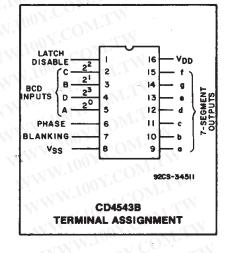


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

CD4543B Types

Data sheet acquired from Harris Semiconductor

CMOS BCD-to-Seven-Segment Latch/Decoder/Driver For Liquid-Crystal Displays


High-Voltage Types (20-Volt Rating)

Features:

- Display blanking of all illegal input combinations
- Latch storage of code
- Capability of driving two low power TTL loads, two HTL loads, or one low power Schottky load over the full rated-temperature range
- Pin-for-pin replacement for the CD4056B (with pin 7 tied to VSS)
- Direct LED driving capability

■ CD4543B is a BCD-to-seven segment latch/decoder/driver designed primarily for liquid-crystal display (LCD) applications. It is also capable of driving light emitting diode (LED), incandescent, gas-discharge, and fluorescent displays. This device is functionally similar to and serves as direct replacement for the CD4056B when pin 7 is connected to V_{88} . It differs from the CD4056B in that it has a display blanking capability instead of a level-shifting function and requires only one power supply. When the CD4056B is used in the level shifting mode, two power supplies are required. When the CD4543B is used for LCD applications, a square wave must be applied to the PHASE input and the backplane of the LCD device. For LED applications a logic 1 is required at the PHASE input for common-cathode devices; a logic 0 is required for commonanode devices (see truth table).

The CD4543B is supplied in hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

- 100% tested for guiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25° C
- Noise margin (full package-temperature range)= 1 V at V_{DD}=5 V
 2 V at V_{DD}=10 V
 2.5 V at V_{DD}=15 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Instrument display driver
- Dashboard display driver
- Computer/calculator display driver
- Timing device driver (clocks, watches, timers

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

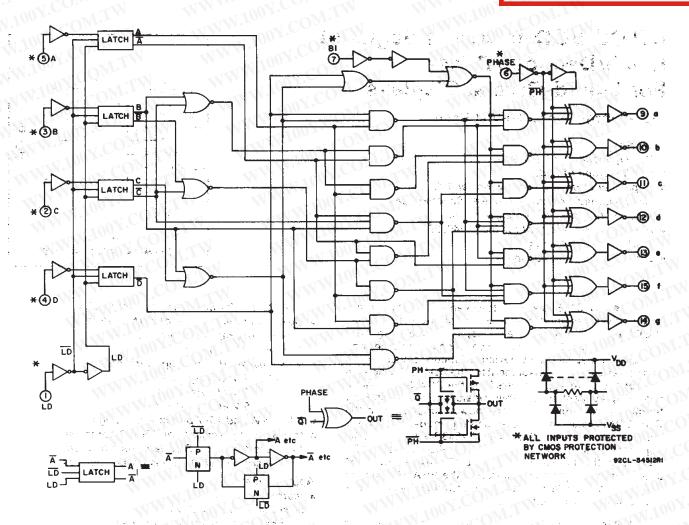
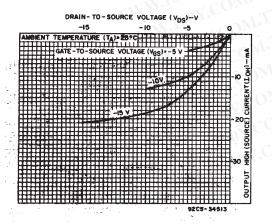
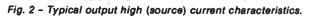


Fig. 1 - BCD-to-seven-segment latch/decoder/driver CD4543B logic circuit diagram.

RECOMMENDED OPERATING CONDITIONS at TA=25°C, Unless Otherwise Specified


For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:


WW. TOOX.COM.TW		Lik			
CHARACTERISTIC	V _{DD}	MIN.	TYP.	UNITS	
Supply-Voltage Range (For TA=Full Package-Temperature Range)	-W.10	301	18	٧	
	5	250	125		
Latch Disable Pulse Width	10	100	50	1	
M. THINK CONFILL	15	80	40	1	
MM, 100 YOUNTH	5	60	15	1	
Minimum Data Setup Time tsu	10	20	-5	ns	
, M.100	15	10	-5	_	
	5	25	-5	1	
Minimum Data Hold Time t _H	10	20	10		
	15	20	10		

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

STATIC ELECTRICAL CHARACTERISTICS

CHARAC-	and the second s	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)									
TERISTIC		V _O (VIN	V _{DD}	21 I	N	I W	111	+25			UNITE		
N. Ton O. COM.	TW.	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.			
Quiescent	1.2	1	0, 5	5	5	5	150	150		0.04	5			
Device		42	0,10	10	10	10	300	300	700	0.04	10			
Current	IDD	V 44	0,15	15	20	20	600	600	4 to	0.04	20	μΑ		
Max.)Mr.	W -	0,20	20	100	100	3000	3000	-30	0.08	100			
Output Low (Sink)	O_{M}	0.4	0, 5	5	0.64	0.61	0.42	0.36	0.51	101/1CC	N t. T	mA		
Current	CO_{D_J}	0.5	0,10	10	1.6	1.5	V1.1	0.9	1.3	2.6	- r			
Min.	IOL	1.5	0,15	15	4.2	CO4 ^M ·	2.8	2.4	3.4	6.8	$20\overline{n}_{r}$			
Output High	loH.	4.6	0, 5	. 5	-0.46	-0.44	-0.30	-0.26	-0.37	-0.75	$C\overline{\Omega}_{p_0}$			
(Source) Current		2.5	0, 5	5	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	7 (4 0)			
		9.5	0,10	10	-0.98	-0.92	-0.68	-0.55	-0.8	-1.6	-00			
Min.		13.5	√ 0,15 ₅	15	-3.33	-3.18	-2.2	-1.9	-2.7	-5.4 T	22.			
Output Voltage:		$CO_{\overline{N}I}$	0, 5	5	$M_{M^{*}r}$	0.	05	N/	-XN	0	0.05	OM.		
Low-Level	VOL		0,10	10		0.	05	- « 1	_	0	0.05			
Max.			0,15	15	0.05				_	0<<	0.05	Mos		
Output Voltage;	Vон	$^{\mathcal{N}, Co_{\mathrm{h}}}$	0, 5	5	MAN A.	4.004.	95	TW	4.95	5	100	CV		
High-Level		(O) † (O)	0,10	10		9.	95	W	9.95	10	V 02.= " Y VC			
Min.		m_{F}^{CC}	0,15	15	- XX	14	.95	M.r.	14.95	15	M To.	ST CO		
Input Low	VIL	0.5,4.5	_~ ~ 0^	5		11	.5	M_{ij}		77	1.5	O F.		
Voltage		1, 9	<u> </u>	10		W Y	3.07.0	7 T		_\$N\	3	00X.C		
, Max.		1.5,13.5		15		WW	1 _01.0	Oh	-V I	-4/	4			
Input High	VV - 4T	0.5,4.5		5		3.5 -					- -	10.A		
Voltage	VIH	1, 9		10		M A.	1 1007		7		=1	1.100		
Min.		1.5,13.5	$\sqrt{C_{n}}$	15	WW 11, 100 Y.				11		W.	×1 10		
Input Current Max.	JIN	WW.10	0,18	18	±0.1	±0.1	±1,0	±1	(ছি	±10 ⁻⁵	±0.1	μΑ		

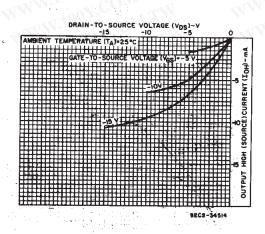


Fig. 3 - Minimum output high (source) current characteristics.

DYNAMIC ELECTRICAL CHARACTERISTICS at TA=25°C; CL=50 pF, Input tr,tq=20 ns, RL=200 kΩ

CHARACTERIST	IC WWW.	TEST	WWY	UNITS				
. CON TAI	MMA	V _{DD} (V)	MIN. TYP.		MAX.			
Propagation Delay Time	t _{PHL}	C5	-00	600	1200	TW		
	1	10 M.		200	400			
		15	- 7	150	300			
NAV. TO COM.	W	5	N -	500	1000			
	tPLH	10 COM.]	200	400			
W TOOK STI		10015		150	300			
MAMA:	W .	5	TN -	180	360			
Transition Time	THL	10 COM		90	180			
WW 1007.	I.M.	15	1. · · ·	65	130	COM		
	W	5,07	WIN-	180	360	ns		
	tTLH	10 CO	N. T.	90	180			
W 1007.	$M_{i,j,j,j}$	15		65	130			
WW 1007.0	WILL	5	250	125	3 10			
Latch Disable Pulse Width	twH	10	100	50	M.T.			
V 100 -	OM.	15	80	40	W. W			
11007:	TIL	5 100	60	15	- KN			
Address Setup Time	tsu	10	20	V -5	1/17/			
, W.100	COM	15	10	-5	- 1/1			
1/	LIVO	5	25	-5				
Address Hold Time	CtH .	10	20	10	4/1/			
	COM.	15	20	10	-01	W. C		
Input Capacitance	CIN	Any Input	100	5	7.5	pF		

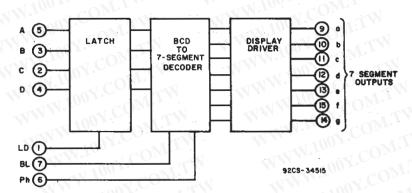


Fig. 4 - BCD-to-seven-segment latch/decoder/driver functional diagram.

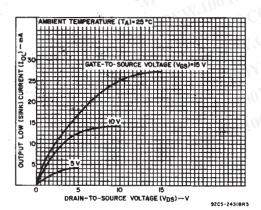


Fig. 5 - Typical output low (sink) current characteristics.

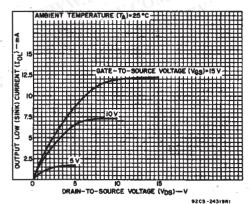


Fig. 6 - Minimum output low (sink) current characteristics.

TRUTH TABLE FOR CD4543B

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

INPUT CODE							1.1							
LD	BI	Ph*	D	C	В	4. C G	Mar.	b	С	(A)	7.00	(.do	9	DISPLAY
oo x .C	OM.	0	х	VXV	X	⊕ x C	0 -	. 0	0	0	0	O OC	0	CHAR- ACTER
1097.	0	1.0N	0	0	0	0	(1)N	T_{1}^{W}	· 1	1	11.1	007.4	OMIT	
. 100	0	0	0	0	0	100)	0	ΛT^{V}	S 🛊	0	0	0	0 1	
1.00	0.0	0	Νo	0 <	1	0.0	(GU	1	N o	1 🛚	1	. 00	1	
11-100	0	0	0	0	a111		. 1C	1	1	1	0	0	V.LON	EWE
71,1V	0	0	0	⊬ 14	0	0	0	071	1	0	0	W. Lo	_1c0	
1.	0	0	0	1	0	411	00 t.	0	1	1	0	111	101	<u> </u>
WY.	0	0	0	1	1/1	0	. 1X.	. 0	TIN	1	1	1	001	M.)55
11	0	0	0	₫ 1	1	111	1	Cb_{λ}	100	0	0	0	0.	- TIN
1	0	0	$M_{I_{I}}$	0	0	0	1.11	. 40	MA	1	1	1V	.140	
1 1 10	.00	0	1.1	0	0	1	100 Ext	1	1.1	1	0	1	N. 100 J.	
1	0	0.0	1	0	1	0	0	0	0	. 0	0	0	0,00	Blank
1	0	0	ON	0	1	41	0	0	0	0	0	0	0	Blank
1	0	0	cD2	1	0 .,,	. 0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	1	0	0	0	0	0	0	0 1	Blank
1 <	0	0	1.4	11	N 1	0 1	0	0 0	0	0	0	0 🔨	0	Blank
1	0	0	-/1C	01	<u>~1</u>	1	0	0	0	0	0	0	0	Blank
0	0	0	Х	X	X	X	111	W.In	_ C</td <td>0,**.</td> <td></td> <td></td> <td>MMM</td> <td>" iss. " P</td>	0,**.			MMM	" iss. " P
†	†N	MM.	100, 100, 100,		T.TY		Inverse of Output Combinations Above							Display as above

X=Don't care.

^{**=}Depends upon the BCD code previously applied when LD=1.

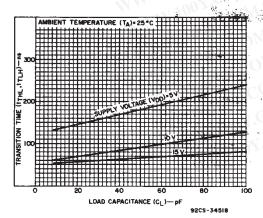


Fig. 7 - Typical transition time as a function of load capacitance.

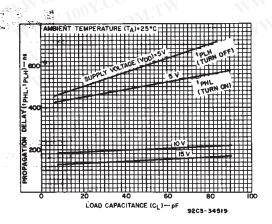


Fig. 8 - Typical propagation delay time as a function of load capacitance.

^{†=}Above combinations.

^{*=}For liquid-crystal readouts, apply a square wave to Ph.
For common cathode LED readouts, select Ph=0.
For common anode LED readouts, select Ph=1.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

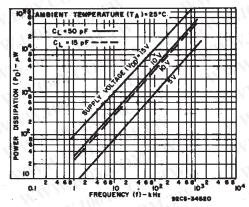


Fig. 9 - Typical dynamic power dissipation as a function of frequency.

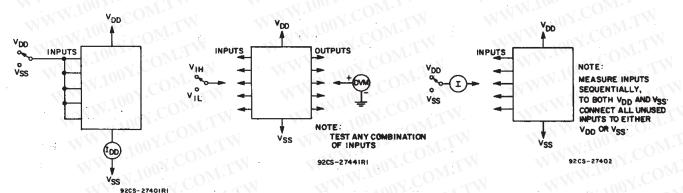
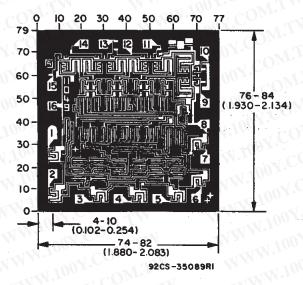



Fig. 10 - Quiescent device current test circuit.

Fig. 11 - Input voltage test circuit.

Fig. 12 - Input current test circuit.

Dimensions and pad layout for CD4543BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

IMPORTANT NOTICE

WWW.100Y.COM.T WWW.100Y.COM. Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

> TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

> CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

> In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

> TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Ti's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

WWW.100Y.COM.T WWW.100Y.COW.T Copyright © 1998, Texas Instruments Incorporated