages are measured with respect to Terminal 7. For Operating at 120V_{RMS}, 50-60Hz (AC Line Voltage) (Note 1)

PAR	AMETERS	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
DC SUPPLY VOLTA	GE (Figure 2A, 2B, 2C)	VI INI	ON. COM.	WIN.	100.1	COM	
Inhibit Mode	At 50/60Hz	Vs	$R_{S} = 8k\Omega, I_{L} = 0$	6.1	6.5	7	V
	At 400Hz	WWW.	$R_{S} = 10k\Omega, I_{L} = 0$	1.12	6.8	<u></u>	V
	At 50/60Hz	WWW	$R_{S} = 5k\Omega, I_{L} = 0$	N-W	6.4	1.00	V
Pulse Mode	e Mode At 50/60Hz		$R_{S} = 8k\Omega, I_{L} = 0$	6	6.4	70	V
At 400Hz			$R_{S} = 10k\Omega, I_{L} = 0$	-	6.7		V
	At 50/60Hz		$R_{S} = 5k\Omega, I_{L} = 0$		6.3	10.	V
Gate Trigger Current (Figures 3, 4A)		I _{GT} Terminal 4	Terminals 3 and 2 Connected, $V_{GT} = 1V$	- 7	105	10 ⁰ 1	mA
PEAK OUTPUT CUP	RRENT (PULSED) (Figu	res 4, 5)	W.100 COM.1			N.100	ALC.
With Internal Power Supply Figure 4a, 4b		I _{OM} Terminal 4	Terminal 3 open, Gate Trigger Voltage (V _{GT}) = 0	50	84	W:10	mA
		VLIM V	Terminals 3 and 2 Connected, Gate Trigger Voltage (V_{GT}) = 0	90	124		mA
With External Power	Supply	I _{OM}	Terminal 3 open, V + = 12V, V_{GT} = 0	- N	170	-	mA
Figure 5a, 5b, 5c		Terminal 4	Terminals 3 and 2 Connected, V+ = 12V, $V_{GT} = 0$	L.M.	240	N VI	mA
Inhibit Input Ratio (Figure 6)		V ₉ /V ₂	Voltage Ratio of Terminals 9 to 2	0.465	0.485	0.520	N.1
TOTAL GATE PULS	E DURATION (Note 2) (Figure 7A, 7B, 7C	, 7D)	NTN.		N.	
For Positive dv/dt			C _{EXT} = 0	70	100	140	μs
	400Hz	COM.1	$C_{EXT} = 0, R_{EXT} = \infty$	DAT.	12		μs
For Negative dv/dt	50-60Hz	t _N	C _{EXT} = 0	70	100	140	μs
	400Hz	001. 00M.	$C_{EXT} = 0, R_{EXT} = \infty$	Mon	10	-	μs
PULSE DURATION	AFTER ZERO CROSSIN	NG (50-60Hz) (Fig	ure 7A)		NT.Y		
For Positive dv/dt	WWW	t _{P1}	$C_{EXT} = 0, R_{EXT} = \infty$		50	-	μs
For Negative dv/dt	tive dv/dt t		TT NMM. TO	-	60	-	μs
OUTPUT LEAKAGE	CURRENT (Figure 8)	W.100 - CC	Mr. r		•		
Inhibit Mode		1014	DM.T.	-	0.001	10	μΑ
INPUT BIAS CURRE	ENT (Figure 9)	100X.C	-				
CA3059	N/			-	220	1000	nA
CA3079				-	220	2000	nA
Common-mode Inpu	t Voltage Range	V _{CMR}	Terminals 9 and 13 Connected	-	1.5 to 5	-	V

Specifications CA3059, CA3079

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Electrical Specifications

T_A = +25°C, For all Types, Unless Otherwise Specified. All voltages are measured with respect to Terminal 7. For Operating at 120V_{RMS}, 50-60Hz (AC Line Voltage) (Note 1) (Continued)

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
SENSITIVITY (Note 3) (Figures 4(a), 11)	V.102 COM	WWW.	N.COm	Wm		
Pulse Mode	ΔV ₁₃	Terminal 12 open	0	6	-	mV

1. The values given in the Electrical Characteristics Chart at 120V also apply for operation at input voltages of 208/230V, and 277V, except for Pulse Duration. However, the series resistor (Rs) must have the indicated value, shown in the chart in the Functional Block Diagram, for the specified input voltage.

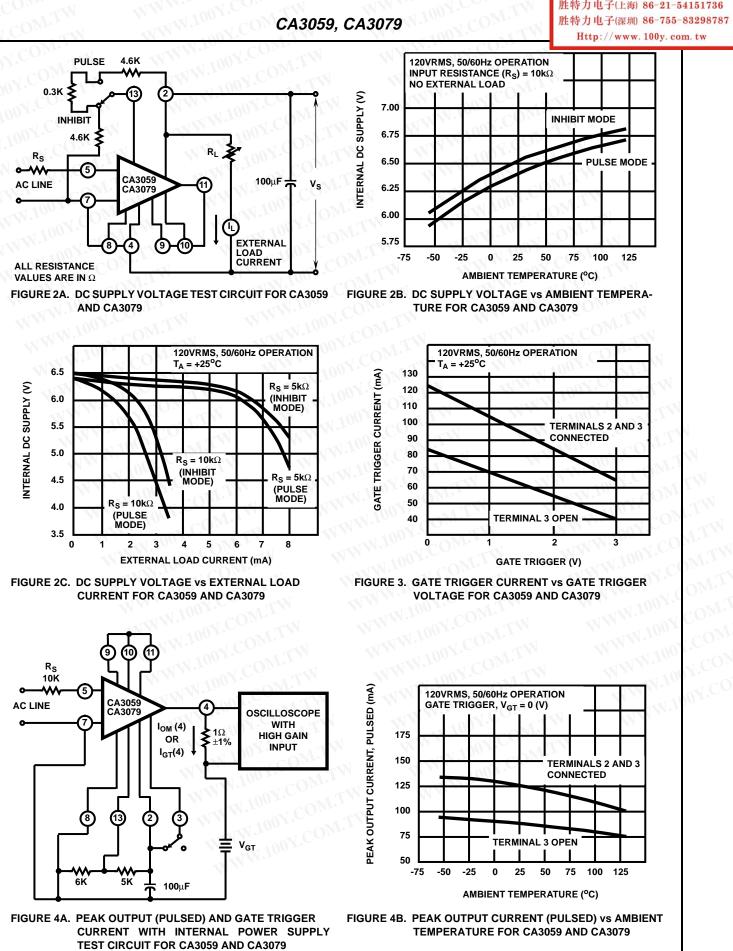
2. Pulse Duration in 50Hz applications is approximately 15% longer than shown in Figure 7(b).

3. Required voltage change at Terminal 13 to either turn OFF the triac when ON or turn ON the triac when OFF.

Maximum Voltage Ratings T_A = +25°C

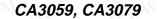
WW	W.100	N.C	OW.	M	AXIMUM		GE RAT	TINGS T	- A = +25	°C		WWY	N.100	N.CC	MAXI CURF RATI	RENT
TERM. NO.	NOTE 3 1	2	CO 3	4	NOTE 1 5	NOTE 3 6	7	8	9	10	11	NOTE 3 12	13	NOTES 2, 3 14	I _{IN} mA	I _{ОUT} mA
1 Note 3		Note 4	Note 4	Note 4	Note 4	15 0	10 -2	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	10	0.1
2	MA	W.10	0 -15	0 -15	2 -14	0 -14	0 Note 5 -14	0 Note 5 -14	0 -14	0 -14	0 -14	Note 4	0 -14	0 -14	150	10 0 M
3	N	WW	1001	0 -15	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4
4		NWY	1.100	N.CC	Note 4	2 -10	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	0.1	150
5 Note 1		WW		oy.C	Mo	Note 4	7 -7	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	50	10
6 Note 3		W.	WW.	001.	CON	VT.	14 0	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4
7			INN	.100	I.CO	T.M	N	Note 4	14 0	Note 4	20 0	2.5 -2.5	14 0	6 -6	Note 4	Note 4
8			MM	W.10	N.C.	OM.	W		10 0	Note 4	Note 4	Note 4	Note 4	Note 4	0.1	2
9			NV.	NW.1	001.	com	Wn.		W	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4
10				WW	Tons	CO ¹	1	J		MM.	Note 4	Note 4	Note 4	Note 4	Note 4	Note4
11					1.700		M.J.			War	.700	Note 4	Note 4	Note 4	Note 4	Note4
12 Note 3				WW	N.10	N.C	DM.T	N .		WW	N.100	N.C	Note 4	Note 4	50	50
13					1.17		ON.	I		NIX-	11.20	VC	OM.	Note 4	Note 4	Note4
14 Note 3					WW.	100 X	con	NT.		W	NW.	00			2	2

This chart gives the range of voltages which can be applied to the terminals listed horizontally with respect to the terminals listed vertically. For example, the voltage range of horizontal Terminal 6 to vertical Terminal 4 is 2V to -10V. NOTES:

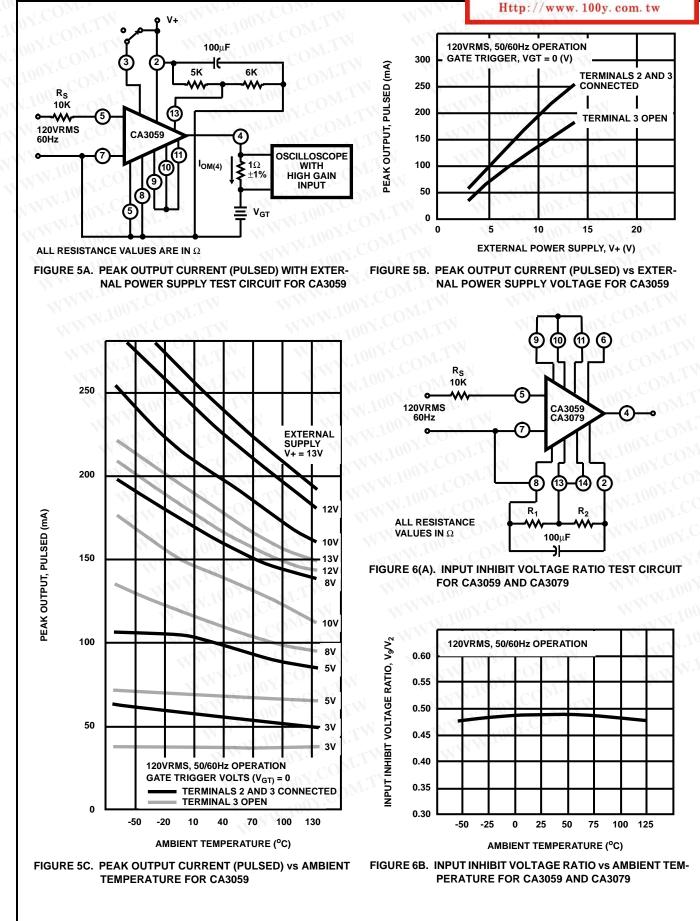

1. Resistance should be inserted between Terminal 5 and external supply or line voltage for limiting current into Terminal 5 to less than 50mA.

2. Resistance should be inserted between Terminal 14 and external supply for limiting current into Terminal 14 to less than 2mA.

3. For the CA3079 indicated terminal is internally connected and, therefore, should not be used.

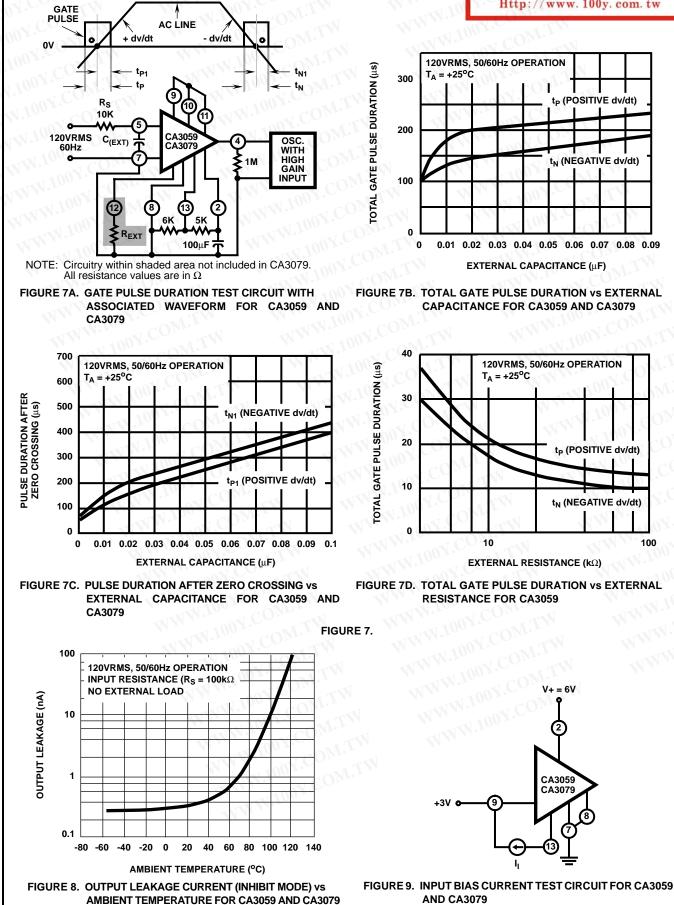

4. Voltages are not normally applied between these terminals; however, voltages appearing between these terminals are safe, if the specified voltage limits between all other terminals are not exceeded.

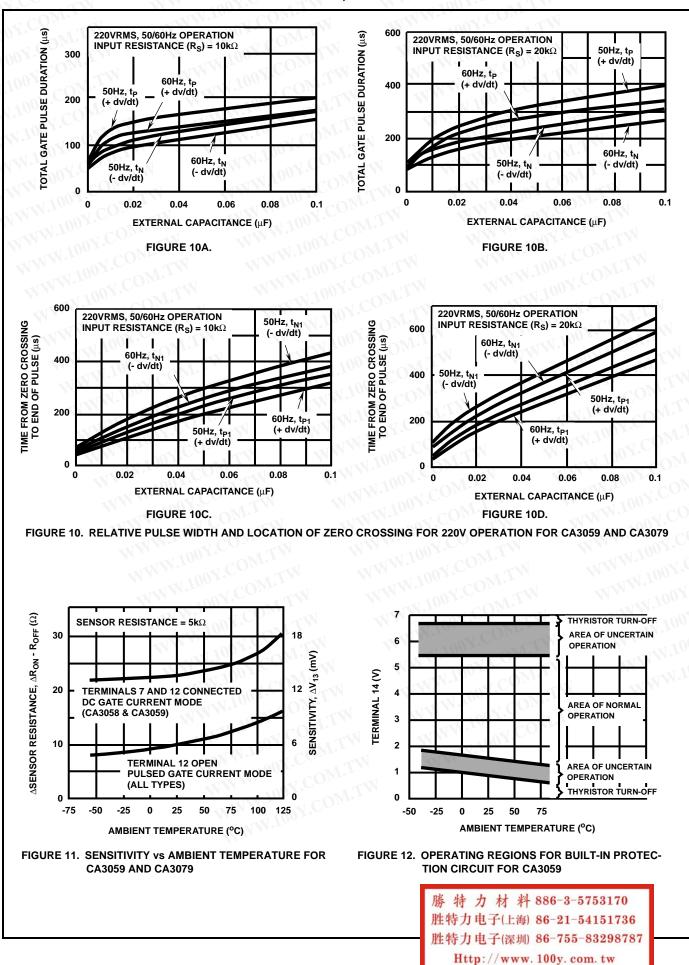
5. For CA3079 (0V to -10V).

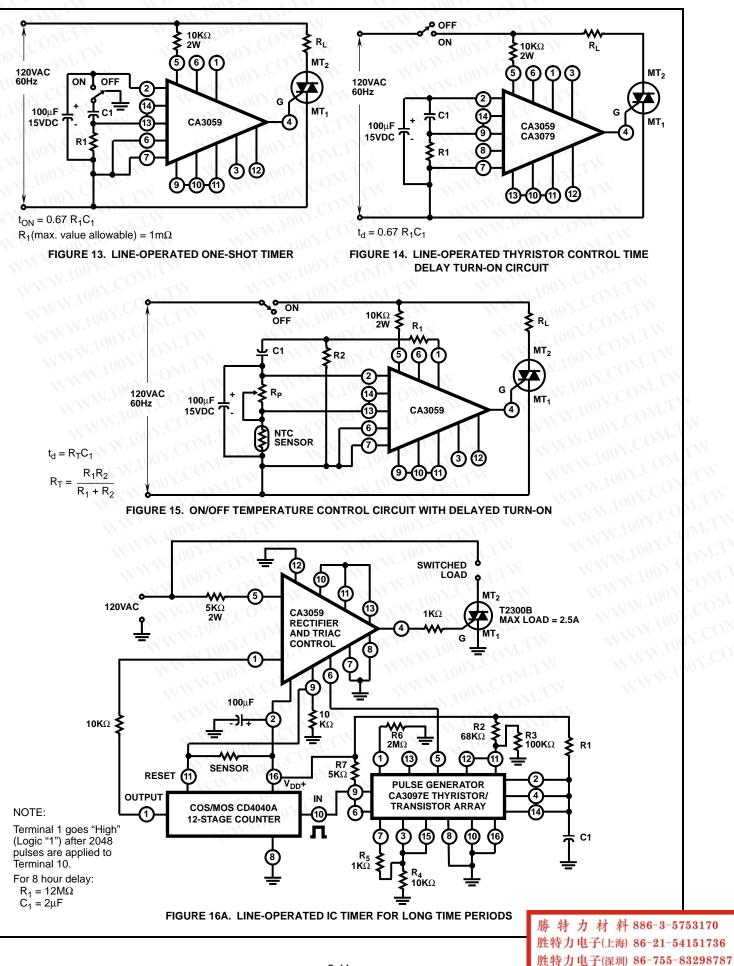


勝 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736

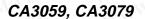
5-7

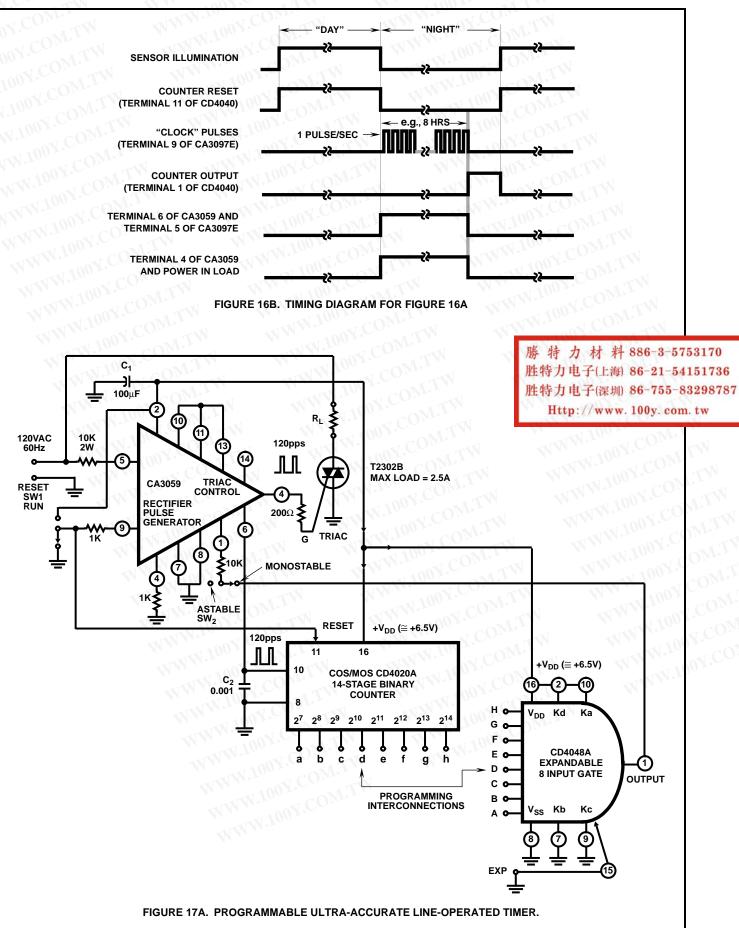



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

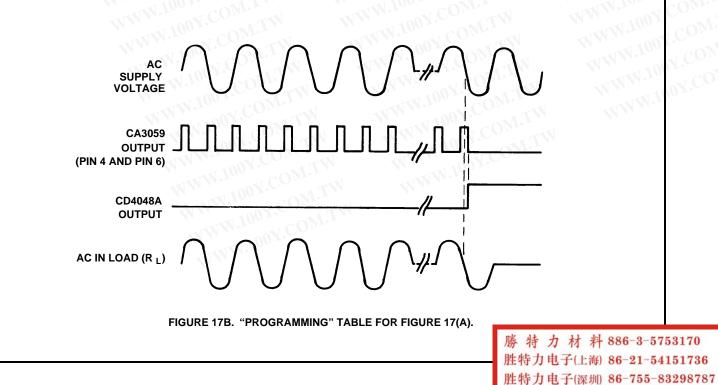


5-8


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



Http://www. 100y. com. tw



1t	2t	4t	8t	16t	32t	64t	128t	t _o
CON.		WW.	CD4020A	TERMINALS	WW	. CO	Wm	
a	b	C	100 d	е	f	g	h	1
1.00	WTD	N.	CD4048A	TERMINALS	Ma	N 1001.	M.M.	1
ACO	В	C	D	E	F	G	H	
C	NC	NC	NC	NC	NC	NC	NC	1
NC	С	NC	NC	NC	NC	NC	NC	2
C	С	NC	NC	NC	NC	NC	NC	3
NC	NC	C	NC	NC	NC	NC	NC	4
С	NC	С	NC	NC	NC	NC	NC	5
NC	C	С	NC	NC	NC	NC	NC	6
C 100	С	с	NC	NC	NC	NC	NC	7
NC	NC	NC	С	NC	NC	NC	NC	8
C	NC	NC	C	NC	NC	NC	NC	9
NC	C-O	NC	C	NC	NC	NC	NC	10
С	C C	NC	С	NC	NC	NC	NC	011
NC	NC	C	С	NC	NC	NC	NC	12
C	NC	С	C	NC	NC	NC 📢	NC	13
NC	С	O C	С	NC	NC	NC	NC	14
С	C	C	с	NC	NC	NC	NC	15
C V	COO	С	с	NC 00	С	С	NC	111
NC 🔨	NC	NC	NC	С	С	С	NC	112
С	NC	NC	NC	C	COV.COV	TIC	NC	113
С	C	c	c	С	on c	с	С	255

1. t_0 = Total time delay = $n_1 t + n_2 t + ... n_n t$.

2. C = Connect. For example, interconnect terminal a of the CD4020A and terminal A of the CD4048A.

3. NC = No Connection. For example, terminal b of the CD4020A open and terminal B of the CD4048A connected to +V_{DD} bus.

Operating Considerations

Power Supply Considerations for CA3059 and CA3079

The CA3059 and CA3079 are intended for operation as selfpowered circuits with the power supplied from and AC line through a dropping resistor. The internal supply is designed to allow for some current to be drawn by the auxiliary power circuits. Typical power supply characteristics are given in Figures 2(b) and 2(c).

Power Supply Considerations for CA3059

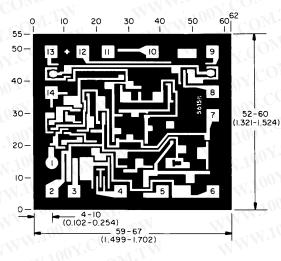
The output current available from the internal supply may not be adequate for higher power applications. In such applications an external power supply with a higher voltage should be used with a resulting increase in the output level. (See Figure 4 for the peak output current characteristics.) When an external power supply is used, Terminal 5 should be connected to Terminal 7 and the synchronizing voltage applied to Terminal 12 as illustrated in Figure 5(a).

Operation of Built-In Protection for the CA3059

A special feature of the CA3059 is the inclusion of a protection circuit which, when connected, removes power from the load if the sensor either shorts or opens. The protection circuit is activated by connecting Terminal 14 to Terminal 13 as shown in the Functional Block Diagram. To assure proper operation of the protection circuit the following conditions should be observed:

1. Use the internal supply and limit the external load current to 2mA with a $5k\Omega$ dropping resistor.

- 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw
- 2. Set the value of R_P and sensor resistance (R_X) between $2k\Omega$ and $100k\Omega.$
- 3. The ratio of R_X to R_P , typically, should be greater than 0.33 and less than 3. If either of these ratios is not met with an unmodified sensor over the entire anticipated temperature range, then either a series or shunt resistor must be added to avoid undesired activation of the circuit.


If operation of the protection circuit is desired under conditions other than those specified above, then apply the data given in Figure 12.

External Inhibit Function for the CA3059

A priority inhibit command may be applied to Terminal 1. The presence of at least +1.2V at 10μ A will remove drive from the thyristor. This required level is compatible with DTL or T²L logic. A logical 1 activates the inhibit function.

DC Gate Current Mode for the CA3059

Connecting Terminals 7 and 12 disables the zero-crossing detector and permits the flow of gate current on demand from the differential sensing amplifier. This mode of operation is useful when comparator operation is desired or when inductive loads are switched. Care must be exercised to avoid overloading the internal power supply when operating in this mode. A sensitive gate thyristor should be used with a resistor placed between Terminal 4 and the gate in order to limit the gate current.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid gradations are in mils (10^{-3} inch) .

The photographs and dimensions represent a chip when it is par of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils (0.17mm) larger in both dimensions.

DIMENSIONS AND PAD LAYOUT FOR CA3059H AND CA3079H