

Absolute Maximum Ratings（Note）																	
If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／Distributors for availability and specifications．				Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The													
Supply Voltage																	
Input Voltage				table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define													
Operating DM54L DM74L	Operating Free Air Temperature Range		$\begin{array}{r} 125^{\circ} \\ +70^{\circ} \end{array}$	the conditions for actual device operation．													
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$																	
Recommended Operating Conditions																	
Symbol	Parameter		DM54LS109A			DM74LS109A			Units								
			Min	Nom	Max	Min	Nom	Max									
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V								
V_{IH}	High Level Input Voltage		2			2			V								
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V								
$\mathrm{IOH}^{\text {O}}$	High Level Output Current				－0．4			－0．4	mA								
lOL	Low Level Output Current				4			8	mA								
$\mathrm{f}_{\text {CLK }}$	Clock Frequency（Note 2）		0		25	0		25	MHz								
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency（Note 3）		0		20	0		20	MHz								
tw	Pulse Width （Note 2）	Clock High	18			18			ns								
		Preset Low	15			15											
		Clear Low	15			15											
tw	Pulse Width （Note 3）	Clock High	25			25			ns								
		Preset Low	20			20											
		Clear Low	20			20											
tsu	Setup Time （Notes 1 \＆2）	Data High	$30 \uparrow$			$30 \uparrow$			ns								
		Data Low	$20 \uparrow$			$20 \uparrow$											
tsu	Setup Time （Notes 1 \＆3）	Data High	$35 \uparrow$			$35 \uparrow$			ns								
		Data Low	$25 \uparrow$			$25 \uparrow$											
t_{H}	Hold Time（Note 4）		$0 \uparrow$			$0 \uparrow$			ns								
T_{A}	Free Air Operating Temperature		－55		125	0		70	${ }^{\circ} \mathrm{C}$								
Note 1：The symbol（ \uparrow ）indicates the rising edge of the clock pulse is u Note 2： $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ． Note 3： $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ． Note 4：$T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．																	

勝 特 力 材 料 886－3－5753170
胜特力 电子（上海）86－21－54151736
胜特力 电子（深圳）86－755－83298787
Http：／／www．100y．com．tw

Electrical Characteristics over recommended operating free air temperature range（unless otherwise noted）

Symbol	Parameter	Conditions		Min	Typ （Note 1）	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		1		－1．5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current＠Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=7 V \end{aligned}$	J，$\overline{\mathrm{K}}$			0.1	mA
			Clock			0.1	
			Preset			0.2	
			Clear			0.2	
I_{H}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$	J， \bar{K}			20	$\mu \mathrm{A}$
			Clock			20	
			Preset			40	
			Clear			40	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$	J，$\overline{\mathrm{K}}$			－0．4	mA
			Clock			－0．4	
			Preset			－0．8	
			Clear			－0．8	
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	－20		－100	mA
			DM74	－20		－100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$（Note 3）			4	8	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（See Section 1 for Test Waveforms and Output Load）

Symbol	Parameter	From（Input） To（Output）	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
tpLH	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		25		35	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or $\overline{\mathrm{Q}}$		30		35	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \bar{Q} \\ & \hline \end{aligned}$		25		35	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \hline \text { Clear } \\ & \text { to } \mathrm{Q} \\ & \hline \end{aligned}$		30		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Preset to Q		25		35	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Preset to \bar{Q}		30		35	ns

Note 1：All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
Note 2：Not more than one output should be shorted at a time，and the duration should not exceed one second．For devices，with feedback from the outputs，where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$ and 2.125 V for DM 54 and DM74 series，respectively，with the minimum and maximum limits reduced by one half from their stated values．This is very useful when using automatic test equipment．
Note 3：$I_{C C}$ is measured with all outputs open，with CLOCK grounded after setting the Q and \bar{Q} outputs high in turn．

Http：／／www． 100 y．com．tw

Physical Dimensions inches（millimeters）

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－54151736
胜特力电子（深圳）86－755－83298787
Http：／／www． 100 y．com．tw

54LS 109／DM54LS109A／DM74LS109A Dual Positive－Edge－Triggered J－K Flip－Flops

Physical Dimensions inches（millimeters）（Continued）

DETAIL A

16－Lead Ceramic Flat Package
Order Number 54LS109FMQB or DM54LS109AW
NS Package Number W16A

勝 特 力材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www．100y．com．tw

LIFE SUPPORT POLICY

NATIONAL＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION．As used herein：

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body，or（b）support or sustain life，and whose failure to perform，when properly used in accordance with instructions for use provided in the labeling，can be reasonably expected to result in a significant injury to the user．

2．A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．

