

CMOS Dual 4-Stage Static Shift Register

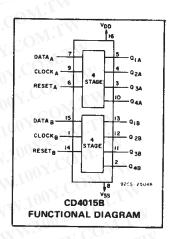
With Serial Input/Parallel Output

High-Voltage Types (20-Volt Rating)

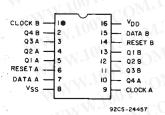
■ CD4015B consists of two identical, independent, 4-stage serial-input/paralleloutput registers. Each register has independent CLOCK and RESET inputs as well as a single serial DATA input. "Q" outputs are available from each of the four stages on both registers. All register stages are D-type, master-slave flip-flops. The logic level present at the DATA input is transferred into the first register stage and shifted over one stage at each positive-going clock transition. Resetting of all stages is accomplished by a high level on the reset line. Register expansion to 8 stages using one CD4015B package, or to more than 8 stages using additional CD4015B's is possible.

The CD4015B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic package (E suffix), and in chip form (H suffix).

D4015B Types


Features:

- Medium speed operation 12 MHz (typ.) clock rate at $V_{DD} - V_{SS} = 10$
- Fully static operation
- 8 master-slave flip-flops plus input and output buffering
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) =


Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Serial-input/parallel-output data queueing
- Serial to parallel data conversion
- General-purpose register

TERMINAL DIAGRAM

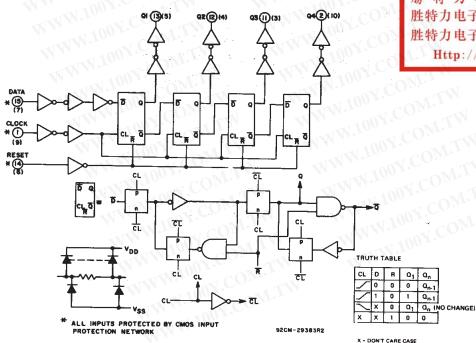


Fig. 1 - Logic diagram (1 register).

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

CD4015B Types

MAXIMUM RATINGS, Absolute-Maximum Values:DC SUPPLY-VOLTAGE RANGE, (V_{DD}) -0.5V to +20VVoltages referenced to V_{SS} Terminal)-0.5V to V_{DD} +0.5VINPUT VOLTAGE RANGE, ALL INPUTS-0.5V to V_{DD} +0.5VDC INPUT CURRENT, ANY ONE INPUT ± 10 mAPOWER DISSIPATION PER PACKAGE (P_{D}) :500mWFor $T_{A} = -55^{\circ}$ C to $\pm 100^{\circ}$ C500mWFOR $T_{A} = \pm 100^{\circ}$ C to $\pm 125^{\circ}$ CDerate Linearity at ± 12 mW/ ± 12 mW

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}$ C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC		V _{DD}	LIN	UNITS	
		(V)	Min. Max.		TIME
Supply-Voltage Range (For T _A Temperature Range)	W	3	18	OV	
Clock Pulse Width,	t _W CL	5 10 15	180 80 50	$\frac{1100}{100}$	ns
Clock Rise and Fall Time,	t _f CL, t _f CL	5 10 15	47.0	15 6 2	μs
Clock Input Frequency,	fcL CO	5 10 15	DC	3 6 8.5	MHz
Data Setup Time,	^t sU	5 10 15	70 40 30	N Z	(1 ns)
Reset Pulse Width,	t _W R	5 10 15	200 80 60	- - -	W.10

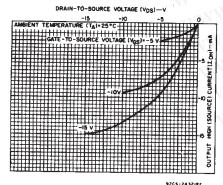


Fig. 5 — Minimum output high (source) current characteristics.

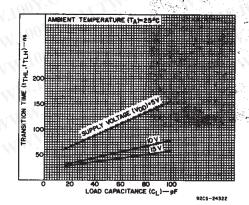


Fig. 6 — Typical transition time as a function of load capacitance.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

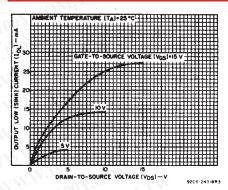


Fig. 2 — Typical output low (sink) current characteristics.

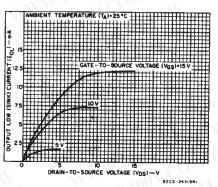
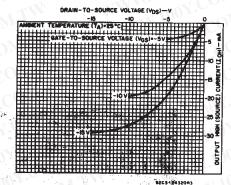
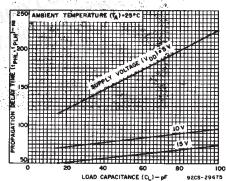
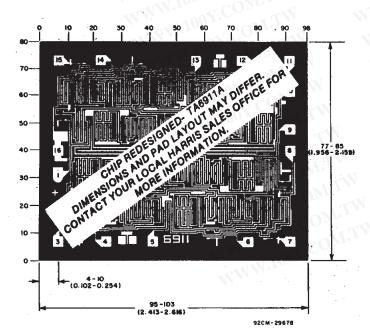



Fig. 3 – Minimum output low (sink) current characteristics.

ig. 4 — Typical output high (source) current characteristics.




Fig. 7 — Typical propagation delay time as a function of load-capacitance,

WWW.100Y.COM.TW WWW.100Y.COM.TW CD4015B Types

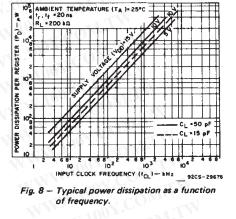
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW STATIC ELECTRICAL CHARACTERISTICS

CHARACTER- ISTIC	CONE	CONDITIONS		LIMITS AT INDICATED TE			MPERATURES (°C)					
	Vo (V)	VIN (V)	V _{DD}	-55	-40	+85	+125	Min.	+25 Typ.	Max.	UNITS	
Quiescent Device	-44	0,5	5	5	5	150	150		0.04	5	(
Current,	- 4	0,10	10	10	10	300	300	-7	0.04	10	X.C.	
IDD Max.	_	0,15	15	20	20	600	600	-	0.04	20	μΑ	
TIME	7 -	0,20	20	100	100	3000	3000	_	0.08	100		
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	11	-	001	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	1,771 -		
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	.51	700	
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	MT.	mA	
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2		W.10	
Current, IOH Min.	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	7		
	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	(+)		
Output Voltage:	7.7	0,5	5		1.100	.05		-1	0	0.05	MW.	
Low-Level, VOL Max.	T-1	0,10	10	144	×11(.05	Mo	L_{Z_A}	0	0.05	0.05 0.05	
AOL Max.	-xX	0,15	15		, C	.05	JO P.	- 0	0	0.05		
Output Voltage:	$\sqrt{1}$	0,5	5	V V	4	.95	col	4.95	5		- 131	
High-Level, VOH Min.		0,10	10	9.95 9.95 10		_	Mar					
Miss of C	DN_{T} .	0,15	15	-31	1.	4.95	J (CO	14.95	15		TANK!	
Input Low Voltage, VIL Max. Input High Voltage, VIH Min. Input Current IN Max.	0.5, 4.5	17.	5	, AN	-75	1.5	ا م	$\Lambda^{\frac{A}{2}}$.		1.5		
	1, 9	41	10	1		3		- 4	4	3		
	1.5,13.5	-	15			4	=1 (0.20	-	4	l vs	
	0.5, 4.5	47	5		44 .	3.5	00 $_{r}$.	3.5	(- , ,			
	1,9		10		VAN VI			7	200	_	4	
	1.5,13.5	M- 2	15			11	In.	, 11		-s1		
	12 C	0,18	18	±0.1	±0.1	±1	. ±1	- T C	±10 ⁻⁵	±0.1	μΑ	

Photograph of Chip Layout for CD4015B.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10-3 inch). WWW.100Y.COM.


CD4015B Types

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25° C, Input t_i, t_t = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	TEST CONDITIONS	- (UNITS				
CHARACTERISTIC	V _{DD} (V)	MIN. TYP.		MAX.	UNITS		
CLOCKED OPERATION	WWW.	-07	CO2.	W	· ·		
Propagation Delay Time,	5	Tan.	160	320			
T _{PHL} , T _{PLH}	10	. 0	80	160			
MAN-TACOM.	15	1.70	60	120			
100 F. OM. I	5	W-10	100	200			
Transition Time, t _{THL} , t _{TLH}	10		50	100	ns		
	15	MA .T.	40	80	XX		
Minimum Clock Pulse	5	-731	90	180	1		
Width, twCL	TV 10	AT.	40	80	TW		
	15	- 1	25	50			
Clock Rise and Fall Time,	5	(N <u></u>)	x1 1 00	15	1.1.		
t _r CL, t _r CL*	10	W	MA	6	μs		
	15	-	M_{IO}	2	Mir		
Minimum Data Setup Time, tSU	5	74.	35	70	T.Mo		
	10	-	20	40	011-		
	15	_	15	30	$-0M_{\odot}$		
Minimum Data Hold Time, t _H	5	- 1	4.47	0	ns		
	10	_	W A	0	COh		
	15	_	-	0	CON		
Maximum Clock Input	5	3	6	00	A.C.		
Frequency, fcL	(10	6	12	M. L.	MHz		
	15	8.5	17	-10 N			
Input Capacitance, Cin	Any Input	V —	5	7.5	pF		
RESET OPERATION	To COMP.	« % Ĭ			~ ()		
Propagation Delay Time,	100 5 5	47	200	400	100		
TPHL, TPLH	10	- <u> </u>	100	200			
	15 ON	-	80	160	1.100		
Minimum Reset Pulse Width,	1005	(174)	100	200	ns		
twR	10	-1	40	80			
	15	Mr.	30	60			

^{*}If more than one unit is cascaded t,CL should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

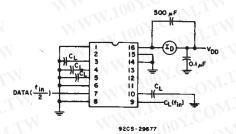


Fig. 9 - Power dissipation test circuit.

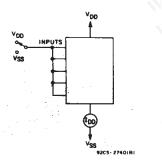


Fig. 10 — Quiescent device current test circuit.

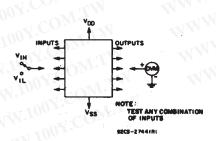


Fig. 11 - Input voltage test circuit.

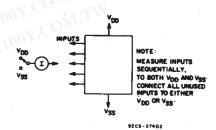


Fig. 12 - Input current test circuit.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

IMPORTANT NOTICE

WWW.100Y.COM.TV WWW.100Y.COM. Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

> TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

> CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

> In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

> TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Ti's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

WWW.100Y.COM.T WWW.100Y.COW.T Copyright © 1998, Texas Instruments Incorporated